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A theoretical study is presented of surface waves at a monomolecular surfactant film between an isotropic
liquid and a nematic liquid crystal for the case when the surfactant film is in the isotropic two-dimensional fluid
phase and induces homeotropic �normal to the interface� orientation of the nematic director. The dispersion
relation for the surface waves is obtained, and different surface modes are analyzed with account being taken
of the anchoring induced by the surfactant layer, the curvature energy of the interface, and the anisotropy of the
viscoelastic coefficients. The dispersion laws for capillary and dilatational surface modes retain structure
similar to that in isotropic systems, but involve anisotropic viscosity coefficients. Additional modes are related
to relaxation of the nematic director field due to anchoring at the interface. The results can be used to determine
different properties of nematic-surfactant-isotropic interfaces from experimental data on surface light
scattering.
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I. INTRODUCTION

The presence of a surfactant film at a fluid-fluid interface
alters the dynamics of the interface. This is manifested in
behavior of the interfacial waves, induced either externally
or by thermal fluctuations �1–3�. The interfacial dynamics
can be probed by measuring the light scattered on such sur-
face waves �4,5�. The scattering of light on surface waves is
a powerful tool for probing the properties of surfactant films
at fluid interfaces �5�, and a variety of systems have been
recently investigated using this method �e.g., Refs. �6–13��.

Recently, the application of surfactant films to modify the
interfacial properties has been extended to the systems in
which one of the fluids is in liquid-crystalline phase �e.g.,
liquid crystal colloids �14��. The presence of a liquid crystal
as one of the fluids complicates the problem of probing the
interfacial properties by studying the dynamics of the surface
waves for the following reasons. First, there are additional
degrees of freedom in the bulk of the liquid crystal phase due
to its anisotropy. Secondly, the interaction with the surfactant
film is more complicated due to anisotropic anchoring. Fi-
nally, the surfactant film in the anisotropic field created by
the neighboring liquid crystal can itself show anisotropic be-
havior, even if it behaves as a two-dimensional isotropic
fluid at the boundary between isotropic fluids.

A promising new direction for chemical and biological
sensing devices has recently emerged which utilizes the
properties of surfactant films self-assembled on the interface
between water and a nematic liquid crystal. The surfactant
film induces preferred orientation of the nematic director
�15–17�. The adsorption of chemical or biological molecules
at such interface can then lead to reorientation of the nematic
director, enabling detection by an imaging system �18–22�.

In these methods, easy detection is limited to the systems
in which adsorption changes anchoring properties of the in-
terface with respect to the adjacent liquid crystal phase quite
considerably. Namely, the equilibrium anchoring angle
should change in magnitude. The range of application of
these systems could be made significantly broader, however,
if a method were used that was sensitive to changes in the

anchoring properties of the interface that did not necessarily
result in nematic director reorientation. For example, the an-
choring orientation may remain unchanged �14,18�, the ad-
sorption only changing the strength of the anchoring.

If a small amount of an analyte is present in the water it
may be adsorbed at the surfactant layer, provided the surfac-
tant molecules possess appropriate chemical properties. Gen-
erally, such adsorption will result in a change in the elastic
and viscous properties of the interface. Hence sensitive ex-
periments which are able to determine the interfacial proper-
ties will allow much more detailed experimental insight into
the properties of the interaction between the surfactants and
the analyte than has hitherto been available, and experimen-
tal study of surface waves is a possible technique for this
purpose.

The theoretical description of surface waves at interfaces
between nematic and isotropic liquids was made back in the
1970s �23–25�. The results demonstrated that the spectrum of
surface waves has a more complicated structure than in the
isotropic case, and allows the use of surface scattering ex-
periments to determine properties of nematic interfaces
�26–30�. Since then, several theoretical and experimental ad-
vances have been made, and presently these systems remain
a subject of investigation �31–35�.

The present paper presents a theoretical study of the dis-
persion of the surface waves at a monomolecular surfactant
film between an isotropic liquid �e.g., water� and a nematic
liquid crystal. The main distinguishing features of such inter-
faces are �i� the anchoring induced by the surfactant layer,
�ii� the curvature energy of the interface, �iii� reduction of
surface tension due to surfactant, and �iv� the anisotropy of
the surface viscoelastic coefficients. We base our treatment
on the mechanical model for anisotropic curved interfaces by
Rey �36�, which takes into account anchoring and bending
properties of the surfactant. We consider the case of the in-
soluble surfactant film that is in its most symmetric phase
�isotropic two-dimensional fluid�, and induces homeotropic
�normal to the surface� orientation of the director.

The paper is organized as follows. The continuum model
used in the rest of the paper is set up in Sec. II. In Sec. III the
dispersion relation for surface waves is derived. In Sec. IV
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the numerical solution of the dispersion relation is solved
with typical values of material parameters, and dispersion
laws for different surface modes are analyzed in absence of
the external magnetic field, and the influence of the magnetic
field is discussed in Sec. V.

The explicit form of the dispersion relation is written in
Appendix D.

II. MODEL

In this section we formulate the macroscopic model of the
surfactant-laden interface between an isotropic liquid and a
nematic liquid crystal, used in the present paper, and write
down the governing equations.

The central equations in the present section are the con-
ditions for the balance of forces �Eq. �1�� and torques �Eq.
�5�� at the interface, written in Sec. II A. These equations
will be used in section III to derive the dispersion relation for
surface waves using standard techniques. The explicit form
of the balance equations depends upon the chosen macro-
scopic model, and this section is devoted to formulation of
the model used in the present paper.

We base the subsequent treatment of the surfactant-laden
nematic-isotropic interface upon the models by Rey �36,37�.
The theory of a compressible interface between nematic liq-
uid crystals and isotropic viscous fluids, developed by Rey
�37�, provides general expressions for the interfacial aniso-
tropic viscoelastic stress, and allows one to characterize the
main elastic, viscous, and viscoelastic material properties of
such interfaces. This theory allows one to describe in a con-
sistent manner such features of these interfaces as anisotropic
surface tension and anisotropic dissipative properties of the
interface. The model for curved surfactant-laden liquid-
liquid crystal interfaces, presented in Ref. �36�, additionally
takes into account the mechanical effects due to surface
bending. The detailed discussion of these models is in the
references cited above. We adopt Rey’s results for elastic and
viscous contributions to surface stresses and torques, as de-
scribed below in Secs. II B and II C.

The model includes the effects of the nematic anchoring
to the interface, and dependence of the energy of the surfac-
tant film upon its curvature. The corresponding constitutive
equations are presented in Sec. II D. Another important ef-
fect, which description is set up in Sec. II E, is the compress-
ibility of a surfactant film, which is known to be responsible
for appearance of longitudinal surface waves in an isotropic
system.

In our model we use a number of assumptions about the
properties of the system, which are the following.

We consider the case when the surfactant film induces
homeotropic �normal to the surface� orientation of the nem-
atic director, which is usually true in a range of the surfactant
concentrations �14,18,38�. This case is the simplest to ana-
lyze, and, at the same time, the most important for biosens-
ing applications where the direct change in anchoring angle
cannot be always observed.

We assume that the system is far enough from any phase
transitions both in the surfactant film �39� and in the nematic
phase �40�. Thus we avoid complications related to the fluc-

tuations of the nematic and surfactant order parameters and
the divergence of viscoelastic parameters near phase transi-
tions.

