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We consider a long, semiflexible polymer with persistence length P and contour length L fluctuating in a
narrow cylindrical channel of diameter D. In the regime D� P�L the free energy of confinement �F and the
length of the channel R� occupied by the polymer are given by Odijk’s relations �F /R� =A�kBTP−1/3D−2/3 and
R� =L�1−���D / P�2/3�, where A� and �� are dimensionless amplitudes. Using a simulation algorithm inspired by
the pruned enriched Rosenbluth method, which yields results for very long polymers, we determine A� and ��

and the analogous amplitudes for a channel with a rectangular cross section. For a semiflexible polymer
confined to the surface of a cylinder, the corresponding amplitudes are derived with an exact analytic approach.
The results are relevant for interpreting experiments on biopolymers in microchannels or microfluidic devices.
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I. INTRODUCTION

Microfluidic devices provide new possibilities for study-
ing biological polymers such as DNA, actin filaments, and
microtubules. Since the persistence lengths of biological
polymers are typically tens of nanometers or larger, their
behavior in confinement, as in nanochannels or microchan-
nels, is different from that of flexible synthetic macromol-
ecules.

In this paper we consider the equilibrium statistics of a
semiflexible polymer or wormlike chain with persistence
length P and contour length L in a cylindrical channel of
diameter D. Here D is an effective diameter, equal to twice
the maximum transverse displacement of the polymer from
the symmetry axis of the channel. For a channel with hard
wall diameter dc containing a polymer with hard wall diam-
eter dp, D=dc−dp.

In the regime D� P�L, corresponding to a long, tightly
confined polymer, Odijk �1� showed that the free energy of
confinement �F—i.e., the work required to reversibly insert
the polymer in the channel—and the length of the channel,
R�, occupied by the polymer are given by

�F

R�

= A�

kBT

P1/3D2/3 , �1�

R� = L�1 − ���D

P
�2/3	 . �2�

For a channel with a rectangular cross section with edges Dx
and Dy,

�F

R�

= A�

kBT

P1/3� 1

Dx
2/3 +

1

Dy
2/3� , �3�

R� = L�1 − ��

Dx
2/3 + Dy

2/3

P2/3 � . �4�

Here A�, ��, A�, and �� are dimensionless universal num-
bers, which do not depend on P, D, Dx, and Dy.

Making use of advances in the manipulation of single
polymers, recent experiments have begun to approach the

Odijk regime D� P�L. In the experiments of Reisner et al.
�2� on single DNA molecules with persistence length P of
about 50 nm and contours lengths L of around 20 �m or
larger, the condition P�L is well satisfied, and the dimen-
sions Dx=30 nm and Dy =40 nm of the narrowest channels
are moderately smaller than P. In the experiments of Köster
et al. �3� on actin filaments with persistence length of about
20 �m in microchannels with diameters down to 1 or 2 �m,
D� P for the narrowest channels, and the longest contour
lengths L considered of around 50 �m are about 2–3 times
P. For an experiment in which DNA is confined by a
grooved substrate instead of a channel, see Hochrein et al.
�4�.

For interpreting such experiments it is important to know
the numerical values of the dimensionless amplitudes in Eqs.
�1�–�4�. Solving an integral equation numerically which
arises in an exact analytic approach, Burkhardt �5� found

A� = 1.1036, �5�

and from simulations Bicout and Burkhardt �6� obtained

A� = 1.108 ± 0.013, A� = 2.375 ± 0.013. �6�

Other estimates from simulations, compatible with these val-
ues but with larger error bars, are given in Refs. �7–9� and
related results for a helical polymer in a cylindrical channel
in Ref. �10�.

Although the free-energy amplitudes A� and A� are
known with good precision, comparable estimates of the ex-
tension amplitudes �� and �� have not been available. Thus,
we have determined �� and �� from simulations and ob-
tained more precise estimates of A� and A�, as described in
this paper.

