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Evolution of microorganism locomotion induced by starvation
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The search strategies of many organisms play a fundamental role in their competition to survive in a given
environment. In this context, the propulsion systems of microorganisms have evolved during life history, to
optimize the suitable use of energy they take from nutrients. Starting from a model for the motion of Brownian
objects with internal energy depot, we show that the propulsion system of microorganisms has an optimal
regimen while searching for new sources of food. Bacteria with a too low or too high energy expenditure in
propulsion, moving in a nutrient-depleted environment, do not reach remote distances. In this sense, the mean
square displacement has a maximum for a finite value of the propulsion rate. Species using the most efficient
locomotion system have a considerable advantage for survival in hostile environments, a common situation in
the ocean. Moreover, we found the existence of a lower size limit for useful locomotion. This suggests that, for
organisms whose linear dimensions are below a certain threshold, it is advantageous not to use any propulsion

mechanism at all, a result that is in agreement with what is observed in nature.
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I. INTRODUCTION

Considerable effort is being devoted to the understanding
of molecular motors, which have been shown to play a cru-
cial role in the dynamics of diverse biological objects, from
myosin fibers to bacteria [1,2]. For instance, there are many
works studying the molecular mechanism of force generation
for the flagellar movement of bacteria [3], but what is the
relationship between the acquired energy and the bacterial
movement? Motility is important for many organisms that
dedicate a substantial portion of their energetic resources to
exploring space, searching for the nutrient sources needed to
replenish the energetic stores used for their metabolic pro-
cesses [4,5]. These entities must have evolved to survive
when the environmental conditions are hostile, learning to
carry out their functions efficiently. Examples of such hostile
environments are micropatches in the ocean; point sources of
nutrients that are available for a limited time [6]. In marine
waters there are also organic and inorganic surfaces where
the aggregation of macromolecules and nutrient ions gener-
ates a zone of substrate elevation surrounded by a nutrient-
deficient environment [7]. It is in these media of low nutrient
concentrations that motility is crucial for surviving.

Several authors have analyzed the circumstances in which
locomotion benefits the organism. Purcell [8] showed that
the energetic cost of motility is negligible in bacteria, but he
considered only movement in culture media, where resources
are unlimited. If the nutrient limitation is extreme, small cells
get a larger portion of the maximum possible uptake per
receptor than large cells. Independent of mobility, this is a
possible explanation for the tendency toward microbacterial
sizes in seawater [9]. Torrella and Morita [10] suggest that
the ability of the nutrient-depleted bacteria to respond to sub-
strate addition may influence the survival capacity of the
organism. Mitchell studied the influence of body size in the
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energetic cost of movement [11]. He compared the cost of
four chemotactic strategies for different-sized bacteria by
adding the cost of translating and rotating. He found the
same power law behavior for bacteria as for the swimming
animals, proposing a universal allometric equation for all
swimming organisms.

For small microorganisms (sizes of the order of a mi-
crometer or smaller), Brownian forces have a non-negligible
effect on the motion. In fact, run-and-stop and run-and-
reverse chemotactic strategies are common in marine bacte-
ria, whose unusually long runs and high speeds, up to
400 um/s [12], are needed to defeat fast noise-induced di-
rectional changes [13]. In a previous work [14] we found that
external fluctuations can increase the mechanical efficiency
of a microorganism’s propulsion system. Our analytical re-
sults and Monte Carlo simulations suggest that, under certain
circumstances, microorganisms can take advantage of
Brownian forces to search more efficiently for a favorable
environment. Furthermore, according to those results, for
smaller particles the synergy between noise and propulsion
will increase, leading to the absence of a minimum size limit
for useful locomotion. However, the smallest motile bacte-
rium is found to have a diameter of 0.84 wm [15]. All the
bacterial genera with sizes smaller than this value (in the
range between 0.14 and 0.84 wm) are nonmotile, being
moved only by the action of Brownian forces. How these
two results are correlated is the topic of this work.