The surfactant films can exhibit rich phase behavior �41�,
and the form of the surface stress tensor depends upon the
symmetry of the interface. However, this does not normally
influence much the dispersion laws of the surface modes
compared to the isotropic case �2�. In the present paper we
assume that the surfactant film is in the most symmetric
phase �isotropic two-dimensional fluid�. Although the sym-
metry of the film should break in the presence of the adjacent
liquid-crystalline bulk phase, the film remains isotropic in
equilibrium if the anchoring of the nematic is homeotropic,
and symmetry breaking can occur only due to fluctuations of
the director field. If we introduce the order parameter for the
film, the corresponding anisotropic contributions to the inter-
facial stress tensor would be of higher order in the fluctua-
tions of the dynamic variables than is required in our linear-
ized treatment, so such contributions can be omitted.

We consider a surfactant layer at an interface between
nematic and isotropic liquids to be macroscopically infinitely
thin. We assume that the surfactant film is insoluble and
Newtonian. This means that the model is applicable to sys-
tems in which the interchange of surfactant molecules be-
tween the interface and adjacent bulk fluids is small, and the
relaxation of the orientation of surfactant molecules is fast
compared to relaxation of surface waves. We also assume
heat diffusion to be sufficiently fast so that the system is in
thermal equilibrium. We do not consider systems where other
effects, such as polarity, are important.

The linearized hydrodynamic description of isotropic liq-
uids is well known �42�, and summarized in Sec. II F. The
nematic liquid crystal will be described in terms of the
Eriksen-Leslie theory �40,43�, which includes, in particular,
the hydrodynamic coupling between the velocity and the
nematic director fields. The linearized form of Eriksen-Leslie
equations is summarized in Sec. II G.

With these assumptions, we write down the governing
equations for the surfactant-laden nematic-isotropic interface
in the rest of this section, to use them later to derive �Sec. III�
and analyze �Sec. IV� the dispersion relation for surface
waves.

In Sec. II H we include optional external magnetic field in
our study, limiting our analysis by considering the direction
of the magnetic field that does not change equilibrium orien-
tation of the nematic director. The magnetic field tends to
orient molecules of the nematic, resulting in the change of
the effective interfacial properties, which, as we shall see in
Sec. V, may affect the propagation of surface waves.

We shall choose a coordinate system in such a way that
the unperturbed interface lies at a plane z=0, the half-space
z�0 is occupied by the uniaxial nematic liquid crystal, and
the half-space z�0 is filled by the isotropic liquid. Other
details of the geometry used in the present paper are summa-
rized in Appendix A.

A. Balance equations

The interfacial force balance equation is the balance
between the interfacial force and the bulk stress jump:
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FS + FN + FI = 0 . �1�

Here

FS = �s · �S �2�

is the force per unit area exerted by the interfacial stress �S,

FI = ��I�s · k �3�

is the force per unit area exerted by the isotropic fluid,

FN = − ��N�s · k �4�

is the force per unit area exerted by the nematic liquid crys-
tal, the subscript s indicates that the bulk stress fields in the
isotropic liquid, �I, and in the nematic, �N, are evaluated at
the interface, k is the unit vector normal to the interface and
directed into the isotropic liquid.

The interfacial torque balance equation can be cast as

TS + TN = 0 , �5�

where TS is the interfacial torque arising due to surface in-
teractions and TN is the torque exerted upon the interface by
the adjacent nematic liquid crystal.

The explicit model for surface and bulk stresses and
torques that enter Eqs. �1� and �5� is expanded in the remain-
der of this section.

B. Surface elastic stress and torque

In this and the following subsections we summarize the
equations for the surface stress tensor �S and surface torque
vector TS. We represent these quantities as a sum of corre-
sponding nondissipative �elastic� and dissipative �viscous�
contributions:

�S = �Se + �Sv, �6�

TS = TSe + TSv. �7�

To describe the nondissipative contributions in the surface
stress tensor, �Se, and surface torque vector, TSe, we use the
equilibrium model proposed by Rey �36�, which is summa-
rized below.

Rey considered the interface with the Helmholtz free en-
ergy per unit mass FS of the form

FS = FS��S,k,b� , �8�

where �S is the surface mass density and b is the second
fundamental tensor of the interface �see Appendix A�. The
corresponding differential was written as

dFS = −
�

��S�2d�S +
��

�
· dk +

M

�
:db , �9�

where

� = �− ��S�2
�FS

��S �
k,b

�10�

is the interfacial tension,

�� = 	�SIS ·
�FS

�k



�S,b
�11�

is the tangential component of the capillary vector �IS is the
surface projector�, and

M = 	�S
�FS

�b



�S,k
�12�

is the bending moment tensor. The elastic surface stress ten-
sor was found to be

�Se = �IS − M · b + h�
Sek , �13�

where the tangential surface molecular field is given by

h�
Se = − IS ·

�FS

�k
= − �� − IS · ��s · M� , �14�

�s is surface gradient operator, and � /�k denotes variational
derivative with respect to k. The elastic contribution to sur-
face torque was written as

TSe = − �:�Se + � · CS, �15�

where

CS = − M · �S �16�

is the surface couple stress, � is the Levi-Civita tensor, and
�S=−IS	k is the surface alternator tensor.

C. Surface viscous stress and torque

The viscous properties of interfaces between an isotropic
fluid and a nematic liquid crystal were considered in detail
by Rey �37�, and the results are summarized below.

The forces and fluxes that contribute to the dissipation
function R were identified as follows:

R = �s
Sv:SS + �a

Sv:AS + h�
Sv · 	Is ·

dn�

dt

 + h�

Sv · 	kk ·
dn�

dt

 ,

�17�

where �s
Sv and �a

Sv are, correspondingly, symmetric and an-
tisymmetric parts of the surface viscous stress tensor �Sv,
h�

Sv, and h�
Sv are the components of the surface viscous mo-

lecular field tangential and normal to the surface,

SS =
1

2
��sv

S · Is + Is · ��sv
S�T� �18�

is the surface rate-of-deformation tensor ��¯�T denotes the
transposed tensor�,

AS =
1

2
��sv

S · Is − Is · ��sv
S�T� �19�

is the surface vorticity tensor, vS is surface velocity,

dn�

dt
=

�n�

�t
+ vS · �sn� �20�

and
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dn�

dt
=

�n�

�t
+ vS · �sn� �21�

are the total time derivatives of the components n� =Is ·n and
n�=kk ·n of the nematic director field n, tangential and nor-
mal to the surface, correspondingly.

Generally, presence of the surfactant film at the interface
complicates the form of the entropy production due to addi-
tional internal degrees of freedom of the surfactant, and to
the anisotropy of the adjacent nematic liquid. However, if the
surfactant film that is in its isotropic liquid phase and favors
homeotropic anchoring of the nematic, the resulting aniso-
tropic terms in the entropy production introduce corrections
to the hydrodynamic equations of higher order than linear,
and therefore can be neglected in the linearized treatment.
Since this is the case we are considering, we shall adopt the
form of the entropy production �17� in our model and use the
form of the viscous contribution to the surface stress tensor
derived by Rey �37�, which is given by

�Sv = 
1
SSS:n�n�n�n� + 
2

Sn�NS + 
3
SNSn� + 
4

SSS + 
5
Sn�n� · SS

+ 
6
SSS · n�n� + 
7

Sn�n��n� · NS� + �1
SIs�Is:S

S�

+ �2
S�n�n��Is:S

S� + Is�n�n�:SS�� , �22�

where NS is the surface Jaumann �corrotational� derivative
�44� of the tangential component of the director n�, and 
1−7

S ,
�1−2

S are nine independent surface viscosity coefficients. In
the isotropic case n=0, the expression for the surface viscous
stress tensor reduces to the viscous stress tensor of
Boussinesq-Schriven surface fluid �1,45� with the interfacial
shear viscosity �s given by