The surface of a channel can be prepared so that biopoly-
mers are adsorbed. For example, naturally anionic DNA
strands are adsorbed on a surface coated with cationic lipid
membranes and have a high lateral mobility on the surface
�4,13,14�. The attractive interaction between the surface and
the biopolymer lowers the free-energy barrier for insertion of
a macromolecule in a narrow channel. With this as motiva-
tion we also consider the free energy and extension of a
semiflexible polymer confined to the surface of a cylinder.
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The theoretical framework for our calculations is outlined
in Sec. II. In Sec. III a simulation algorithm inspired by the
pruned enriched Rosenbluth method �PERM� �15–17� is de-
scribed, which enables us to consider polymers two or more
orders of magnitude longer than in the simulations of Ref.
�6�, on which the results �6� are based. Our estimates of the
amplitudes A�, A�, ��, and �� are given in Sec. III. In Sec.
IV we consider a semiflexible polymer confined to the sur-
face of a cylinder with diameter D. In the regime D� P
�L the confinement free energy and extension are also given
by Eqs. �1� and �2�, but with different amplitudes AS and �S.
These amplitudes are calculated with an exact analytic ap-
proach. In the concluding section V we compare the results
of Secs. III and IV with predictions for a polymer confined
by an effective parabolic potential.

II. THEORETICAL FRAMEWORK

In the wormlike chain model of a semiflexible polymer,
the bending energy is given by

H =
�

2



0

L

ds�d�̂

ds
�2

. �7�

Here �̂ is the unit vector tangent to the polymer contour, s is
the arclength, and � is the bending rigidity, related to the
persistence length by P=� /kBT. In the regime D� P�L,
backfolding of the polymer—i.e., configurations with “hair-
pins” �18�—and excluded-volume effects are negligible. In
typical polymer configurations the tangent vector is nearly
parallel to the symmetry axis of the channel. The configura-
tions correspond to single-valued functions r��t�, where
�x ,y , t� are Cartesian coordinates �see Fig. 1� and r�= �x ,y�
specifies the transverse displacement of the polymer from the
symmetry axis or t axis of the channel. Since �v� � �1, where
v� =dr� /dt, the bending energy �7� simplifies to

H =
�

2



0

L

dt�d2r�

dt2 �2

, �8�

and the length of the channel R� occupied by the polymer and
the contour length L are related by

L = 

0

R�

dt�1 + v�2�1/2 � R� +
1

2



0

R�

dt v�2. �9�

The partition function of a polymer in a channel, with
position and slope r�0 ,v�0 at t=0 and r� ,v� at t, with bending

energy �8�, and without backfolding, is given by the path
integral

Z�r�,v� ;r�0,v�0;t� =
 D2r exp�−
P

2



0

t

dt�d2r�

dt2 �2	 , �10�

where the paths are restricted to the interior of the channel. It
satisfies the Fokker-Planck type differential equation

� �

�t
+ v� · �� r −

1

2P
�v

2�Z�r�,v� ;r�0,v�0;t� = 0, �11�

with the initial condition Z�r� ,v� ;r�0 ,v�0 ;0�=��r�−r�0���v� −v�0�.
The boundary condition at a “hard” channel wall follows

from the fact that discontinuities in the slope of the polymer
cost an infinite bending energy and are suppressed. Thus, as
r� approaches the channel wall, Z�r� ,v� ;r�0 ,v�0 ; t� vanishes for
n̂ ·v� 	0, but not for n̂ ·v� 
0, where n̂ is normal to the wall
and directed toward the interior of the channel �5�.

Our reason for denoting the Cartesian coordinates by
�x ,y , t� instead of �x ,y ,z� is explained in Fig. 1. Each poly-
mer configuration r��t� may be interpreted as the position of a
randomly accelerated particle in two dimensions, plotted as a
function of the time t. The polymer partition function �10�
corresponds to the propagator or probability density for
propagation from initial position and velocity r�0 ,v�0 to r� ,v� in
a time t. From the Boltzmann factor in Eq. �10� one sees that
the acceleration of the particle at each instant is an indepen-
dent, Gaussian-distributed random variable, with

d2r�

dt2 = �� �t�, �� �t�� = 0, �i�t�� j�t��� =
�ij

P
��t − t�� .

�12�

Since the polymer partition function vanishes at a hard
wall for n̂ ·v� 	0, the propagator for the randomly accelerated
particle vanishes if the particle is reflected toward the interior
of the two-dimensional domain representing the channel
cross section. Thus, the hard wall in the polymer problem
corresponds to an absorbing boundary for the randomly ac-
celerated particle.