We analyze further the relationship between propulsion
and nutrient availability for a bacterium. We performed
Monte Carlo simulations of the movement of a bacterium in
a nutrient-depleted (hostile) environment, based on the
model of Schweitzer, Ebeling, and Tilch (SET) [16]. They
use an internal energy depot to relate the Brownian object
(BO) motion with the rate of resource utilization in the pro-
pulsion system. We find that, for a given set of the param-
eters, the mean square displacement has a maximum for a
finite value of the energy reconversion rate d;. In this way,
we show that there is an optimum propulsion configuration
that maximizes the search for a new nutrient source. Further-
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more, we find that there is a finite critical noise value for
which d, tends to zero. This indicates that for organisms
smaller than a certain threshold size (for which the influence
of noise is strong) the best strategy is not to use any propul-
sion system at all, a result in agreement with the situation
observed in nature by Dusenbery [15].

In the next section we propose an explanation for the
existence of the size threshold, based on simple physics. In
Sec. III we review the SET model and its approximations,
while in Sec. IV we present some analytical solutions for the
microorganism movement in a hostile environment. We
present the simulation results in Sec. V, summarizing our
conclusions in Sec. VL.

II. EXISTENCE OF A MINIMUM SIZE

Many authors tried to explain the existence of this mini-
mum size threshold for useful locomotion. Dusenbery [15]
concluded that a free-floating organism smaller than 0.6 um
diameter is unlikely to obtain any advantage by expending
energy on swimming. His prediction arises as a consequence
of considering the energy balance (between the increment in
nutrient uptake and the cost of locomotion) for an organism
with directed locomotion toward a stimulus. Previously,
Karp-Boss et al. predicted a minimum value of 8.5 um, and
Berg and Purcell a minimum diameter of 3.7 wm, consider-
ing the increment in the nutrient flux due to motion of the
bacterium or due to stirring of the medium by the organism,
respectively [17,18]. Mitchell analyzed the energetic cost of
flagellar stabilization needed by small bacteria to overcome
the Brownian forces [11,13]. He concluded that the high en-
ergetic cost of flagella production in small bacteria should be
a strong constraint in competitiveness, in the sense that small
bacteria could not acquire enough nutrients to build and
maintain a flagellum. But in a nutrient-rich environment the
situation could be the opposite. Berg [19] mentions the case
of some Escherichia coli strains grown in the laboratory that
are nonmotile due to the excess of nutrients: “If there is not
need to hunt for food, then why bother to build the chemo-
taxis apparatus?”

Our goal is to show that nutrient availability is also a
factor to be included in the explanation of the minimum size
threshold. In this sense our line of thinking is to consider a
bacterium in an environment without nutrients that has to
maximize, before starving, the mean square displacement
((r?)) in its wandering for a new nutrient source. If for sim-
plicity we consider that (r(f)) is the sum of the contributions
from the Brownian motion and from the run-and-tumble
mechanism, then'

<ﬂu»=4< 5T +v%) (1)
67TYR

with kp the Boltzmann’s constant, 7 the temperature of the
system, 7 the viscosity of the fluid (1072 cm?/s for water), R
the characteristic size of the bacterium, v the mean speed
during a run, and 7 the mean time between tumbles.

"The following argument was suggested by an anonymous referee.
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Considering a bacterium with a constant metabolic rate G,
and a constant rate of energy consumption for swimming, d,
then the time needed to consume the initial stored energy e
is

T G+d’

t ()
The minimum power required to swim is just the one re-
quired to overcome the drag force. Therefore, assuming the
bacterium to be a sphere, we can estimate d =6’7T77R02. Con-
sidering that the initial energy and the metabolic rate are
proportional to the volume of the bacterium we can write the
mean square displacement as

(20 = 8¢, R*(kgT/67mR +v°7)
2¢,R? +9m?