�s =

4

S

2
, �23�

and dilatational viscosity s given by

s =

4

S

2
+ �1

S. �24�

The surface viscous torque, corresponding to Eq. �17�, is
given by �37�

TSv = − n 	 hSv, �25�

where the surface viscous molecular field hSv is

hSv = �2
SA · n� + �1

SNS + 
6
Sn��n�n�:AS� +

�2
S

2
n��Is:S

S�

+ �1�
S kk ·

dn�

dt
. �26�

The viscosity coefficients �i
S can be expressed in terms of

quantities 
i
S. We shall need only the expression for the tan-

gential rotational viscosity:

�1
S = 
3

S − 
2
S. �27�

D. Anchoring and curvature energies

To calculate explicitly the interfacial tension � �Eq. �10��,
the tangential component of the capillary vector �� �Eq. �11��,

and the bending moment tensor M �Eq. �12��, we need to
know the dependence of the surface free energy FS on the
orientation of the interface given by unit normal vector k,
and on its curvature described by second fundamental tensor
b. For small deviations of k and b from equilibrium, we can
expand the free energy in powers of these quantities and
truncate the series. The result can be represented as

FS��S,k,b� = Ft
S��S� + Fa

S�k� + Fc
S�b� , �28�

each of the contribution described below.
The contribution Ft

S corresponds to the surface tension �̄
of the equilibrium interface �flat interface, adjacent nematic
director normal to the interface�:

�SFt
S = �̄ . �29�

The anchoring contribution to the surface free energy den-
sity, Fa

S, describes the energetics of the preferred alignment
direction of the nematic director relative to the interface. For
the homeotropic equilibrium anchoring, it can be written in
terms of n� as follows:

�SFa
S =

1

2
Wn�

2 + o�n�
2� . �30�

Such expansion applied to the widely used Rapini-Papoular
form of the anchoring free energy density �46�

�SFRP =
WRP

2
�n · k�2, �31�

shows that these definitions of the anchoring strength coeffi-
cient have opposite signs:

W = − WRP. �32�

We shall use W as the anchoring strength coefficient to en-
sure that it is positive in the case of the homeotropic anchor-
ing being considered.

The third contribution to the surface free energy density,
Fc

S, is caused by finite interface thickness, and is related to
the difference of the curvature of a surfactant film from the
locally preferred �spontaneous� value. The widely used form
of this contribution is the Helfrich curvature expansion
�47,48�

�SFc
S = − 2�H̄2 + 2��H − H̄�2 + �̄K + o„��k�2

… . �33�

Here the geometry of the interface is described by the mean
curvature H and the Gaussian curvature K, and the material
parameters characterizing the interface are the bending rigid-
ity �, the saddle-splay �or Gaussian� rigidity �̄, and the spon-

taneous curvature H̄. The term −2�H̄2 guarantees that the
curvature energy of a flat interface �H=0, K=0� is zero.

E. Surfactant concentration

To complete the description of the interface, we need the
continuity equation for the surfactant concentration �. For
insoluble surfactants, the continuity equation reads

d�

dt
+ ��s · vS = 0. �34�
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We shall extend the description of the dependence of the
interfacial tension upon the concentration of surfactant, pre-
sented by Buzza �3�, to other parameters characterizing the
interface �surface tension �̄, anchoring strength W, bending

rigidity �, saddle-splay rigidity �̄, spontaneous curvature H̄,
and surface viscosities 
i

S, �i
S�. For small deviation ��=�

−�0 of the surfactant concentration � from its equilibrium
value �0, these coefficients can be written in the form

�̄��� = �̄��0� +
��̄

��
�� , �35�

and similarly for other quantities. Casting surface velocity vS

as the time derivative of the small surface displacement u,

vS =
du

dt
, �36�

we obtain from the continuity equation �34� that

�� = − �0�s · u . �37�

This allows us to represent the material parameters of the
interface as

�̄��� = �0 + �0�s · u , �38�

W��� = W0 + W1�s · u , �39�

���� = �0 + �1�s · u , �40�

H̄��� = H̄0 + H̄1�s · u . �41�

In these formulas �0= �̄��0�, W0=W��0�, �0=���0�, H̄0

= H̄��0� are, correspondingly, the interfacial tension, anchor-
ing strength, bending rigidity, and spontaneous curvature in
the unperturbed interface, �0=−�0��̄ /�� is the static dilata-
tional elasticity, W1=−�0�W /��, �1=−�0�� /��, and

H̄1=−�0�H̄ /�� are coefficients in the first order term of the
expansion of anchoring strength, bending rigidity, and spon-
taneous curvature in powers of ��s ·u�. There are similar ex-
pansions for Gaussian rigidity �̄ and surface viscosities 
i

S,
�i

S.

F. Isotropic liquid

We assume both the isotropic liquid and the nematic liq-
uid crystal are incompressible, so that their densities �I and
�N, are constant.

The linearized equations for the incompressible isotropic
liquid are well known �42�. They are the continuity equation

� · v = 0, �42�

and Navier-Stokes equations

�I�v

�t
= � · �I, �43�

where the hydrodynamic stress tensor is given by

�I = − pI + 2�S , �44�

where � is the shear viscosity of the isotropic liquid, I is the
unit tensor, and

S =
1

2
��v + ��v�T� �45�

is the strain rate tensor.
We assume the nonslip boundary condition for the veloci-

ties of bulk fluids adjacent to the interface, which means the
equality of the velocity of surfactant, vS, and that of the bulk
fluids at an interface, �v�s:

vS = �v�s. �46�

G. Nematic liquid crystal

To describe the dynamics of the nematic liquid crystal that
is far from the isotropic-nematic transition and has small
deviations from its equilibrium state, we shall use the linear-
ized form of the Eriksen-Leslie theory �40,43,50�. The lin-
earized equations for the incompressible nematic liquid crys-
tal are the continuity equation �42�, the equation for the
velocity

�N�v

�t
= � · �N, �47�

and the equation for the director

��n

�t
= n0 · A + ��I − n0n0� · S · n0 +

1

�1
h . �48�

Here

A =
1

2
��v − ��v�T� �49�

is the antisymmetric vorticity tensor, � is the reactive mate-
rial parameter, �1 is the orientational viscosity, h is the mo-
lecular field which, assuming Frank form of the elastic free
energy of a nematic liquid crystal in magnetic field H �40�

FF =
K1

2
�� · n�2 +

K2

2
�n · �� 	 n��2 +

K3

2
�n 	 �� 	 n��2

−
1

2
�a�n · H�2, �50�

has the linearized form

h = �I − n0n0� · h*, �51�

where

h* = K1 � � · �n − K2 � 	 �n0�n0 · �� 	 �n��� �52�

+ K3 � 	 �n0 	 �n0 	 �� 	 �n��� + �a�n · H�H ,

�53�

K1, K2, and K3 are the splay, twist, and bend Frank elastic
constants, correspondingly, and �a is the difference of the
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longitudinal and transversal magnetic susceptibilities
�Eq. �63��.

The stress tensor can be represented as a sum of reactive
and viscous �dissipative� contributions,

�N = �Nr + �Nv. �54�

The linearized form of the reactive part is

�Nr = − pI +
1

2
�n0h − hn0� −

�

2
�n0h + hn0� . �55�

The linearized viscous stress tensor of incompressible nem-
atic is

�Nv = 2�2S + 2��3 − �2��n0S · n0 + n0 · Sn0�

+ 2��1 + �2 − 2�3�n0n0n0n0:S . �56�

The quantities �1, �2, �3, �1, and � can be expressed through
more commonly used Leslie viscosity coefficients �50,51�.
Note that equating ��1=�2=�3 recovers the viscous stress
tensor 2�S of the isotropic incompressible fluid �last term in
Eq. �44��.