For large t the partion function �10� decays as

Z�r�,v� ;r�0,v�0;t� � �0�r�,v���0�r�0,− v�0�e−E0�P,D�t, t →  ,

�13�

where E0�P ,D� is the smallest eigenvalue of the t indepen-
dent Fokker-Planck equation

�− E�P,D� + v� · �� r −
1

2P
�v

2	��r�,v�� = 0. �14�

Together with the definition

exp�−
�F

kBT
� =

Z�D�
Z��

�15�

of the free energy of confinement, Eq. �13� implies

t

FIG. 1. The curve may be interpreted as a tightly confined semi-
flexible polymer in a channel with a circular cross section or as the
trajectory r��t�, plotted as a function of t, of a randomly accelerated
particle moving in two dimensions, which has not yet left a circular
domain.
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�F

kBTR�

= E0
� �P,D� − E0

� �P,� =
E0

� � 1
2 ,1�

�2P�1/3D2/3 �16�

for a channel with a circular cross section, in agreement with
Odijk’s relation �1�. Here we have used the scaling relation
E0

� �P ,D�= �2P�−1/3D−2/3E0
� � 1

2 ,1�, which is readily derived by
rewriting Eq. �14� in terms of the dimensionless variables
r��=D−1r�, t�= �2P�−1/3D−2/3t, and v��= �2P�1/3D−1/3v� .

For a channel with a rectangular cross section with edges
Dx and Dy, the partition function in Eq. �10� has the product
form Z�r� ,v� ;r�0 ,v�0 ; t�=Z�x ,vx ;x0 ,vx0 ; t�Z�y ,vy ;y0 ,vy0 ; t�.
This is the origin of the sum of independent x and y contri-
butions in Eqs. �3� and �4�. The solutions to Eq. �14� also
have the separable form ��r� ,v��=��x ,vx , ���y ,vy�, implying
E0

��P ,Dx ,Dy�=E0
� �P ,Dx�+E0

� �P ,Dy�. Here E0
� �P ,Dx� is the

smallest eigenvalue of the equation

�− E��P,D� + vx
�

�x
−

1

2P

�2

�vx
2	��x,vx� = 0 �17�

on the one-dimensional interval − 1
2Dx
x


1
2Dx, with

boundary condition ��− 1
2Dx ,vx�=�� 1

2Dx ,−vx�=0 for vx	0.
The scaling relation E0

� �P ,Dx�= �2P�−1/3Dx
−2/3E0

� � 1
2 ,1�, is

readily derived by rewriting Eq. �17� in terms of the dimen-
sionless variables x�=D−1x, t�= �2P�−1/3Dx

−2/3t, and vx�
= �2P�1/3Dx

−1/3vx.
From Eqs. �1�, �3�, and �16� and the results of the preced-

ing paragraph, we obtain

A� = 2−1/3E0
� � 1

2 ,1�, A� = 2−1/3E0
� � 1

2 ,1� . �18�

To obtain comparable expressions for the amplitudes ��

and ��, we begin by comparing Eqs. �2� and �9�, which
imply

�� =
1

2
� P

D
�2/3

v�2�P,D
� . �19�

Here v�2�P,D
� is the average value of v�2 along an infinitely

long, tightly confined polymer in a channel with a circular
cross section. In terms of the ground-state eigenfunction
�0�r� ,v�� of Eq. �14� with eigenvalue E0

� �P ,D�,

v�2�P,D
� =


 d2r
 d2vv�2�0�r�,v���0�r�,− v��


 d2r
 d2v�0�r�,v���0�r�,− v��
. �20�

Expressing Eq. �19� and its analog for the rectangular cross
section in terms of the dimensionless variables introduced
below Eqs. �16� and �17�, we obtain

�� = 2−5/3v��2�1/2,1
� , �� = 2−5/3vx�

2�1/2,1
� , �21�

Equations �18� and �21� play a central role in our work,
allowing us to determine the free energy and extension am-
plitudes from simulations with the dimensionless parameters
D�=Dx�=Dy�=2P�=1. We emphasize that the approach for
calculating the amplitudes A�, A�, ��, and �� based on Eqs.
�18� and �21� is exact, apart from statistical errors in the
simulations. We always work in the regime where the

unprimed parameters satisfy D ,Dx ,Dy � P�L and the parti-
tion function of the wormlike chain reduces to the form �10�.

III. SIMULATIONS

A. Algorithm

To determine A� and �� from simulations, we generate a
large number N0 of configurations x��t�� of a polymer with
persistence length P�= 1

2 in the unbounded two-dimensional
space �x� , t��. Here x� and t� are the dimensionless coordi-
nates introduced below Eq. �17�. The configurations are gen-
erated with the same Boltzmann weight as in Eq. �10�, but in
two rather than three spatial dimensions. The amplitudes A�,
��, A�, and �� in Eqs. �1�–�4� are defined in the limit of
infinite contour length and do not depend on the boundary
conditions at the ends of the polymer. Thus, we use the same
simple initial condition x0�=v0�=0 at t0�=0 for each configu-
ration. Each configuration is “grown” until it leaves the in-
terval − 1

2 
x�

1
2 for the first time. From this information we

calculate the fraction Q�t�� of the N0 configurations which
have not yet left the interval at t�.

