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We investigate patterns of collective phase synchronization in brain activity in awake, resting humans with
eyes closed. The alpha range of human electroencephalographic activity is characterized by ever-changing
patterns, with strong fluctuations in both time and overall level of phase synchronization. The correlations of
these patterns are reflected in power-law scaling of these properties. We present evidence that the dynamics
underlying this fluctuation is type-I intermittency. We present a model study illustrating that the scaling
property and the collective intermittent dynamics are emergent features of globally coupled phase oscillators
near the critical point of entering global frequency locking.
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I. INTRODUCTION

Synchronization is a fundamental phenomenon in coupled
nonlinear oscillators and is encountered in physical and
chemical as well as biological systems �1�. In particular, it is
a commonly observed phenomenon in the neurosciences �2�.
Synchronization processes in brain activity have been stud-
ied at all levels, ranging from single neurons to the whole
cortex. Notably, at all these levels synchronization is gov-
erned by a high degree of spatiotemporal fluctuation; various
patterns of synchronized and desynchronized activity emerge
and disappear over time; brain activity appears to be switch-
ing between these states perpetually. Such behavior has been
observed in neural responses to external stimulation as well
as in ongoing spontaneous activity �3–8�. Especially, the lat-
ter shows highly variable coherence structures that are be-
lieved to reflect the endogenous states of the brain �9–11�
and play important roles in shaping the former �12�. Fluctua-
tions in neural synchrony are therefore of considerable sci-
entific interest.

Here, we raise the following basic question: can we iden-
tify a dynamic mechanism that can be held responsible for
the intrinsic fluctuations in spontaneous patterns of neural
activity? We address this question by investigating collective
phase synchronization in spontaneous activity as found in the
alpha range of the human electroencephalogram �EEG�
�8–13 Hz�. Alpha-range activity is the most ubiquitous and
robust rhythm observed in EEG. Several recent studies have
described collective phase synchronization in this activity
range �13,14�. However these studies concentrated on phase
patterns occurring during global phase synchronization,
whereas these states are, in fact, alternated with episodes of
more irregular activity. Our present investigation, therefore,
treats phase synchronization patterns, including synchroniza-
tion and desynchronization periods, as a stream of ongoing
activity.

Our investigation starts out by showing that whole-head,
pairwise phase synchronization patterns show power-law
scaling behavior, reflecting the strong long-range coherences
of these patterns. Their ever-changing stream, therefore, has
an underlying dynamics that, as we will show next, has the
property of type-I intermittency. This kind of dynamics en-

ables the brain to rapidly enter and exit different synchro-
nized states, rendering synchronized states metastable.

In order to understand how the intermittent dynamics can
emerge as a collective phenomenon in electrocortical rhyth-
mic activity, we explain our data in terms of a physical
model of globally coupled phase oscillators �15�. This model,
even though it is simple and possesses only few design as-
sumptions, has previously been used to explain the emer-
gence of coherence in actual physical systems �16�. Compar-
ing the collective properties of phase patterns in the model to
those observed in alpha activity, we find that the model ac-
counts for the scaling property and qualitatively reproduces
the intermittent dynamics. In particular, we obtain this result
when the model is poised, close to a critical point of entering
a global frequency locking state. This result, therefore, sug-
gests that criticality might be essential for the collective dy-
namics found in spontaneous brain activity.

II. PHASE SYNCHRONIZATION ANALYSIS

Our study is focused on spontaneous alpha-range activity
�8–13 Hz� in human EEG �17�. Measurements were per-
formed on eight healthy normal subjects of ages 18–30. Sub-
jects were seated in a comfortable armchair in a light-
attenuated and magnetically shielded room and were asked
to relax with eyes closed. EEG was recorded from 64 chan-
nels using the Neuroscan system during a 6-min session.
Linked ears were used as reference. To eliminate the effects
of volume conduction, we uniformly choose 22 channels out
of the 64 channels. These channels have maximally long
distances between each other. In a preanalysis, we found that
all subjects have strong alpha frequency.