H. Magnetic field

Magnetic field H in the isotropic and nematic regions
satisfies Maxwell equations �24,49�

� 	 H = 0 , �57�

� · �H + 4�M� = 0. �58�

Neglecting magnetization of the interface, the boundary con-
ditions read

�Is · H�N = �Is · H�I, �59�

�k · �H + 4�M��N = �k · �H + 4�M��I. �60�

Here the magnetization of the isotropic liquid is

�M�I = ��IH�I, �61�

where �I is the magnetic susceptibility of the isotropic liquid,
the magnetization of the uniaxial nematic liquid crystal is
�40�

�M�N = ���
N H + �a�H · n�n�N, �62�

where �a is the difference of the longitudinal and transversal
magnetic susceptibilities of the nematic:

�a = ��
N − ��

N . �63�

III. DISPERSION RELATION

The aim of this section is to construct the dispersion re-
lation for the surface waves on the basis of the model set up
above. We consider a surface wave with frequency � and
wave vector q= �q ,0 ,0� propagating along x axis, and solve
force balance equation, Eq. �1�, and torque balance equation,

Eq. �5�, using a linearized form of the hydrodynamic equa-
tions written in Sec. II.

In order to linearize the hydrodynamic equations, we rep-
resent pressure p= p�r , t� and the nematic director n=n�r , t�,
where r= �x ,y ,z� is the position in space, t is time, in the
form

p = p0 + �p , �64�

n = n0 + �n , �65�

where �p and �n are the deviations of pressure and director
from their equilibrium values p0 and n0, correspondingly.
The velocity v=v�r , t� is itself the deviation from zero equi-
librium velocity. Homeotropic anchoring corresponds to

n0 = �0,0,1� . �66�

For small deviations from the equilibrium, we shall use
the hydrodynamic equations linearized in v, �p, and �n. We
shall assume these quantities to be independent of the coor-
dinate y ��y � /�y=0� and vanish at z→ ±�.

The magnetic field can also be represented as H=H0
+�H, where H0= �0,0 ,H0� is the equilibrium value, and
the deviation �H can be found from the linearized form of
the Maxwell equations �57� and �58�. The terms in the final
equations, containing �H, are of higher order than linear, so
we shall use only the equilibrium value, and skip the “0”
subscript, so that H= �0,0 ,H�.

Substituting the interfacial free energy density �28� into
Eqs. �10�–�12� and �14�, we find the contributions up to the
first order in u �and its derivatives� and n� into surface ten-
sion

� = �̄ +
W

2
n�

2 − 2�H̄2 + 2��H − H̄�2 + �̄K , �67�

bending moment tensor

M = 2��� + �̄�H − �H̄�Is − �̄b , �68�

tangential component of the capillary vector

�� = − Wn� , �69�

and tangential surface molecular field

h�
Sv = Wn� − 2�s��� + �̄�H − �H̄� + �s · ��̄b� . �70�

The nonvanishing components of the surface viscous stress
tensor �22� are

�Sv = 2�sS
S + �s − �s��Is:S

S�Is. �71�

The total interfacial force FS can be found by substituting
Eqs. �6�, �13�, and �67�–�71�, into Eq. �2�, and has compo-
nents

Fx
S = �0�x

2ux + ��s + s��x
2vx, �72�

Fy
S = �s�x

2vy , �73�

Fz
S = ��0 + W0��x

2uz + W0�x�nx + ��x
3ux − �0�x

4uz, �74�

where
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�  2��0H̄1 + �1H̄0� . �75�

To write the explicit form of the force balance equations �1�,
we also need the expressions for the components of the force
�3� exerted by the isotropic fluid,

Fx
I = ���xvz + �zvx�z=+0, �76�

Fy
I = ���zvy�z=+0, �77�

Fz
I = �2��zvz − p�z=+0, �78�

and the components of the force �2� exerted by the nematic
liquid crystal,

Fx
N = �1 + �

2
hx − �3��xvz + �zvx��

z=−0
, �79�

Fy
N = �1 + �

2
hy − �3�zvy�

z=−0
, �80�

Fz
N = �p − 2�1�zvz�z=−0. �81�

The hydrodynamic fields v, p, and n in the bulk isotropic and
nematic liquids are found by solution of the hydrodynamic
expressions. The explicit formulas are presented in Appen-
dixes B and C.

Next we introduce Fourier transforms in the x coordinate
and in time as

v�r,t� =
1

�2��2�
−�

�

dq�
−�

�

d� ei�t−iqx ṽ�q,z,�� , �82�

�p�r,t� =
1

�2��2�
−�

�

dq�
−�

�

d� ei�t−iqx p̃�q,z,�� , �83�

�n�r,t� =
1

�2��2�
−�

�

dq�
−�

�

d� ei�t−iqx ñ�q,z,�� �84�

�for brevity we shall henceforth omit arguments of the trans-
formed functions�. Performing Fourier-transform of the force
balance equation �1�, and substituting ũ= ṽ / i�, we obtain
balance equations for the force components in form

− �0
*q2ṽx

S − i���mI + q�ṽx
S − ���mI − q�ṽz

S

−
�

q
�3�

i=1

3

��mi
N��2 + q2�Ci

N� + i�
1 + �

2 �
i=1

3

�K3�mi
N��2

− K1q2 + �aH2�Bi
�Ci

N� = 0, �85�

− �sq
2ṽy

S − �mIṽy
S − �3�

i=1

2

mi
N�Ci

N� +
1 + �

2

	 �
i=1

2

�K3�mi
N��2 − K2q2 + �aH2�Bi

�Ci
N� = 0, �86�

− ��0 + W0�q2ṽz
S + �qW0ñx

S − �0q4ṽz
S − iq3�ṽx

S − 2�q�ṽx
S

+
�2�I

q

iqṽx
S + mIṽz

S

mI − q
+ i��

i=1

3

�Ai − 2�1mi
N��Ci

N� = 0,

�87�

where �0
*=�0+ i���s+s� is the complex dilatational modu-

lus, mI is defined in Appendix B by Eq. �B9�, and the quan-
tities mi

N�, mi
N�, Ci

N�, Ci
N�, Bi

N�, Bi
N�, and Ai are defined in

Appendix C by Eqs. �C22�, �C11�, �C29�, �C28�, �C21�,
�C10�, and �C20�, correspondingly.