3)

with ¢, and c,, the proportionality constants for the initial
energy and for the metabolic rate, respectively. A bacterium
without a propulsion system will spend energy only through
the metabolic channel and then the mean square displace-
ment before starving is

4c kT

2 —
(r@)= P—

4)
We can see that, as R tends to zero, the mean square speed
with propulsion [Eq. (3)] also tends to zero while Eq. (4)
diverges as 1/R, showing that there must exist an intermedi-
ate size for which the usefulness of a propulsion system be-
gins. Setting Eq. (3) equal to Eq. (4), we get an equation for
R that defines the threshold,

1/3
R=<3@T) . )

4, T

In other words the threshold is set at the point where the
energy expended for living equals kzT. Assuming the ap-
proximate  values 7~1s [19] and ¢,~5.6
X 10* erg cm™ 57! [15] then the minimum bacterial size for
useful locomotion is R=0.006 um. This value is low com-
pared with that observed in nature, but we have underesti-
mated the power to drive motility; the molecular motor re-
quires more energy due to the propulsion efficiency, which is
around 10% for bacteria.

III. THE SET FORMALISM

The first attempt to relate the efficiency of the BO motion
with the rate of resource utilization was the SET model [16].
In this work the authors use a Langevin formalism to inves-
tigate the motion of microorganisms modeled as a BO with
an energy depot. The basic assumption is that the BO can
take up energy from the environment at a rate g, store it in an
internal energy depot, and reconvert part of it into kinetic
energy at a rate d, which is, generally, a function of the speed
v. The depot energy e(r) is dissipated at a rate G[e(z)], which
depends on the particular metabolic processes, and is meant
to account for all the nonmechanical use of the available
energy. The amount of stored energy is therefore described
by the equation
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de

-, =dlrv.wie] = Gle(] - dv.e().ul. (6)

where w is the metabolic state, e.g., the stage of the repro-
ductive cycle, or, in the case of a bacterium, the creation of
flagella. Then, the total energy of the active particle of mass
m is E(t)=(m/2)v’+e(t).

The uptake rate could depend on the local nutrient avail-
ability and on the internal state of the microorganism, but, to
simplify the analysis, we previously assumed a constant g
[14]. This is also a reasonable assumption for this work,
considering that our objective is to study the movement in a
region without nutrients. We further assume that the dissipa-
tion rate is proportional to the stored energy, Gle(r)]=ce.
SET proposed the following ansatz: the rate of conversion to
kinetic energy is proportional to both the instantaneous depot
energy and the instantaneous kinetic energy, and in conse-
quence they wrote d[v,e(f)]=d,ev®. Records of bacterial
motion [20] show that bacterial speeds during the run phase
increase slowly, suggesting that the bacterial motors pass
through many states that would correspond to successively
higher speeds and higher rates of energy conversion. In fact,
simulations performed using SET’s ansatz give results in
agreement with the experimental data of Berg and Brown
[21].

To account for the energy reconversion contribution to the
BO motion, we followed SET and postulated the modified
Langevin equation,

dv - .
m— =—y +dyev + F(1),

& ()

where 7 is the friction coefficient and F is a stochastic force
satisfying,

(F(1)=0, (FinFt'))=e€q;0t-1"). (8)
Here €=2vkgT is the noise intensity [22], due to the energy
compensation between the friction loss and the gain due to
the stochastic force.

To estimate the mean square speed for some special cases
we assumed that the depot energy reaches its quasistatic
equilibrium e, fast enough compared to the motion time

scale, obtaining the value of e, as a function of the speed

q
C+d202'

)

Replacing this expression in Eq. (7) we get a stochastic dif-
ferential equation that can be solved analytically for different
situations.

(1) If there is no internal dissipation, ¢=0, all the depot
energy is eventually transformed into kinetic energy, and we

can then easily solve the deterministic (F O) equation. If v

is the velocity at r=0, the resulting velocity in one dimension
is [21]
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172 1/2
D(l):<%> {1+( 1+%> -Wm} . (10)

At long times and including the noise contribution for a
d-dimensional system, we obtain the mean square speed

kgT
WAt — o)y =L gt
Y m

(1
Here we note that in this regime the contribution of the two
energy sources is additive.