To obtain phase synchronization data from the EEG sig-
nals, the complex Morlet wavelet is used. Specifically, for a
signal recorded by the kth electrode, Sk�t�, the wavelet coef-
ficients are described as

WSk
�t0,a� =

1

a
�

−�

+�

Sk�t��*� t − t0

a
�dt ,

where �*� t−t0

a
� is the complex conjugate of the Morlet wave-

let defined as Eq. �1� and a is the wavelet scale �18�:
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��t� = �−1/4e6ite−t2/2. �1�

The wavelet coefficient can be described by WSk
�t0 ,a�

=Ak�t0 ,a�ei�k�t0,a�, where Ak�t0 ,a� and �k�t0 ,a� represent am-
plitude and phase, respectively. The wavelet method can be
applied to any frequency ranges we are interested in and is
suitable for nonstationary time series �19�. Noise can cause
phase slips, so phase synchronization for noisy systems has
the following features: the relative phase difference
�k,l�t ,a�= ��k�t ,a�−�l�t ,a��, instead of being fixed, hovers
around a constant value, and the distribution of the relative
phase difference in the unit circle has a peak. Phase synchro-
nization can be treated only in a statistical sense by detecting
the appearance of significant peaks. This can be done by
comparison with surrogate data �20�. We apply a sliding win-
dow of length n to obtain the phase synchronization index
�k,l�t ,a� between the kth channel and lth channel. The first
Fourier mode of the distribution of the relative phase differ-
ence is used as the phase synchronization index:

�k,l�t,a� = �	 1

n + 1 

j=−n/2

n/2

sin��k,l� �t + j�t,a���2

+ 	 1

n + 1 

j=−n/2

n/2

cos��k,l� �t + j�t,a���2�1/2

, �2�

where �t=0.002 s is the sampling time step, n=250. By ad-
justing the value of the wavelet scale a, the wavelet is cen-
tered at the peak of the alpha frequency range, 8–13 Hz,
determined individually from the average amplitude spectra
for each subject. Phase synchronization indices range from 0
to 1 with 1 indicating perfect phase locking.

To reduce spurious detection of phase synchronization,
we derive a significance level for each synchronization index
by applying our analysis to two kinds of surrogate data. The
first one is obtained by generating, for every subject, 100
pairs of independent white noise signals, each having the
same length as the original data. The second one is generated
according to the method described in Ref. �21�, with the
same number of pairs as used for the real EEG data. This
method is designed for multichannel time series and can pre-
serve both the power spectra and the cross spectrum of the
original data. After wavelet transforms in the alpha-
frequency range, phase synchronization indices are obtained
for all surrogate data. These indices for both surrogate data

are pooled together to form a distribution. We use the 99th
percentile of the distribution as the significance level �k,l� ; its
values vary according to subjects. Relevant values of the
synchronization indices are obtained by subtracting the 99th
percentile values of the surrogate series: �k,l

S �t ,a�
=max��k,l�t ,a�−�k,l� ,0. The resulting value is the significant
phase synchronization index. Values larger than zero indicate
significant phase synchronization between the kth and lth
channels at time moment t. Figure 1 shows the fluctuation
and variability of the phase synchronization index over time
for one arbitrary electrode pair. Since we are interested in the
collective dynamics of the phase synchronization patterns,
we count for each time step the total number of synchronized
pairs. The 22 selected channels yield a total of 231 pairs. Of
these, we consider the ones that show synchronized activity
at a given point in time. The total number of these pairs
constitutes our global order measure. It is denoted by N�t�.
As shown in Fig. 2, there are moments in time where this
measure indicates a high degree of synchronization, or order,
as well as intervals where desynchronized, or disordered, ac-
tivity predominates. Thus, the time series of N�t� nicely re-
flects the global order of the brain states, providing us with a
clear description of the intrinsic fluctuations in the patterns
of phase synchrony.