To write the interfacial torque balance equation �5�, we
cast the torque exerted upon the interface by the nematic
liquid crystal, TN, and the interfacial torque arising due to
surface interactions, TS, entering the interfacial torque bal-
ance equation �5�, in the form

TN = k 	 hN �88�

and

TS = k 	 hS, �89�

where the molecular field from the bulk

hN = − k · � �FF

���n��S

�90�

has linearized components

hx
N = − K3�z�nx

S, �91�

hy
N = − K3�z�ny

S, �92�

and the surface molecular field hS can be represented as a
sum of elastic �hSe� and viscous �hSv� contributions

hS = hSe + hSv, �93�

given by Eqs. �14� and �26�, correspondingly, and can be
represented in components as

hx
Se = W0��nx

S + �xuz� − �0�x
3uz + ��x

2ux, �94�

hy
Se = W0�ny

S, �95�

hx
Sv = �1�

S ���nx + �xuz�
�t

, �96�

hy
Sv = �1�

S ��ny

�t
. �97�

Then the surface torque balance equations can be written as

− K3�z�nx
S + W0��nx + �xuz� − �0�x

3uz + ��x
2ux

+ �1�
S ���nx + �xuz�

�t
= 0, �98�

− K3�z�ny
S + W0�ny + �1�

S ��ny

�t
= 0, �99�

or, substituting the expressions �C17�, �C19�, and �C9�

WAVES AT SURFACTANT-LADEN LIQUID-LIQUID … PHYSICAL REVIEW E 76, 011711 �2007�

011711-7



�
i=1

3 ��K3mi
N� − W0 − i��1

S�Bi
�

+
q

�
�W0 + �0q2 − �mi

N� + i��1
S��Ci

N� = 0, �100�

�
i=1

2

�K3mi
N� − W0 − i��1

S�Bi
�Ci

N� = 0. �101�

The interfacial force balance equations �Eqs. �85�–�87��
and the interfacial torque balance equations �Eqs. �100� and
�101�� form, with account of Eqs. �C28� and �C29�, a homo-
geneous system of linear algebraic equations in ṽx

S, ṽy
S, ṽz

S, ñx
S,

and ñy
S. The dispersion relation is obtained from the condition

of existence of a solution to these equations, i.e., the require-
ment for the determinant D�� ,q� of the matrix of coeffi-
cients for this system to be zero

D��,q� = 0. �102�

Equations �86� and �101� in ṽy
S and ñy

S decouple from Eqs.
�85�, �87�, and �100� in ṽx

S, ṽz
S, and ñz

S. Therefore, the matrix
of coefficients is block-diagonal, and the dispersion relation
�Eq. �102�� is equivalent to a pair of relations for �x ,z� and y
directions:

D���,q� = 0, �103�

D���,q� = 0, �104�

where D��� ,q� is the determinant of the 3	3 matrix M� of
coefficients for Eqs. �85�, �87�, and �100�, and D��� ,q� is
the determinant of the 2	2 matrix of coefficients for Eqs.
�86� and �101�.

The explicit form of the dispersion relations is presented
in Appendix D and can be readily used for the numerical
analysis of surface modes.

IV. SURFACE MODES

In this section the dispersion equation, which is presented
in Appendix D, is solved numerically, and surface modes of
different types are analyzed. For simplicity, we assume the
density of the isotropic liquid, �I, to be small enough to be
neglected �e.g., nematic-surfactant-air interface�. We also as-
sume that the magnetic field is absent.

The surface modes can be easily classified at low wave
vectors q. Expansion of the dispersion relation in powers of
the wave vector q is a straightforward exercise in algebra,
and the resulting modes are described below.

First, there is a transverse capillary mode, which has the
dispersion law similar to that in the case of an isotropic
liquid-liquid interface �2,52�:

�C�q� =��0q3

�N + o�q3/2� . �105�

The principal contribution to this mode at large wavelengths
arises due to the restoring influence of surface tension �0,
and the predominant motion is in the direction normal to the

interface �z�. The differences from the isotropic case, related
to anisotropy of viscous dissipation in the nematic, appear in
higher orders in q.

The dilatational �or compression� mode with predominant
motion in the direction along wave propagation �x� arises in
the presence of the surfactant layer due to the restoring force
provided by the dilatational elastic modulus �0. The disper-
sion law for this mode can be written as

�D�q� = � i�0
2q4�3

�N��2
M�2�1/3

+ o�q4/3� , �106�

where the Miesowicz viscosity �2
M is given by �50�

�2
M = �3 +

�1 + ��2

4
�1. �107�

The difference from the dispersion law for the dilatational
mode in the case of a surfactant film at the interface between
isotropic fluids, given by �2,52�

�D
I �q� = 	 i�0

2q4

�I�

1/3

+ o�q4/3� , �108�

arises due to anisotropy of viscous dissipation in nematic.
A new mode, specific to the nematic, is driven by relax-

ation of the director field to equilibrium due to anchoring at
the interface and has the disperion law

�N�q� =
iW0

�1
S + o�q0� . �109�

Such relaxation is present even in the absence of motion of
the interface �e.g., when the interface is solid�, so that i�N
does not vanish at q→0. For nematic-isotropic interfaces,
the corresponding motion of the interface is induced by
backflow effects.

Finally, behavior of the in-plane shear mode, with motion
in the y direction, is also governed by relaxation of the nem-
atic director due to anchoring. The corresponding dispersion
law

�S�q� =
iW0

�1
S + o�q0� �110�

appears to be different from the isotropic case, where the
damping of the in-plane shear mode in the absence of an-
choring is governed by the surface viscosity �s �52�.

Gravity g, so far neglected in our analysis, becomes im-
portant at wave vectors

q � qg =���N − �I�g
�0 + W0

, �111�

and can be taken into account by adding the hydrostatic pres-
sure term −g��N−�I� to Eq. �D28�, which corresponds to the
additional contribution −g��N−�I�uz to the vertical compo-
nent of the force, Eq. �74�. The resulting dispersion law for
transversal mode is given by the expression

�G�q� = �gq + o�q1/2� , �112�

which describes well-known gravity waves �42�.
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In the opposite case of large wave vectors, the curvature
energy becomes important. Analysis of Eqs. �74� and �94�
yields the characteristic values of q

q � q� =�W0

�0
�113�

and

q � q� =
W0

��0H̄1 + �1H̄0�
�114�

below which one can neglect in the dispersion relation the
terms containing bending rigidity � and its derivatives with
respect to surfactant concentration, given by �.

Usually q��q�, and the range of q in which both gravity
and curvature contributions become small, given by

qg � q � q�, �115�

is rather wide. For typical values ��N−�I��10 kg/m3, g
�10 m/s2, �0�W0�10−2 J /m2, �0�10−18 J, Eq. �115�
reads 1 cm−1�q�106 cm−1, which includes the range of
wave vectors typically probed by surface light scattering ex-
periments.

To obtain the dispersion laws for surface modes at larger
values of the wave vector q, the dispersion equation must be
solved numerically. The numerical solution presented below
uses the following typical values of the material parameters
when it is not indicated otherwise. For the nematic
liquid crystal we use the parameters of 4-n-pentyl-
4�-cyanobiphenyl �5CB� at 26 °C �53�: The density �N

=1021.5 kg/m3, the elastic constants K1=5.95	10−12 N,
K2=3.77	10−12 N, K3=7.86	10−12 N, the Leslie viscosi-
ties 
1=−6.6	10−3 kg/ �m s�, 
2=−77.0	10−3 kg/ �m s�,

3=−4.2	10−3 kg/ �m s�, 
4=63.4	10−3 kg/ �m s�, 
5

=62.4	10−3 kg/ �m s�, 
6=−18.4	10−3 kg/ �m s�. The vis-
cosity coefficient used in the present paper can be calculated
from the Leslie equations �50,51� and equal �1=50.4
	10−3 kg/ �m s�, �2=31.7	10−3 kg/ �m s�, �3=19.96
	10−3 kg/ �m s�, �1=72.8	10−3 kg/ �m s�, �=1.115. We
use the value of the bending rigidity �0=10−19 J which is
typical for surfactant layers �54�. For other parameters we

use the following typical values: �1
S�5	10−9 kg/s, H̄0=0,

�0=10−3 N/m, �s=10−8 N/m, �0=5	10−3 J /m2, and W0
=20	10−3 J /m2.