(2) If most of the depot energy is consumed internally
without being transformed into mechanical energy [c
> d,v?], the asymptotic mean square speed is [21]

kT (2 kT
m(1-0) \"° m(1-0)

where Q=gqd,/yc is a parameter used to characterize the
dynamics. We calculated also the mean square displacement,
finding that for long times the motion becomes diffusive,
despite the effect of the propulsion system, even in the case
of a nonzero energy uptake.

A different perspective was obtained by solving the
Fokker-Planck equation associated with the stochastic differ-
ential equation [23]. For the steady state in one dimension,
the probability density takes the form [14]

<l)2( )> _ )e—Zy(l—Q)z/m’ (12)

) d mqle
W, (v) = Woe™ V/E(l + ?202) , (13)
where W, is a normalization constant. This distribution ex-
hibits a bifurcation at Q=1; for Q<1 it has one maximum
located at =0, while for Q> 1 there are two maxima, lo-
cated at

e \12
6, = i<—> (0-1'", (14)
+ 4,
which suggests that the presence of the depot has introduced
a degree of organization in the motion.

IV. THE HOSTILE ENVIRONMENT

But what happens if there are no nutrients in the environ-
ment? Taking g=0 in the previous analysis [Egs. (10)—(12)]
we see that at long times the particle becomes a BO, simply
diffusing in the medium. Due to the low Reynolds numbers,
the viscous forces dominate the motion, and the microorgan-
ism will have to wait for long times to record a change in the
surroundings [8]; then the probability to find a new source of
nutrients in a finite time will tend to zero, leading to starva-
tion. To analyze the effect of a nutrient-depleted environment
on the movement of a BO with energy depot, we have to
evaluate the whole evolution of the movement, since the
asymptotic regime will always be diffusive.

Considering that any biological entity must have evolved
to perform the search of new nutrient sources more effi-
ciently, it will be of interest to analyze the mean square dis-
placement for a particle that departs from a nutrient point
source that has been depleted. In this sense, the BO energy
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depot is initially not empty, and thus the microorganism must
optimize the use of the stored energy to cover the biggest
possible area in its search for a new source, before starving.

In the absence of a motor (d,=0) the mean square dis-
placement at long times is (r*(¢)) ~ 2Dt [22], where the dif-
fusion coefficient is given by D=€/277. If we consider that
there is a threshold value of the depot energy, e, below
which the biological entity cannot maintain its primary meta-
bolic functions and dies, the surviving time 7 can be com-
puted by simply integrating Eq. (6), getting

=1 1n(@) (15)

C €y

with ¢, the initial value of the depot energy. This result is
quite obvious: the particle consumes its stored energy at a
constant rate through the metabolic channel alone.

In the opposite case, in which both the internal consump-
tion of nutrients and the noise intensity are negligible, Egs.
(6) and (7) can be transformed into

Z = —dye(t)v?, (16)
d 2
me— = 207~ y+ dye(1)]. (17)
dt
From these we can find the relationship
dv? 2 ( r)
—=——|1--— 18
de m A (18)

with A=e/ey and I'=1vy/(d,eq). A first observation arises
from this equation: If the initial depot energy is lower than
v/ d,, the particle will decrease its velocity or simply will not
move at all if it starts at zero speed. The explanation of this
effect is quite straightforward; the transfer of energy to the
kinetic channel must be high enough to overcome the dissi-
pation. If the initial depot energy is higher than y/d,, the
particle will increase its speed while decreasing its stored
energy, until the moment when A=I", when the speed will
reach its maximum value.
Integrating Eq. (18) we get

2
2=+ =21~ A+T In A). (19)
m

Thus, for high energy transfer rates or low dissipation, so
that A>T, the kinetic energy will increase as a linear func-
tion of the depot energy. In particular, this will be the case at
short times, when the depot energy is close to its initial
value. For long times, on the contrary, when the depot starts
to deplete, the speed evolution will be governed by the loga-
rithmic term, leading to a fast reduction of the movement.
Following the previous considerations, after replacing A
with I", we find the maximum mean square speed as

2
2 =02+ =1+ T(InT - 1)]. (20)
m

max — U

A possible first approximation is to consider only the lin-
ear term in Eq. (19), which is the case of high mechanical
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use of the energy [d,> yIn(ey/e,)], obtaining the depot en-
ergy evolution as

e(t)=ey— %mvz(t). (21)