From Eq. �15� we see that Q�t��=exp�−�F /kBT�, where
�F is the free energy of confinement of a polymer with one
end fixed, as described above, which extends a distance t�
down a two-dimensional channel of width 1. According to
Eq. �13� and the discussion below Eq. �17�, Q�t�� decays as

Q�t�� � e−E0
� �1/2,1�t� �22�

for large t�. To estimate A�, we fit the Q�t�� extracted from
the simulations with the exponential form �22� for large t� to
obtain E0

� � 1
2 ,1� and then use Eq. �18�.

The polymer configurations are generated with the algo-
rithm

xn+1� = xn� + vn��n+1 + ��n+1
3

6
�1/2

�sn+1 + �3rn+1� , �23�

vn+1� = vn� + �2�n+1�1/2rn+1, �24�

introduced in Ref. �11� and also used in Refs. �6,12�. Here xn�
is the position of the polymer at point tn� and �n+1= tn+1� − tn� is
the length step. The quantities rn and sn are independent,
Gaussian random numbers with rn�= sn�=0 and rn

2�= sn
2�

=1.
As discussed in Refs. �6,11,12�, this algorithm generates

polymer configurations consistent with the Boltzmann
weight �10� in free space—i.e., in the absence of boundaries.
An advantage of the algorithm is that in free space there is no
length-step error. The length step �n+1 need not be small. For
good efficiency we use a fairly large step when xn� is well
inside the interval − 1

2 
x�

1
2 . Near x�= ± 1

2 a smaller step is
needed in order to accurately determine the value of t� at
which the configuration leaves the interval for the first time
and hence Q�t��. As in Ref. �6�, we choose

�n+1 = 10−1� 1
2 − �x�� + 10−5, �25�

which varies from 0.05 at x�=0 to 10−5 at x�= ± 1
2 . Further

reduction of the length step had no significant effect on our
estimates.
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In estimating vx�
2�1/2,1

� in Eq. �21� to determine ��, one
should only use the subset of the configurations, generated as
described above, which lie entirely within the interval − 1

2

x�


1
2—i.e., within the channel. For each of the configu-

rations C in the subset we average v�2, over the entire length
of each of the configurations in the subset, using

v�2�C = �
n

�n+1

t�
v�2�n+1. �26�

Here t�=�n�n+1 is the total length of the channel occupied
by configuration C and v�2�n+1 is the equilibrium value of
v�2 for a semiflexible polymer with end points �xn� ,vn�� and
�xn+1� ,vn+1� � at tn�= and tn+1� , respectively, averaged over all
intermediate t�. This quantity is readily calculated from the
free space partition function or propagator and is given by

v�2�n+1 =
2

15
�n+1 +

6

5
�xn+1� − xn��

2�n+1
−2 +

2

15
�vn+1�2 −

1

2
vn+1� vn�

+ vn�
2� −

1

5
�xn+1� − xn���vn+1� + vn���n+1

−1 . �27�

Having calculated v�2�C for each configuration in the subset
this way, we average the results over all the configurations in
the subset to obtain an estimate of vx�

2�1/2,1
� and, using Eq.

�21�, the corresponding value of ��.

B. Enrichment procedure

The quantity vx�
2�1/2,1

� in Eq. �21� is the average value of
v2 for a semiflexible polymer of infinite length in a channel.
We found it necessary to go to lengths t� of around 100 to
estimate vx�

2�1/2,1
� , free of finite-length effects, to three sig-

nificant figures. However, it is not feasible to generate con-
figurations this long, which lie entirely within the channel,
without modifying the steps outlined in the preceding para-
graphs. From Eqs. �5� and �21�, E0� 1

2 ,1� is close to 1.390.
Thus, according to Eq. �22�, the probability that a configura-
tion of length t�=100, generated as described above, never
leaves the channel − 1

2 
x�

1
2 is about e−139�10−61.

To generate a large, statistically useful number of configu-
rations lying entirely in the channel, we used an enrichment
procedure inspired by PERM �15–17�, which has been suc-
cessfully applied in simulations of a wide variety of systems,
including flexible, self-avoiding polymers in channels
�19,20�.