The dispersion law ��q� for different surface modes in
absence of gravity, obtained by solution of the dispersion
relation �103� with the values of the parameters given above,
is presented in Fig. 1. At low q the dispersion of modes C, D,
N, as denoted in Fig. 1, is in good agreement with approxi-
mate formulas �105�, �106�, and �109�, correspondingly. The
noticeable discrepancy in behavior of capillary and dilata-
tional modes appears at q�10 cm−1, and the damping of
surface waves becomes large at larger q, which is qualita-
tively similar to the case of the interface between isotropic
liquids.

The results presented in Fig. 1 suggest that in the typical
range of q probed by surface light scattering experiments
�100 cm−1�q�2000 cm−1�, the approximate expressions

�105� and �106� do not describe well the dispersion curves,
and accurate solution of the dispersion equation should be
used instead.

Figure 2 presents the dispersion law ��q� for different
surface modes obtained by solution of the dispersion relation
�103� in the presence of gravity g=9.8 m/s2. In agreement
with the discussion above, the influence of gravity on the
dispersion laws is small at q�qg, where qg is given by Eq.
�111�.

If the bending rigidity � is large, its influence becomes
noticeable, as it is demonstrated in Fig. 3. For ��kT, typical
for surfactant films, the value of q�, given by Eq. �113�,
corresponds to a wavelength close to atomic scales, and cur-
vature energy can be neglected in typical surface light scat-
tering experiments, in agreement with the discussion above.
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FIG. 1. Dispersion law ��q� for different surface modes in the
absence of gravity, obtained by solution of the dispersion relation
�103� with the values of the parameters given in the text. Letters C,
D, and N denote transverse �capillary�, dilatational, and nematic
director relaxation modes, correspondingly. Prime and double prime
denote real �solid line� and imaginary �dashed line� parts of �,
correspondingly.
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FIG. 2. Dispersion law ��q� for different surface modes in the
presence of gravity g=9.8 m/s2, obtained by solution of the disper-
sion relation �103� with the values of the parameters given in the
text. Letters C, D, and N denote transverse, dilatational, and nem-
atic director relaxation modes, correspondingly. Prime and double
prime denote real �solid line� and imaginary �dashed line� parts of
�, correspondingly. Vertical dotted line corresponds to the value of
qg given by Eq. �111�.
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The dispersion laws for the modes governed by relaxation
of the nematic director field in x and y directions due to
anchoring of the nematic director at the interface, obtained
by numerical solution of the dispersion equation with the
values of the parameters given above, are well described by
Eqs. �109� and �110�.

As the anchoring strength becomes smaller, other mecha-
nisms start to take over, as demonstrated in Figs. 4 and 5. In
particular, the frequencies �N and �S of these modes be-
comes dependent upon the wave vector q due to the elasticity
of the nematic phase, which is characterized by the elastic
constants K1, K2, K3. We should also note that homeotropic
anchoring strength as low as 10−6 J /m2 has been observed
giving rise to director instabilities �55,56�. Although the na-
ture of the nematic director relaxation modes at small an-
choring strengths requires further investigation, in the typical
experiments the transversal displacement of the interface is
measured. This is only weakly affected by oscillations of the
director field through backflow effects.

V. INFLUENCE OF MAGNETIC FIELD

In this section we discuss how the surface modes de-
scribed in Sec. IV are altered in the presence of the external
magnetic field directed normally to the surface �along z axis�.

The external magnetic field effectively acts on the nem-
atic molecules as an additional molecular field �see Eq. �52��,
and the primary counteracting mechanism is provided by ori-
entational shear relaxation. Thus we may expect the influ-
ence of the magnetic field becomes noticeable at

�aH2 � �1� . �116�

The results of the numerical solution of the dispersion
equation in the presence of magnetic field, presented in Fig.
6, confirm that noticeable change in dispersion of capillary
and dilatational modes arises only around the value of the
field given by Eq. �116�. The change due to magnetic field in
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�dashed line� parts of the frequency of the transverse capillary mode
upon the bending rigidity �0, calculated at q=1000 cm−1 in the
absence of gravity. Vertical line corresponds to the value of �0 that
satisfies Eq. �113�.
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modes governed by anchoring is found to be negligibly
small.

At low q the dispersion of a capillary mode in strong
magnetic field is different from the law �105� and is given by

�C =���0 + W0�q3

�N + o�q3/2� . �117�

The frequency of this mode becomes sensitive to the anchor-
ing properties of the interface, because the nematic director
tends to be oriented along the field rather than to be advected
with the nematic liquid. The practical use of this effect is,
however, limited, because at short wavelengths extremely
large magnetic field is required, and at long wavelengths
gravity becomes dominating �Eq. �112��. For example, using
the data in Fig. 6 we obtain the value �aH2=�1�C
�2 kg/m s2, which corresponds to the transition between
weak and strong field regimes. With the typical value of the
anisotropy of the magnetic susceptibility �a�10−7 �40�, the
required magnetic field is �104 oersteds.

In principle, magnetic field can also influence surface
waves through change in the properties of the interface �e.g.
surface tension� due to the magnetization of the surfactant. A
separate study is required to estimate the magnitude of this
effect.

VI. CONCLUSION

We have obtained the dispersion relation for the surface
waves at a surfactant-laden nematic isotropic interface for
the case when the surfactant film induces homeotropic �nor-
mal to the surface� orientation of the director, and the surfac-
tant film is in the isotropic two-dimensional fluid phase. We
have analyzed the dispersion law of different surface modes
analytically in long wavelength limit, and numerically in
broader range of wave vectors, using typical values of the
material parameters.

At long wavelengths the dispersion of capillary, dilata-
tional �or compression�, in-plane shear, and director relax-
ation modes is described by Eqs. �105� �or �112��, �106�,
�110�, and �109�, correspondingly. At smaller wavelength,
the solution of the full dispersion relation should be used.
Gravity influences the transversal mode at small wave vec-
tors �Eq. �111��, and curvature energy of surfactant can be
neglected if wave vector is not too large �Eq. �113��. For all
modes, the influence of the external magnetic field directed
normally to the interface is small.

The influence of the magnetic field should be more pro-
nounced if the direction of the field does not coincide with
equilibrium nematic director. In this case the dispersion law
for surface modes may be expected to be quantitatively dif-
ferent due to anisotropy of viscous dissipation in nematic,
and different anchoring energy. The results of the present
paper can be readily extended to the case of arbitrary direc-
tion of the external field and to other types of nematic
anchoring.

A promising approach to experimental investigation of the
propagating regime of capillary waves is the use of the ex-
ternal electric field, which is known to couple much more

strongly with the nematic than the magnetic field �57�. The
theoretical analysis of the nematic-surfactant-isotropic sys-
tem may be more complicated than that undertaken in the
present work because of the need to take into account polar-
izability of the interface, and the spontaneous dielectric
polarization of a deformed nematic.

An alternative experimental technique which allows one
to directly investigate the propagation of low-wave-number
surface waves is the use of externally excited surface waves
�58�. This technique provides data on the dependence of
complex wavenumber q upon real frequency �, which can be
directly analyzed using the dispersion relation derived in the
present paper.

Other possible developments, which may increase the
range of accessible systems and conditions, is the extension
of the results to wider range of the states of the surfactant
film, and the study of the effects which may be caused by the
phase transitions in the surfactant film and bulk liquid
crystal.

Dependence of the dispersion waves upon the parameters
of the interface suggests the surface light scattering on a
surfactant-laden nematic-isotropic interface as a potential
method for determining the properties of surfactant-laden
nematic-isotropic interfaces, and as a possible candidate for a
chemical or biological sensing technique.
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APPENDIX A: DIFFERENTIAL GEOMETRY
OF THE INTERFACE

The geometrical description we use is similar to those
presented in works �3,36�. We choose the plane z=0 to co-
incide with the unperturbed interface, the half-space z�0 to
be occupied by the uniaxial nematic liquid crystal, and the
half-space z�0 to be filled by the isotropic liquid.