III. COLLECTIVE PROPERTY AND DYNAMICS
UNDERLYING FLUCTUATING PHASE

SYNCHRONIZATION PATTERNS

We now turn to investigate the properties of the fluctua-
tions in the synchronized phase patterns and reveal the un-
derlying mechanism. First, the distribution of the global or-
der measure N�t�, as shown in Fig. 3, has a linear part in the
log-log plot. The exponent for the linear part, extracted with
the maximum-likelihood method �22�, is −1.65, and this lin-
ear part is followed by a fast cutoff part which is due to
finite-size effects. As shown in Fig. 3, there is a clear dis-
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FIG. 1. Synchronization index over time for a single pair of
channels chosen from prefrontal and occipital parts of the brain.
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FIG. 2. Measure of global order in spontaneous alpha EEG: the
total number of phase synchronized pairs of channels as a function
of time.
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crepancy between real recordings and surrogate data, which
hints at the presence of a nonrandom component in the col-
lective synchronized activity patterns.

We next seek to clarify the dynamic mechanism underly-
ing the nonrandomness of the fluctuations in the synchro-
nized patterns. We use a method consisting of two main
steps: �i� we construct from the time series of the global
order measure N�t� a return times map; �ii� we construct a
map of angles based on the return times map. The return
times for a given dynamical system with observed signal x�t�
are defined as the time intervals between successive cross-
ings in the same direction of x�t�=c, with constant c. Accord-
ing to Takens’ theorem and its extension, the system dynam-
ics can be reconstructed from its one-dimensional time series
�23� and in particular, as has been shown theoretically, from
return times series �24�. Most recently, the methods based on
the angles map of return times have been improved and used
for the detection of deterministic structure in time series data
of real biological systems �25,26�. Our method is solidly
based on the method used in �25,26�. Note that, in order to
construct a map of angles based on a one-dimensional time
series, instead of a return times map, a Poincaré map is often
used. For example, consider the method of extracting a map
of angles from Couette-Taylor flow �27�. However, when it is
difficult to obtain the secant hypersurface for a Poincaré sec-
tion, the intervals map could be used instead �25�.

For a given dynamical system with observed signal x�t�
the return times are defined as the intervals between succes-
sive crossings in the same direction of x�t�=c, for a given
constant c. We calculate the time moments, denoted as t�i�,
i=1,n, when N�t� crosses a constant value Nc in the positive
direction and obtain the return time series T�i�= t�i+1�− t�i�.
We present results for Nc=80.5; our conclusions, however,
remain valid for threshold values ranging from 91st to 96th
percentile of the distribution of N�t�. To obtain the angles
map we represent the mean value of (T�i+1� ,T�i�) in x, y

coordinates as the central point in the return map. We deter-
mine the angle of the vector from this center for each point
(T�i+1� ,T�i�) of the map. Angles are denoted by ���i�, i=1,
M1. From this, the map of the angles (��i+1� ,��i�) is con-
structed. Figure 4 illustrates the result for one subject. Very
similar results are obtained when the same analysis is per-
formed on any of the other seven subjects. As shown in this
figure, the map has a clear structure. In particular, it pos-
sesses segments that are fuzzily tangential to the bisectrix, or
main diagonal. Maps that have fuzzy diagonal tangency are a
feature of type-I intermittency in experimental data with
noise �28�.

We proceed in the investigation of intermittent dynamics
by looking at the probability distribution of the laminar
phases, the parts with small amplitude and relative small
fluctuations as shown in Fig. 2. The laminar intervals are
interrupted in an irregular way by bursting activity. We con-
sider the distribution of the laminar intervals by imposing a
threshold value which can range from 80th to 89th percentile
of the distribution of N�t�. Figure 5 shows a log-log plot of
the probability distribution P��� of the laminar intervals �.
There is a clear power law relationship in this distribution
extending over two orders of magnitude. The corresponding
exponent calculated by using the maximum-likelihood
method is −1.61. As has been shown theoretically �29�, a
power-law distribution of the laminar phases is a property of
intermittent maps. The result, therefore, provides us with ad-
ditional evidence of intermittency in our data.