We begin by generating a large number N0 of configura-
tions as described above. Let N1 be the number of these
configurations which have not yet left the channel at t�=�.
We make n copies of each of these configurations and then,
with the algorithm of the preceding subsection, continue
each of the nN1 configurations past t�=�. Let N2 be the num-
ber of these configurations which have not yet left the chan-
nel at t�=2�. Again we make n copies and then continue the
nN2 configurations past t�=2�. At t�=3� ,4� , . . ., the same
procedure is followed.

To estimate A� using Eqs. �18� and �22�, we need to cal-
culate the probability Q�t��, defined above Eq. �22�, that a

configuration, generated as in the preceding subsection, has
not yet left the channel at t�. To obtain this probability, it is
useful to think of copying all preceding configurations, in-
cluding the number of initial configurations, at t�=� ,2� , . . ..
Thus,

Q�0� = 1, Q�k�� =
Nk

nk−1N0
for k = 1,2, . . . . �28�

Our results for a semiflexible polymer in two dimensions
were obtained with N0=1.8�107, �=1, and n=4. These val-
ues of n and � were chosen so that Nk slowly decreases with
increasing k. From Eqs. �5�, �18�, �22�, and �28�, one finds

Nk�nke−E0
� �1/2,1�k�N0= �0.996�kN0.

We have also calculated the number of families, Nk
fam, to

which the Nk configurations that remain in the channel up to
t�=k� belong. Two configurations are said to belong to the
same family if they coincide in the interval 0
 t�
�—i.e., if
their most remote ancestor is the same. By definition N1

fam

=N1, but for larger k, Nk
fam�Nk, since several of the Nk con-

figurations may belong to the same family. According to our
simulation data Nk

fam also decays as nke−E0�1/2,1�k�= �0.996�k.
For sufficiently large k all Nk configurations belong to a
single family.

To determine ��, we evaluate vx�
2�1/2,1

� , as outlined above
in the paragraph containing Eqs. �26� and �27�, for those Nk
configurations which remain in the channel up to t�=k�, es-
timate the limiting value for large t�, and then use Eq. �21�.

The simulations of a polymer in a channel with a circular
cross section of diameter D are very similar. In terms of the
dimensionless Cartesian coordinates �x� ,y� , t�� introduced
below Eq. �16�, the channel has radius 1

2 . Beginning with
x0�=y0�=vx0� =vy0� = t0�=0, we generate the sequence �xn� ,yn� , tn��
with the algorithm �23� and �24� and corresponding equa-
tions with x replaced by y. In analogy with Eq. �25� the
length step is

�n+1 = 10−1�1

2
− �xn�

2 + yn�
2�1/2	 + 10−5. �29�

Each configuration is grown until it leaves the circular
domain �x�2+y�2�1/2


1
2 . Again we begin with N0 configura-

tions and at t�=� ,2� , . . . make n copies of the N1 ,N2 , . . .
configurations which have not yet left the circular domain.
Our results were obtained with N0=4.7�107, �=1.009, and
n=20. As in the two-dimensional case these parameters were
chosen so that Nk and Nk

fam decay rather slowly, as

nke−E0
� �1/2,1�k�= �0.997�k, where we have used Eqs. �18�, �22�,

and �28� and our result for A� in Eq. �30�.
To estimate A�, we calculate Q�t�� for integer t� using Eq.

�28�, fit the results with the exponential form �22�, but with
E0

� � 1
2 ,1� in place of E0

� � 1
2 ,1�, and then use Eq. �18�. To esti-

mate ��, we evaluate v��2�1/2,1
� , as described in connection

with Eqs. �26� and �27�, for those Nk configurations which
remain in the channel up to t�=k� and then use Eq. �21�.

C. Results

In Fig. 2, ln Q�t��, as determined from Eq. �28�, is shown
for t�=0,� ,2� , . . . for a polymer on a two-dimensional strip
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�upper curve� and in a three-dimensional channel with a cir-
cular cross section �lower curve�. According to Eqs. �22� and
�18� the upper and lower curves have slope E0

� � 1
2 ,1�

=21/3A� and E0
� � 1

2 ,1�=21/3A�, respectively, for large t�. From
the best fit to the slope, we obtain

A� = 1.1038 ± 0.0006, A� = 2.3565 ± 0.0004. �30�

The uncertainty was estimated by determining A� and A� in
each of the intervals 100
 t�
200, 200
 t�
300, . . . ,900

 t�
1000 and quoting a value somewhat larger than the
width of the corresponding distribution.

The estimate for A� is in extremely good agreement with
the result in Eq. �5�, obtained by solving an integral equation
numerically that determines A� in an exact analytic approach
�5�. The new estimates for A� and A� in Eq. �30� have
smaller error bars than the earlier estimates �6� shown in Eq.
�6�, which are based on simulations of much shorter polymer
chains.