The conclusion is straightforward: Under this approximation,
the decrement of the energy stored in the depot is due only to
its kinetic use, and the total energy is conserved. The sur-
vival time can be obtained using the same approximation,
simply replacing the linear term of Eq. (19) in Eq. (16) and
integrating. Considering that at the moment of the departure
from the depleted nutrient source the initial speed of the
particle is zero, the 7, value obtained is infinite because we
neglected the noise term. If there is no noise and the initial
speed is zero, the particle is initially in a steady state accord-
ing to the speed evolution equation (7) and it will never
move. Without the noise term, the speed will never increase
because the kinetic transfer of the depot energy will never
occur [see the definition of d(v,e) after Eq. (6)]. Neverthe-
less, if we divide the movement into two stages, a first one
where the evolution is governed only by the noise term and a
second one where the noise is overcome by the propulsion
system, we can assure that the survival time of the particle
will be proportional to dg‘. The reason for this behavior is
that the threshold time between the two stages depends only
on & and 7. This result has been confirmed by numerical
simulations (see Sec. IV).

What happens if we add noise? We consider that the pro-
pulsion and noise contributions to the energy are additive [as
was obtained previously, in Eq. (11) for the stationary case
[14]], adding directly the noise contributions at the end of the
mean square speed evolution equation [Eq. (17)]. After con-
sidering the same approximation introduced in the previous
analysis, replacing the depot energy value with Eq. (21), we
get

dw?
m
dt

=[-2y+dy(2eg - m*) v+, (22)

with € the noise parameter. Solving this equation we, find

()\ MN1+e™) —s(1—-e™)
NI =) —s(1+e )

020 = — ) (23)

2d,

where N=2(dyeq—y)/m, and s=\\*+4d,e/m. In the short-
time limit the mean square speed grows as ef, being gov-
erned only by the noise contribution. In the long-time limit
(before starving) the situation is reversed, because it is the
motor that controls the evolution of the movement. A typical
mean square speed evolution described by Eq. (23) is de-
picted in Fig. 1(b). Replacing the previous equation in Eq.
(21), it is straightforward to find the survival time of the
biological entity as

1 (()\+S)D\—S—4d2(€0—€d)/m]

L=7 n (N=$)[\ +5—4dy(eg— ed)/m]) -

It can be shown from Eq. (24) that the survival time of the
BO is again proportional to the inverse of the rate of energy
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FIG. 1. Simulation results of the time evolution of the mean
square speed (circles) and depot energy (squares) for d,=10, ¢
=0.01, y=0.01, £=0.01, ¢z=10, and e,=0.1. The solid lines corre-
spond to the analytical solutions obtained from Eq. (23), showing
an excellent agreement, especially at short times.

reconversion when the propulsion system dominates the ki-
netics.

In the limit of high dissipation or low rate of energy re-
conversion, y>d,e,, we can consider the exact solution of
the stochastic differential equation (7) [22], and, after replac-
ing it in Eq. (19), we get that the survival time is again
proportional to d;lz

2
7=~ ln<e—0>. (25)
dzé (¥}

Note that the survival time is inversely proportional to the
noise intensity. This is a direct implication of the increase in
the mechanical efficiency of a microorganism’s propulsion
system that we found previously [14]. An increment in the
noise intensity enhances the propulsion function, leading to a
faster expenditure of the stored energy, which in turn de-
creases the survival time. The survival time as a function of
the energy reconversion term, for both high- and low-
dissipation limits [Egs. (24) and (25)], is depicted in Figs. 2
and 3.