IV. SURROGATE DATA ANALYSIS

The intermittent dynamics describes the alternation of
regular, low-variance and irregular, high-variance activity as
a consequence of dynamical structure. We test the signifi-
cance of the proposed intermittent dynamics against the null
hypothesis that the fluctuations in variance are due to random
volatility clustering behavior, meaning that the variance is
high in one episode and low in the next. To this purpose we
use the autoregressive conditional heteroskedasticity
�ARCH� process �30� to generate surrogate data. As shown in
Fig. 6, ARCH processes can generate random volatility clus-
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FIG. 3. �Color online� The distribution of the number of syn-
chronized pairs for real data and surrogate data. The solid line rep-
resents the maximum-likelihood fit of the linear part of real data.
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FIG. 4. One-dimensional map of angles ��n+1� versus ��n�.
The dashed line represents the bisectrix ��n+1�=��n�. Data from
one typical subject.
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tering. For each time, 231 pairs of ARCH independent ran-
dom processes are generated. After obtaining for these pairs
the synchronization index by using the wavelet method, a
threshold is applied corresponding to the same percentile
point as in the analysis for real data in the distribution of the
synchronization index to obtain a surrogate time series of
numbers of significantly synchronized pairs, N�t�, as in the
above analysis. We continue the procedure for analyzing sur-
rogate data in the same way as for real EEG data. We per-
form the analysis for 1000 groups of surrogate data �each
group consists of 231 pairs�. As shown in Fig. 3, the surro-
gate data yield a distribution for the sizes of pairwise syn-
chronization that differs significantly from our data. We find
that in total six out of eight subjects significantly �p	0.05�
show the diagonal tangency exemplified in Fig. 4. These re-
sults, therefore, support the conclusion that the intermittent
dynamics underlying the behavior of collective phase syn-
chronization is an intrinsic feature of the EEG alpha-range
activity.

V. MODEL AND COLLECTIVE PROPERTY OF
SYNCHRONIZED PATTERNS OF GLOBALLY COUPLED

PHASE OSCILLATORS

Synchronization in brain activity involves a large variety
of physical and biochemical processes, many of which are
only partially known. In such a case, it may be useful to
consider the simplest possible physical model capable of
qualitatively reproducing the collective features revealed in
the data. To this aim, we propose a Kuramoto model of glo-
bally coupled phase oscillators. The model is described as
follows �15,16�:

�̇i = wi +
K

N


j=1

N

sin�� j − �i� , �3�

where wi is the frequency of the ith oscillator, K is the cou-
pling strength, and N is the total number of elements in the
system. Consistently with our data, we used N=22. Frequen-
cies wi are drawn from a normal distribution with zero mean
and variance 0.0015.

The order parameter r�t�= � 1
N
 j=1

N ei�j�t�� carries information
about the level of phase synchronization produced by the
model, and a variance measure is defined as var�N�t��
= ��N�t�− �N�t���2�1/2 with N�t� calculated using Eq. �2� in the
manner as for the experimental data. This measure expresses
variability in terms of the number of synchronized pairs and
therefore is easy to compare with our experimental results. A
measure similarly based on the variance of the number of
synchronized clusters has been used to discriminate different
collective patterns in coupled nonlinear oscillators and detect
transition points for entering a fully synchronized state from
partially synchronized ones �31�. The whole system was
simulated with 0.0005 time intervals for a total of
90 000 000 steps; the first 6 000 000 steps were discarded as
transient states.
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FIG. 7. �Color online� �a� Order parameters for the Kuramoto
model as a function of coupling strength. �b� Variance of the num-
ber of synchronization pairs. The variance has a maximum at the
critical point of entering global frequency locking for Kc

=0.002 89.
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FIG. 5. Log-log plot of the probability distribution P��� of the
laminar phase intervals � obtained from the EEG data. Data from
one typical subject.
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FIG. 6. Time series generated by the ARCH process, with the
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Figure 7 shows the mean value �r� and variance of pair-
wise synchronization var(N�t�) over the chosen time interval
as a function of coupling strength K. We observe that the
variance is maximal at the critical point of entering global
frequency locking—in other words, on entering from partial
phase-locking states to fully phase-locking states. As shown
in Fig. 7�b�, this critical point is found at Kc=0.002 89.

We investigate for the model—first, the scaling property
of N�t�, the number of pairwise phase synchronization,
which is calculated in Eq. �2� with n=700, and a threshold
near 1.0. Figure 8 shows a log-log plot of the distribution of
this number. For the parameter near the critical point Kc
=0.002 89, this distribution is characterized by a linear part
followed by a fast cutoff part, the same as for our experimen-
tal data. This result for the model is obtained only when the
system is near the critical point, with K=Kc; as shown in
Figs. 8�b� and 8�c�, other values of K which are chosen away
from the region near the critical point do not result in scale

invariance for the distribution of the number of synchronized
pairs.