In Fig. 3 the t� dependence of vx�
2�1/2,1

� and v��2�1/2,1
� is

shown. The averages are based on the configurations which
remain in the channel from the starting point up to t�. For t�
greater than roughly 100 the curves are consistent, within
statistical fluctuations, with the constant values vx�

2�1/2,1
�

=0.2901±0.0003 and v��2�1/2,1
� =0.5400±0.0004. Substitut-

ing these values in Eq. �21�, we obtain

�� = 0.09137 ± 0.00007, �� = 0.1701 ± 0.0001. �31�

For a polymer on a two-dimensional strip, the probability
distribution P�v�2�� of the quantity v�2� is shown for rep-
resentative values of t� in Fig. 4. The distribution was deter-
mined from the results for v�2�C, where the index C labels
the configurations that remain in the channel up to length t�
and v�2�C is the average value of v�2 along configuration C
from the starting point up to t�, calculated as in Eqs. �26� and
�27�. The distributions in Fig. 4, are approximately Gaussian,
and the half width or standard deviation w, shown in Fig. 5,
decreases in good agreement with the t�−1/2 law expected for
statistically independent contributions. Results similar to

those in Figs. 4 and 5 were also obtained for a polymer in a
channel with a circular cross section.

Since v�2�C determines the contour length L� of configu-
ration C via Eq. �9�, the curves in Fig. 4 may be interpreted
as distributions of the contour length L� for fixed t�. Presum-
ably the distribution of t� for fixed L�—i.e., the end-to-end
distribution for a polymer of fixed contour length �21�—is
very similar.

IV. SEMIFLEXIBLE POLYMER CONFINED TO A
CYLINDRICAL SURFACE

In this section we consider a semiflexible polymer con-
strained to lie on a cylindrical surface with a circular cross
section. As mentioned in the Introduction, this is an obvious
model for a semiflexible polymer adsorbed on a channel
wall. We analyze the case in which only configurations that
leave the polymer in contact with the cylindrical surface are

FIG. 2. ln Q�t�� vs t� for a polymer on a two-dimensional strip
�upper curve� and for a polymer in a three-dimensional channel
with a circular cross section �lower curve�.

FIG. 3. vx�
2�1/2,1

� vs t� for a polymer on a two-dimensional strip
�lower curve� and v��2�1/2,1

� vs t� for a polymer in a three-
dimensional channel with a circular cross section �upper curve�.

FIG. 4. Distribution P�v�2�� for a polymer on a two-
dimensional strip, as defined below Eq. �31�. The curves corre-
spond, from bottom to top, to t�=100, 225, 400, 625, and 900.
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allowed and the equilibrium statistics is determined by the
Boltzmann weight e−H/kBT, where H is the bending energy
�7�. The bending energy is clearly minimized if the polymer
configuration is a straight line parallel to the symmetry axis
of the channel. In the limit D� P�L the free energy of
confinement and the extension again are given by Eqs. �1�
and �2�, as shown below, but with different amplitudes AS
and �S, which we determine.

In the regime D� P�L, typical configurations of a semi-
flexible polymer correspond to single-valued functions r��t�
= r̂�t�R, where r� specifies the transverse displacement of the
polymer from the symmetry axis or t axis of the channel.

Here �r ,� , t� are cylindrical coordinates and r̂ , �̂ , t̂ are the

corresponding unit vectors. Keeping in mind that dr̂ /d�= �̂,

d�̂ /d�=−r̂, and �Rd� /dt��1, one finds that the bending en-
ergy �7� takes the form

H =
�

2



0

L

dt��R
d2�

dt2 �2

+
1

R2�R
d�

dt
�4	 . �32�

As discussed below Eq. �11�, the polymer configuration
r��t� may be interpreted as the position of a randomly accel-
erated particle in the �x ,y� plane, plotted as a function of
time. A polymer confined to the surface of a cylinder corre-
sponds to a particle moving on a circle of radius R. The first
and second terms in the integrand in Eq. �32� are the squares
of the tangential and centripetal accelerations, respectively.