V. SIMULATION RESULTS

We have performed extensive Monte Carlo simulations of
Egs. (6)—(8). We discretize the equations by using the stan-
dard Euler numerical method for Eq. (6), combined with
Heun’s algorithm [24] for Eq. (7). To generate the stochastic
force [Eq. (8)] we used the Box-Mueller method [25]. The
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FIG. 2. Mean square displacement (empty shapes) and survival
time T (filled shapes) as functions of the rate of energy transfer to
the propulsion system. Here we take y=0.1, £=0.1, ¢4=10, and
e,=0.1, and the indicated values of c¢. The solid line corresponds to
the T, approximation obtained in Eq. (24).

results presented here were obtained by averaging over
20 000 random walkers, while the time discretization was
chosen between 0.1 and 107, to ensure good convergence
and stability. We consider, as the initial setup, that the par-
ticles are at rest (v=0) at the origin of the coordinate system,
where the just depleted nutrient source was located. There-
fore, the BOs have a nonzero initial value e, of energy stored
in the depot.
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FIG. 3. Lifetime of the BO as a function of the rate of energy
transfer to the propulsion system for the no internal dissipation
case, ¢=0. The rest of the parameters are the same as in Fig. 2. Note
the excellent agreement obtained between the simulations and the
analytical expressions.
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In Fig. 1 we have plotted typical time evolutions of the
mean square speed [Fig. 1(a)] and the energy stored in the
depot [Fig. 1(b)] for different values of the internal dissipa-
tion rate. The (v2(#)) value has three very different behaviors.
Initially, the mean square speed increases linearly due to the
noise action, while the depot energy keeps its initial value.
The action of the propulsion system becomes evident in the
second stage, when the slope of the (v?) evolution increases,
while the energy depot still keeps a value similar to the ini-
tial one. After a certain time the consumption of energy starts
to be noticeable, leading to a fast depletion of the depot. This
decrement reduces also the energy transferred to the propul-
sion system and then the mean square speed reaches a maxi-
mum, followed by a slowdown due to the action of the fric-
tion. The simulations stop when the value of the stored
energy falls below the minimum stored energy e, In the
figure we also compare the simulation results with Egs. (23)
and (21) after replacing the {(v?) value. We observe a gener-
ally good agreement for ¢ <1, until the beginning of the fast
depot depletion, when a slight discrepancy appears. This dif-
ference vanishes for very low values of ¢, when the approxi-
mation used to obtain Egs. (23) and (21) holds. The discrep-
ancy is not evident if we plot the evolution of the mean
square speed as a function of the depot energy. The linear
increase of (v?) is continuous, and only stops when the depot
energy reaches e;. Comparing the result of the simulation
with Eq. (19), we observe an excellent agreement, conclud-
ing that the approximation of neglecting the logarithmic term
in Eq. (19) is also very good at long times.

It is interesting to note in Fig. 1(a) that a bacterium can
live longer by increasing its internal dissipation rate. Look-
ing at the crossing between the different simulations varying
¢, it is evident that for ¢=10 the particle will live around
50% more time than if we use ¢=1 or lower values (the
lifetime increases from 0.08 to 0.13). The explanation for
this behavior is simple and lies in the strong nonlinearity of
the system: if we keep the value of the internal energy high
until the beginning of the second stage (when the propulsion
system effect becomes evident), the speed will increase
faster, leading to a faster decrement of the depot energy.
Increasing the dissipation rate, the initial energy at the begin-
ning of the second stage is reduced [see Fig. 1(a)], resulting
in a lower decrement of the depot energy. Of course, if the
dissipation rate is very high, the decrement of the internal
energy will reduce the lifetime of the bacteria (¢=100 in the
figure).

Figure 2 shows the time 7, at which the depot energy
reaches the threshold value e, and the final mean square
displacement (r*(T,)), as functions of the rate of energy re-
conversion d,, for several values of the internal dissipation c.
The survival time T (squares) has two different behaviors.
For small d, values, T is constant, corresponding to the no-
propulsion situation expressed by Eq. (15). After a certain
value that depends on c, T starts to decrease approximately
linearly, in agreement with Eq. (24). For a high rate of en-
ergy reconversion, the survival time is obviously reduced
due to the addition of a new “channel” of energy consump-
tion: the propulsion system. It is interesting to note that,
while for small d, values there is a strong dependence on the

PHYSICAL REVIEW E 76, 011919 (2007)