Next, we describe for the model the collective dynamics
of the patterns of phase synchronization, using the same
method as for our experimental data. Starting from model
time series N�t�, we obtain the angles map shown in Fig. 9.
When K=Kc=0.002 89—i.e., when the coupling strength is
tuned near the critical point—the resulting map clearly has a
diagonal tangency �Fig. 9�a��. As a consequence, the return
times have alternating laminar and bursting phases. In other
words, the system shows intermittent dynamics as an emer-
gent characteristic of the globally coupled phase oscillators
near the critical point. When, by contrast, coupling param-
eters away from the critical point are chosen, there is no
evidence of such dynamics. Values lower than Kc, shown for
K=0.002 in Fig. 9�b�, result in less-organized, noisy dynam-
ics, and values greater than Kc, as shown for K=0.002 98 in
Fig. 9�c�, result in a fuzzy fixed point. In order to reproduce
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FIG. 9. �Color online� The map of angles ��n+1� versus ��n� for the Kuramoto model �a� with K=Kc—i.e., near the critical point of the
phase transition. Note that the map has a part that is tangential to the bisectrix around the point �−1.85,−1.85�. �b� K=0.002	Kc, �c� K
=0.00298
Kc.

INTERMITTENT DYNAMICS UNDERLYING THE… PHYSICAL REVIEW E 76, 011904 �2007�

011904-5



in the model the scaling property of the number of synchro-
nized pairs and the intermittent dynamics that produces it,
the coupling parameter must therefore be tuned close to the
critical point.

VI. CONCLUSION AND DISCUSSION

We have identified a collective intermittent dynamics un-
derlying the spontaneous phase synchronization processes of
EEG alpha-range activity. The intermittent dynamics enables
the synchronized states to be metastable. Such dynamics en-
genders rapid switching between different synchronized
states, without becoming trapped in any one stable state.
Thus, the beneficial effect of the intermittent dynamics is that
it provides the brain with a flexibility to respond to the great-
est variety in stimulation. Such flexibility may be crucial for
neural systems to represent and process information �32,33�.

We have shown that a model of globally coupled phase
oscillators poised very close to a critical point can qualita-
tively reproduce the intermittent dynamics and the power-
law scaling of synchronization. As compared with the real,
neurophysiological sources of EEG rhythms and their syn-
chronization behavior, the present model is extremely sim-
plified. The observation that a physical model based on mini-
mal design assumptions is capable of simulating these
biological data in great detail illustrates that abstract physical
models may contribute significantly to our understanding of
the basic working mechanisms of real neural systems. In a

similar spirit, recently Ising models have been used to inter-
pret neural spiking patterns �34�.

For the present model, the only specific assumption we
made is that coupling strength remains near a critical point.
The model studies, therefore, suggest the relevance of criti-
cality for generating highly variable phase synchronization
patterns in neural systems. Note that for equilibrium statisti-
cal systems at the critical point of the phase transition, inter-
mittency has been found recently �35,36�. Interestingly, the
collective dynamics of a type of intermittent dynamics char-
acterized by the diagonal tangency for cellular automata has
also been found in the state of transition from order patterns
to chaotic patterns �37�. All these provide an analogy to our
results. We may conclude that spontaneous phase synchroni-
zation patterns in EEG alpha-range signals could be under-
stood in terms of coupled nonlinear oscillators at the critical
point. Fine-tuning of criticality as required in the model,
however, appears unlikely for our brain. We therefore as-
sume that this criticality is self-organized �38�.

Criticality in brain rhythms has been investigated from a
statistical perspective, by analyzing the power spectra of in-
dividual recording sites. Here we illustrate the criticality of
brain activity from a different perspective, based on the col-
lective property of synchronized patterns in brain activity
and their dynamical origins. The findings are supportive for
casting a dynamical systems perspective on the highly vari-
able and ever-changing spontaneous patterns in neural
activity.
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