Let the position of a fluid particle at the interface be r
=r0+u, where r0= �x0 ,y0 ,0� is its position on the unde-
formed interface �z=0�, and u=u�r0� is the displacement
vector with components �ux ,uy ,uz�. We shall use x0 and y0 as
surface coordinates and denote them as s
, 
 and other
Greek indices taking values 1 and 2.

The position r of fluid particles at the interface in 3D
space can be cast as

r = R�s
� . �A1�

The surface tangent base vectors a
=�r /�s
, corresponding
to the chosen surface coordinates, can be written in terms of
the components of the displacement vectors:

a1 =
�r

�s1 = �1 + �xux, �xuy, �xuz� �A2�

and
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a2 =
�r

�s2 = ��yux, 1 + �yuy, �yuz� . �A3�

The surface metric tensor

a
� = a
 · a� = 	 1 + 2�xux �xuy + �yux

�xuy + �yux 1 + 2�yuy

 + O�u2� ,

�A4�

has determinant

a = det�a
�� = 1 + 2��xux + �yuy� + O�u2� . �A5�

The corresponding reciprocal base vectors a
 and metric ten-
sor a
� take the form

a1 =
�s1

�r
= �1 − �xux, − �yux, �xuz� + O�u2� , �A6�

a2 =
�s2

�r
= �− �xuy, 1 − �yuy, �yuz� + O�u2� , �A7�

a
� = a
 · a� = 	 1 − 2�xux − �xuy − �yux

− �xuy − �yux 1 − 2�yuy

 + O�u2� .

�A8�

The base and reciprocal base vectors satisfy

a
 · a� = �

� = 	1 0

0 1

 . �A9�

We write the unit vector k, normal to the interface and
directed into the isotropic liquid, as

k =
a1 	 a2

�a1 	 a2�
= �− �xuz, − �yuz, 1� + O�u2� . �A10�

We shall also define the dyadic surface idem factor

Is = a
a
 = � 1 0 �xuz

0 1 �yuz

�xuz �yuz 0
� + O�u2� , �A11�

the surface gradient operator

�s = Is · � = � �x + ��xuz��z

�y + ��yuz��z

��xuz��x + ��yuz��y
� + O�u2� , �A12�

and the second fundamental tensor

b = − �sk = � �x
2uz �x�yuz 0

�x�yuz �y
2uz 0

0 0 0
� + O�u2� . �A13�

The mean curvature H and Gaussian curvature K are given
by

H =
1

2
�Is:b� =

1

2
��x

2uz + �y
2uz� + O�u2� , �A14�

K =
1

2
�
����b
�b�� = O�u2� . �A15�

Other useful identities include the surface projection n� of
a nematic director field n, Eqs. �65� and �66�,

n� = IS · n = ��nx + �xuz

�ny + �yuz

0
� + o��u,�n� , �A16�

and its surface divergence

�S · n� = �x�nx + �y�ny + �x
2uz + �y

2uz + o��u,�n� .

�A17�

APPENDIX B: BULK SOLUTION
FOR ISOTROPIC LIQUID

This appendix presents the solution to the linearized hy-
drodynamic equations in bulk isotropic liquid, obtained by
Kramer �52�.

Substitution of Eq. �82� into Eq. �42� yields

− iqṽx + �zṽz = 0. �B1�

Substituting Eqs. �82� and �83� into Eqs. �43�–�45�, we ob-
tain

�i��I + ��q2 − �z
2��ṽx = iqp̃ , �B2�

�i��I + ��q2 − �z
2��ṽy = 0, �B3�

�i��I + ��q2 − �z
2��ṽz = − �zp̃ , �B4�

where Eq. �B3� is decoupled from other equations. The gen-
eral solution to Eqs. �B1�–�B4� vanishing at z→� can be
written as

ṽx = iC1
I�e−qz + i

mI

q
C2

I�e−mIz, �B5�

ṽy = CI�e−mIz, �B6�

ṽz = C1
I�e−qz + C2

I�e−mIz, �B7�

p̃ =
i��I

q
C1

I�e−qz, �B8�

with

mI = 	q2 +
i��I

�

1/2

, Re mI � 0. �B9�

The quantities C1
I�, C2

I�, and CI� are functions of q and � and
are determined by the boundary conditions at the interface as
follows:

C1
I� =

iqṽx
S + mIṽz

S

mI − q
, �B10�
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CI� = ṽy
S, �B11�

C2
I� = −

iqṽx
S + qṽz

S

mI − q
, �B12�

where the superscript S indicates that the values of the cor-
responding dynamic variables are taken at z→0.

APPENDIX C: BULK SOLUTION FOR NEMATIC
LIQUID CRYSTAL

In this appendix the solution is presented to the linearized
hydrodynamic equations in bulk nematic liquid crystal.

For the equilibrium director along z axis �Eq. �66��, the
Fourier transform, similar to Eqs. �82�–�84�, of the linearized

molecular field �Eq. �51��, h̃, has nonzero components

h̃x = − K1q2ñx + K3�z
2ñx + �aH2ñx, �C1�

h̃y = − K2q2ñy + K3�z
2ñy + �aH2ñy . �C2�

Substituting them into Eqs. �47� and �54�–�56�, we obtain the
following linear differential equations,

�i��N + �2�2 − �3�q2 − �3�z
2�ṽx −

1 − �

2
�zh̃x = iqp̃ , �C3�

�i��N + �2q2 − �3�z
2�ṽy −

1 − �

2
�zh̃y = 0, �C4�

�i��N + �3q2 − �2�1 − �3��z
2�ṽz − iq

1 + �

2
h̃x = − �zp̃ ,

�C5�

which are analogous to Eqs. �B2�–�B4� for isotropic liquids.
Equation �48� for the director after Fourier transform gives
two equations,

i�ñx =
1 + �

2
�zṽx +

1 − �

2
iqṽz +

1

�1
h̃x �C6�

and

i�ñy =
1 + �

2
�zṽy +

1

�1
h̃y , �C7�

where h̃x and h̃y are given by Eqs. �C1� and �C2�.
Thus we have six linear differential equations �Eqs. �B1�

and �C3�–�C7�� for six dynamic variables �pressure, three
components of velocity, and two components of director�.
Equations �C4� and �C7� for ṽy and ñy decouple from the
others, their general solution vanishing at z→−� can be cast
as

ṽy = �
i=1

2

Ci
N�emi

N�z, �C8�

ñy = �
i=1

2

Bi
�Ci

N�emi
N�z, �C9�

where

Bi
� =

�1 + ���1mi
N�

2�i��1 + K2q2 − K3�mi
N��2 − �aH2�

, �C10�

mi
N� = ��i

��1/2, Re mi
N� � 0, �C11�

and �i
�, i=1,2, are the roots of the quadratic equation

a2
�����2 + a1

��� + a0
� = 0, �C12�

where

a2
� = 	1 − �2

4
�1 − �3
K3, �C13�

a1
� = �i��1 + K2q2 − �aH2��3 + �i��N + �2q2�K3

−
1 − �2

4
�1�K2q2 − �aH2� , �C14�

a0
� = − �i��N + �2q2��i��1 + K2q2 − �aH2� . �C15�

The general solution to the equations �B1�, �C3�, �C5�,
and �C6� vanishing at z→−� can be cast as