*
d2

1
®

0.1 ]
0.01 0.1 1 10 100

W
H

FIG. 4. Value of the rate of energy conversion at which the
mean square displacement has a maximum as a function of the
friction coefficient. Here £=0.1, ¢;=10, and ¢;=0.1. In the low-
friction limit d; tends to a constant value, suggesting the existence
of an optimum configuration of the propulsion system.

internal rate of energy consumption c, in the opposite case all
the curves converge, independently of ¢, in complete agree-
ment with our analytical results. The mean square displace-
ment behavior (circles) is similar, but with the development
of a maximum for intermediate d, values. While in the low-
d, region the particle diffuses only due to the noise, for high
reconversion rates the propulsion system is pushing the par-
ticle to farther zones. Nevertheless, due to the shorter sur-
vival times, (r*(T,)) tends to zero. The particle receives ini-
tially a very strong “kick” from the propulsion system that
not only pushes it, but also consumes all the stored energy,
killing it. In the transitional region there is a synergy be-
tween both effects, leading to a propulsion system with an
optimum rate of energy utilization d;. This effect is reduced
if we decrease the rate of internal dissipation. In fact, if ¢
=0 the particle could live forever if there is no propulsion
system at all, increasing the mean square displacement to an
infinite value, just diffusing with the noise in a time that is
also infinite. This situation is shown in Fig. 3, where we can
see the good accuracy of our approximate solutions for low
[Eq. (25)] and high [Eq. (24)] energy reconversion rates.

The evolution of d; as a function of the friction parameter
is shown in Fig. 4. There, we can see that when the viscosity
of the medium is very strong the particle must increase the
energy transfer to its propulsion system to overcome diffu-
sion. In the low-friction limit instead, the d, value tends to a
constant, suggesting that there is an optimum configuration
of the propulsion system. In the evolution of d; as a function
of the noise parameter € (Fig. 5), we observe the existence of
a threshold value in the noise, €. If €> €. the optimum
value of the propulsion system utilization is zero, demon-
strating that for particles smaller than a threshold size (for
which the influence of noise is strong) it is a better strategy
not to use any propulsion mechanism at all, as observed in
nature [15].

Finally a last question arises: how “nutrient-depleted”
does the environment have to be to validate our results? In
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FIG. 5. Value of the rate of energy conversion at which the
mean square displacement has a maximum as a function of the
noise coefficient. Here y=0.1, ¢;=10, and e;=0.1. There is a
threshold value for the noise parameter at which the maximum
mean square displacement starts to be obtained by simply not using
any propulsion system.

Fig. 6 the evolution of the particle survival time is shown as
a function of the nutrient concentration for different values
of the noise intensity and a constant propulsion rate. The
existence of a threshold in the nutrient uptake, gy, is ob-
served; a direct consequence of the synergy between propul-
sion and noise observed previously [14]. For values higher
than ¢, the particle can survive by keeping its depot energy
value higher than the minimum e, required to sustain the
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FIG. 6. Lifetime as a function of the rate of energy uptake from
the medium. Here d,=0.1, c=1, y=0.1, ¢g=1, and ¢,=0.1 and the
& values indicated in the figure. The tendency to a constant for
small g suggests that the results of this work can be applied also to
media with low nutrient concentrations.
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metabolic functions. Conversely, for ¢ <g, the survival time
of the bacteria is approximately constant, suggesting that the
results obtained in this work will be valid not only in the
no-nutrient regime, but also for regions of very low nutrient
concentrations, as is observed in the ocean seawater.

VI. CONCLUSIONS

Based on a model that relates the movement of a particle
with its resource utilization, we have analyzed several statis-
tical properties for the evolution in a hostile environment.
We found that motile organisms have an optimal regime of
propulsion in their search for new sources of food. Bacteria
with a too low or too high energy expenditure in propulsion
will not reach remote distances, due to consumption of the
energy in metabolic functions, in the first case, and a strong
shortening of the survival time, in the second case. In this
way, species using the most efficient locomotion system have
a considerable advantage in surviving in these environments.