Equation �32� and the definitions x=R�= 1
2D� and v

= 1
2Dd� /dt lead to the partition function

Z�x − x0,v,v0,t�

=
 Dx exp�−
P

2



0

t

dt��d2x

dt2 �2

+
4

D2�dx

dt
�4	�

�33�

and the Fokker-Plack equation

� �

�t
+ v

�

�x
+

2P

D2 v4 −
1

2P

�2

�v2�Z�x − x0,v,v0,t� = 0. �34�

In contrast to the case of a polymer in a channel, the
variable x in Eq. �34� is not restricted to a finite interval, but
varies from − to . Instead of the hard wall boundary con-
dition, the solution to Eq. �34� satisfies limx→±Z�x
−x0 ,v ,v0 , t�=0. These simplifying features enable us to cal-
culate AS and �S with an analytic approach, without recourse
to a simulation.

Disregarding the position of the polymer end point, we
integrate Eq. �34� over x from − to  and impose the
boundary condition mentioned in the preceding paragraph.
This yields the Schrödinger equation

� �

�t
+

2P

D2 v4 −
1

2P

�2

�v2�Z�v,v0,t� = 0. �35�

Equation �35� also follows directly from the path integral
Z�v ,v0 , t�=�Dv exp�− 1

2 P�0
t dt��dv /dt�2+ �4/D2�v4��, which

has the same Boltzmann factor as in Eq. �33�, but expressed
in terms of v rather than x.

Beginning with Eq. �35� and following the steps that led
from Eq. �11� to Eqs. �18� and �21�, we obtain

AS = 2−1/3E0
S�1

2
,1�, �S = 2−5/3v�2�1/2,1

S . �36�

Here E0
S� 1

2 ,1� is the ground-state energy of the Schrödinger
equation with a quartic potential

�− ES + v�4 −
�2

�v�2���v�� = 0, �37�

written in terms of the dimensionless variables introduced
below Eq. �17�, �0�v��=�0�−v�� is the wave function of the
ground state, and v�2�1/2,1

S is the quantum-mechanical expec-
tation value of v�2 in the ground state.

The ground-state energy of Eq. �37�, determined numeri-
cally by Bender et al. �22� and Voros �23�, is given by
E0

S� 1
2 ,1�=1.060 362 09. Solving the Schrödinger equation

�37� numerically for this energy using Mathematica, we ob-
tain v�2�1/2,1

S =0.362 023. Substitution of these values in Eq.
�36� yields the amplitudes

AS = 0.84161, �S = 0.11403. �38�

V. CONCLUDING REMARKS

Using a PERM-inspired simulation algorithm, we have
determined the amplitudes A�, A�, ��, and �� for a semiflex-
ible polymer in a channel with an estimated error of less than
a tenth of a percent. We hope the results will be useful in
analyzing experiments. For a polymer confined to the surface
of a cylinder, we have calculated the corresponding ampli-
tudes AS and �S exactly to five significant figures with an
analytical approach. These latter results may be used as a
benchmark for testing simulation algorithms.

A common approximation in studies of semiflexible poly-
mers in channels is to replace the hard wall interaction by an

FIG. 5. Double-logarithmic plot of the half width or standard
deviation w of the distribution P�v�2�� �see Fig. 4� as a function of
t�. The straight line corresponds to w=kt�−1/2, where k is a constant.
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effective parabolic potential �21,24�. In concluding, we use
this approximation to relate the free energy and extension
amplitudes A and � and compare the relations with our simu-
lation results.

The partition function of a polymer which is tightly con-
fined along the t axis by a parabolic potential energy per unit
length u= 1

2kBTbr�2 is given by the path integral

Z�r�,v� ;r�0,v�0;t� =
 D2r exp�−
1

2



0

t

dt�P�d2r�

dt2 �2

+ br�2	� .

�39�

It can be calculated exactly �21,24� and yields

f�b,P� = kBT�4b

P
�1/4

, �40�

v�2� = �4bP3�−1/4, �41�

where f =−kBTlimt→t−1 ln Z is the free energy per unit
length and v�2� is evaluated in the same limit t→.

For a parabolic potential the confinement free energy per
unit length is �f = f�b , P�− f�0, P�= f�b , P�. To obtain a pre-
diction for ��, we choose b so that this �f exactly reproduces
expression �1� for the free energy of confinement in a chan-
nel with a circular cross section, evaluate v�2� in Eq. �41� for
this b, and then substitute the result into Eq. �19�. This and a
similar calculation for a channel with a square cross section
yield

��A� =
1

8
, ��A� =

1

2
. �42�

Ubbink and Odijk �25� argue that the parabolic confining
potential is an artifice and that the confinement free energy
�1� of the polymer in a channel should not be identified with
the full free energy f in Eq. �40� but with the configurational
part fconfig= f − u�= f −b�f /�b= 3

4 f . This leads to �26�

��A� =
3

32
, ��A� =

3

8
, �43�

which differs from Eq. �42� by an extra factor of 3
4 on the

right-hand side. Our simulation results in Eqs. �30�, �31�, and
�38� yield the products

��A� = 0.1009 ± 0.0002, ��A� = 0.4008 ± 0.0003,

�SAS = 0.095969, �44�

which lie in between the predictions �42� and �43� but in
every case closer to Eqs. �43�. Since the surface of a cylinder
is two dimensional, the product �SAS should be compared
with the predictions for ��A� in Eqs. �42� and �43�, which
apply in both two and three dimensions.