ṽx = −
i

q
�
i=1

3

mi
N�Ci

N�emi
N�

z, �C16�

ṽz = �
i=1

3

Ci
N�emi

N�
z, �C17�

p̃ = �
i=1

3

AiCi
N�emi

N�
z, �C18�

ñx = �
i=1

3

Bi
�Ci

N�emi
N�

z, �C19�

where

Ai = −
1

mi
N��iq

1 + �

2
	 �K1q2 − K3�mi

N��2 − �aH2�Bi
�

+ �i��N + �3q2 − �2�1 − �3��mi
N��2�� , �C20�

Bi
� =

i�1

2q

�1 − ��q2 − �1 + ���mi
N��2

i��1 + K1q2 − K3�mi
N��2 − �aH2 , �C21�

mi
N� = ��i

��1/2, Re mi
N�

� 0, �C22�

and �i
�, i=1,2 ,3, are the roots of the cubic equation

a3
� ����3 + a2

� ����2 + a1
�
�� + a0

� = 0, �C23�

where
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a3
� = 	1 − �2

4
�1 − �3
K3, �C24�

a2
� = i��1�3 − 	1 − �2

4
�1 − �3
�K1q2 − �aH2�

+ �i��N − �1 + �2

2
�1 − 2��1 + �2 − �3��q2�K3,

�C25�

a1
� = − i��1�i��N + 2��1 + �2 − �3�q2�

− �i��N − �1 + �2

2
�1 − 2��1 + �2 − �3��q2�

	 �K1q2 − �aH2�

− �i��N − 	1 − �2

4
�1 − �3
q2�K3q2, �C26�

a0
� = i��1q2�i��N + �3q2� + �i��N − 	1 − �2

4
�1 − �3
q2�

	�K1q2 − �aH2�q2. �C27�

The quantities Ci
N� and Ci

N� are functions of q and � and
are determined by the boundary conditions at the interface as

C1
N� =

B2
�ṽy

S − ñy
S

B2
� − B1

� , �C28�

C1
N� = �iq�B3

� − B2
� �ṽx

S + �m2
N� − m3

N��ñx
S

+ �m3
N�B2

� − m2
N�B3

� �ṽz
S�/� , �C29�

where

� = �B3
� − B2

� �m1
N� + �B1

� − B3
� �m2

N� + �B2
� − B1

� �m3
N� ,

�C30�

and expressions for C2
N�, C2

N�, and C3
N� are obtained from

Eqs. �C28� and �C29� by cyclic permutation of subscript in-
dices

APPENDIX D: EXPLICIT FORM
OF DISPERSION RELATION

To write the explicit form of the dispersion relations �103�
and �104�, we recast Eq. �C28� and �C29� in the form

Ci
N� = Li

�vy�ṽy + Li
�ny�ñy , �D1�

Ci
N� = Li

�vx�ṽx + Li
�vz�ṽz, + Li

�nx�ñx, �D2�

where

L1
�vy� =

B2
�

B2
� − B1

� , �D3�

L2
�vy� =

B1
�

B1
� − B2

� , �D4�

L1
�ny� =

1

B1
� − B2

� , �D5�

L2
�ny� =

1

B2
� − B1

� , �D6�

L1
�vx� =

iq�B3
� − B2

� �
�

, �D7�

L2
�vx� =

iq�B1
� − B3

� �
�

, �D8�

L3
�vx� =

iq�B2
� − B1

� �
�

, �D9�

L1
�vz� =

m3
N�B2

� − m2
N�B3

�

�
, �D10�

L2
�vz� =

m1
N�B3

� − m3
N�B1

�

�
, �D11�

L3
�vz� =

m2
N�B1

� − m1
N�B2

�

�
, �D12�

L1
�nx� =

m2
N� − m3

N�

�
, �D13�

L2
�nx� =

m3
N� − m1

N�

�
, �D14�

L3
�nx� =

m1
N� − m2

N�

�
, �D15�

� is given by Eq. �C30�, Bi
� and Bi

� are given by Eqs. �C10�
and �C21�, and mi

N� and mi
N� are given by Eqs. �C22� and

�C11�, correspondingly.
Then the dispersion relation �104� can be written as

det M� = 0, �D16�

where M� is 2	2 matrix of coefficients for Eqs. �86� and
�101�

M� = 	M11
� M12

�

M21
� M22

� 
 �D17�

with the following components:

M11
� = − �sq

2 − �mI + �
i=1

2 �− �3mi
N� +

1 + �

2

	 �K3�mi
N��2 − K2q2 + �aH2�Bi

��Li
�vy�, �D18�
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M12
� = �

i=1

2 �− �3mi
N� +

1 + �

2

	 �K3�mi
N��2 − K2q2 + �aH2�Bi

��Li
�ny�, �D19�

M21
� = �

i=1

2

�K3mi
N� − W0 − i��1

S�Bi
�Li

�vy�, �D20�

M22
� = �

i=1

2

�K3mi
N� − W0 − i��1

S�Bi
�Li

�ny�. �D21�

The dispersion relation �103� can be written as

det M� = 0, �D22�

where M� is 3	3 matrix of coefficients for Eqs. �85�, �87�,
and �100�,

M� = �M11
� M12

� M13
�

M21
� M22

� M23
�

M31
� M32

� M33
� � �D23�

with the following components:

M11
� = − �0

*q2 − i���mI + q� −
�

q
�3�

i=1

3

��mi
N��2 + q2�Li

�vx�

+ i�
1 + �

2
	 �

i=1

3

�K3�mi
N��2 − K1q2 + �aH2�Bi

�Li
�vx�,

�D24�

M12
� = − ���mI − q� −

�

q
�3�

i=1

3

��mi
N��2 + q2�Li

�vz� + i�
1 + �

2

	 �
i=1

3

�K3�mi
N��2 − K1q2 + �aH2�Bi

�Li
�vz�, �D25�

M13
� = −

�

q
�3�

i=1

3

��mi
N��2 + q2�Li

�nx� + i�
1 + �

2

	 �
i=1

3

�K3�mi
N��2 − K1q2 + �aH2�Bi

�Li
�nx�, �D26�

M21
� = − iq3� − 2�q� +

i�2�I

mI − q
+ i��

i=1

3

�Ai − 2�1mi
N��Li

�vx�,

�D27�

M22
� = − g��N − �I� − ��0 + W0�q2 − �0q4 +

�2�ImI

q�mI − q�

+ i��
i=1

3

�Ai − 2�1mi
N��Li

�vz�, �D28�

M23
� = �qW0 + i��

i=1

3

�Ai − 2�1mi
N��Li

�nx�, �D29�

M31
� = �

i=1

3 ��K3mi
N� − W0 − i��1

S�Bi
�

+
q

�
�W0 + �0q2 − �mi

N� + i��1
S��Li

�vx�, �D30�

M32
� = �

i=1

3 ��K3mi
N� − W0 − i��1

S�Bi
�

+
q

�
�W0 + �0q2 − �mi

N� + i��1
S��Li

�vz�, �D31�

M33
� = �

i=1

3 ��K3mi
N� − W0 − i��1

S�Bi
�

+
q

�
�W0 + �0q2 − �mi

N� + i��1
S��Li

�nx�. �D32�

Note that gravity g has been incorporated into the dispersion
relation by adding the hydrostatic pressure term −g��N−�I� to
M22

� �Eq. �28��.
By setting �1=�2=�3, and setting to zero quantities K1,

K2, K3, �, �1, �1�
S , and �a, specific to nematic, and neglecting

curvature contributions by setting to zero �0 and �, the dis-
persion relation is reduced to the well studied form for the
case of isotropic liquids �2,3,52,59�.
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