The noise dependence of the optimum regime shows the
existence of a threshold value, above which the better option
for the biological entity is not to use any propulsion mecha-
nism at all. Taking into account that for small microorgan-
isms the effect of Brownian forces increases, our conclusion
arises naturally: there is a minimum size for a bacterium to
benefit from the use of a propulsion system, in agreement
with Dusenbery’s observations [ 15]. It is important to remark
that this result appears in our model without introducing any
critical size or mass, which could force the result. Of course,
we do not pretend to present our argument of evolution in a
hostile environment as the only explanation for the minimum
size threshold of motile bacteria. Considering the previous
analysis mentioned in Sec. II, we can conclude only that the
absence of a locomotion mechanism in bacteria is the result
of the interplay, during evolution, of many energetic con-
straints.

For simplicity, the work presented here is based on the
original SET model; nevertheless, measurements show that
the torque-speed relationship is approximately constant
[19,26,27], leading to a correction in the energy conversion
term in Eqgs. (6) and (7). Performing simulations considering
the generalized version of the model [14], we still find the
existence of a threshold value in the noise term above which
the most efficient locomotion system is free floating (see Fig.
7). The explanation is quite simple: When we modify the
conversion rate of stored energy to mechanical energy, there
is not only a velocity increase (decrease), but also a decrease
(increase) in the survival time. The mean square displace-
ment limits for high and low reconversion rates are always
the same, no matter what the speed dependence, and thus
there is always a value for the noise parameter that makes the
mean square displacement in the absence of propulsion
larger than the maximum obtained with propulsion.

To analyze the effect of the run-and-tumble mechanism in
a simple (but crude) way we can work on the asymptotic
results of Condat’s model [28], considering a constant energy
flux ®@. Under a long-time approximation, we can describe
the mean square displacement as the sum of two diffusive
terms (4D1): one due to thermal fluctuation (independent of
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FIG. 7. Value of the rate of energy conversion at which the
mean square displacement has a maximum as a function of the
noise coefficient for a system with d[v,e(r)]=d,ev. Here y=0.1,
ep=10, and ¢,=0.1.

®) and one due to motility (varies as ®2). Thus, there is not
an optimal configuration for the propulsion: if ® increases,
(r?) also increases. The maximum in the mean square dis-
placement appears only when we apply the starvation con-
straint. Now, the time that we have to consider corresponds
to the moment at which the depot energy goes below the
minimum value needed for living. Using the same model as
before [28], we found that this time depends also on @ as
1/(c+A®?), with ¢ the metabolic rate of energy consumption
and A a constant. Considering this term in the mean square
displacement, we find a finite value of @ that maximizes

PHYSICAL REVIEW E 76, 011919 (2007)

(r?), from where an equation for the lower cutoff size
emerges [29].

The model considered here omits two important proper-
ties of bacteria: (a) the existence of a finite lifetime (they do
not live forever) independently of how many resources there
are in the media; and (b) the chemotaxis mechanism [30],
which optimizes the search for a new source of nutrients. We
have performed simulations including both mechanisms [31],
and the effect was to strengthen our findings [29]. A natural
lifetime longer than the no-propulsion value, given by Eq.
(15), has no effect in our results; in the opposite case, the
time in which a particle has to find a new nutrient source is
reduced, decreasing also the value of the area covered. This
effect will be stronger for particles with low metabolic en-
ergy consumption (small ¢ values), and thus long survival
times. Now the limit for the low energy reconversion rate in
the case of no internal energy dissipation [Eq. (25)] is not
valid any longer. The particle cannot spend infinite time
looking for nutrients. With the inclusion of the chemotactic
mechanism, the particle will increase its mean square dis-
placement due to a better strategy for nutrient searching
(considering them to be far away from the origin), directing
its motion to further distances. Nevertheless the consumption
of energy due to the propulsion system still exists, and again
a too high reconversion rate will not allow the particle to
survive. Then the final effect of the chemotaxis is to “move”
the optimum value d; to a higher value. The bacteria can
allow a higher expenditure of energy thanks to the increase
in the directional efficiency of the movement.
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