ACKNOWLEDGMENTS

We thank Hsiao-Ping Hsu, Walter Nadler, and Roland
Winkler for helpful discussions. Hsiao-Ping Hsu showed us
how to set up a PERM program for the polymer on the
cylinder and has confirmed some of our results. T.W.B.
greatly appreciates the hospitality of the theory group for
Soft Matter and Biophysics at the Forschungszentrum Jülich.
Y.Y. acknowledges financial support from the International
Helmholtz Research School “BioSoft.”

�1� T. Odijk, Macromolecules 16, 1340 �1983�; 19, 2313 �1986�.
�2� W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M.

Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin,
Phys. Rev. Lett. 94, 196101 �2005�.

�3� S. Köster, D. Steinhauser, and T. Pfohl, J. Phys.: Condens.
Matter 17, S4091 �2005�.

�4� M. B. Hochrein, J. A. Leierseder, L. Golubovic, and J. O.
Rädler, Phys. Rev. Lett. 96, 038103 �2006�.

�5� T. W. Burkhardt, J. Phys. A 30, L167 �1997�.
�6� D. J. Bicout and T. W. Burkhardt, J. Phys. A 34, 5745 �2001�.
�7� M. Dijkstra, D. Frenkel, and H. N. W. Lekkerkerker, Physica A

193, 374 �1993�.
�8� J. Wang and H. Gao, J. Chem. Phys. 123, 084906 �2005�.
�9� J. Z. Y. Chen and D. E. Sullivan, Macromolecules 39, 7769

�2006�.
�10� A. Lamura, T. W. Burkhardt, and G. Gompper, Phys. Rev. E

70, 051804 �2004�.
�11� D. J. Bicout and T. W. Burkhardt, J. Phys. A 33, 6835 �2000�.
�12� S. N. Kotsev and T. W. Burkhardt, Phys. Rev. E 71, 046115

�2005�.
�13� B. Maier and J. O. Rädler, Phys. Rev. Lett. 82, 1911 �1999�.
�14� B. Maier and J. O. Rädler, Macromolecules 33, 7185 �2000�.

�15� P. Grassberger, Phys. Rev. E 56, 3682 �1997�.
�16� P. Grassberger, H. Frauenkron, and W. Nadler, in Monte Carlo

Approach to Biopolymers and Protein Folding, edited by
P. Grassberger, G. Barkema, and W. Nadler �World Scientific,
Singapore, 1998�, p. 301.

�17� P. Grassberger and W. Nadler, in Computational Statistical
Physics—From Billiards to Monte Carlo, edited by K. H.
Hoffmann and M. Schreiber �Springer, Berlin, 2002�, p. 169.

�18� T. Odijk, J. Chem. Phys. 125, 204904 �2006�.
�19� H. Frauenkron, M. S. Causo, and P. Grassberger, Phys. Rev. E

59, R16 �1999�.
�20� H.-P. Hsu and P. Grassberger, Eur. Phys. J. B 36, 209

�2003�.
�21� P. Levi and K. Mecke, Europhys. Lett. 78, 38001 �2007�.
�22� C. M. Bender, K. Olaussen, and P. S. Wang, Phys. Rev. D 16,

1740 �1977�.
�23� A. Voros, J. Phys. A 27, 4653 �1994�.
�24� T. W. Burkhardt, J. Phys. A 28, L629 �1995�.
�25� J. Ubbink and T. Odijk, Biophys. J. 76, 2502 �1999�.
�26� K. Jo, D. M. Dhingra, T. Odijk, J. J. de Pablo, M. D. Graham,

R. Runnheim, D. Forrest, and D. C. Schwartz, Proc. Natl.
Acad. Sci. U.S.A. 104, 2673 �2007�.

FREE ENERGY AND EXTENSION OF A SEMIFLEXIBLE… PHYSICAL REVIEW E 76, 011804 �2007�

011804-7


