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Planar antiferroelectric liquid crystal �AFLC� cells exhibit propagating solitary waves. By measuring the
retardation and the apparent tilt angle, we find that the conventional model for the solitary wave propagation in
AFLCs is not generally applicable. The model being proposed here shows that the solitary wave propagation
both along and normal to the smectic layer plane can be explained by a double well potential energy governing
the relative orientations of the c directors in the adjacent smectic C layers with an energy barrier between the
synclinic and the anticlinic states. The quadrupolar term of the interlayer interaction is found to be significantly
large in a pure AFLC.
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Antiferroelectric liquid crystals �AFLCs� have attracted
many researchers’ interest due not only to scientific but also
for display applications �1–10�. Especially, the field driven
phase transition from antiferroelectric �AF� state to ferroelec-
tric �F� state, that is, the switching of AFLC cells has been
studied in detail �3–8� for application purpose. So, the
switching of AFLC cells shows various interesting phenom-
ena �threshold, hysteresis, fast response, continuous gray-
scale, etc.� useful in applications.

The solitary wave propagation �11,12�, which is a con-
secutive transition of the anticlinic orders to the synclinic
orders occurring as dominoes, is one of the most crucial
aspects of the switching in AFLC cells. As shown in the
microscopic images in Fig. 1, the solitary wave propagation
is easily observed in the antiferroelectric cells as propagating
boundaries of finger domains. A domain propagation ob-
served in a surface-stabilized ferroelectric liquid crystal cell
is induced by the special cell structure �13�. However, this
propagation in a AFLC cell is mainly an intrinsic property of
the phase. Hence, the physics in both cases is quite different
in spite of the similarity of the behavior. So far, the solitary
wave phenomenon has been studied mainly for understand-
ing the switching properties of AFLC cells from the view-
point of applications �5,6�. However, the solitary wave itself
has rarely been studied �1,14�, and even its mechanism is not
clear. This is the starting point of this paper.

In order to have the solitary wave, there should exist two
energy minima in the two states �AF and F states� and a
energy barrier between the two states must also exist �11,12�.
Li et al. �1� observed and characterized the propagating soli-
tary waves in a AFLC cell. They assumed that the necessary
condition for the generation of the solitary wave is to have
the negative dielectric anisotropy, which is the mechanism to
induce a synclinic local minimum in the interlayer potential
energy. The initial state of the cells was also assumed such
that the c directors of the even layers lie at �=0, which are
not affected by the applied voltage, while those of the odd
layers are at �=� and they transfer to the position of the

even layers by the external field. In this definition, � is the
angle between the directors and x axis. The latter lies along
the glass plate. Thus, in their model, the c directors are hori-
zontally aligned �HAF� being perpendicular to the applied
field. However, it has been reported experimentally
�2,15–17� and proven theoretically �7,15� that the virgin chi-
ral AF stage is uncoiled into the unwound AF state by a
relatively low field, where the c directors are aligned verti-
cally �VAF�, that is, parallel to the field, and it turns into the
F state at a sufficiently large field. This contradicts the basic
assumption made by Li et al. �1�. Whether the unwound AF
state is a VAF or a HAF state is an important starting point
for the solitary wave propagation to occur. If the unwound
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FIG. 1. �Color online� Microscopic images of the solitary waves

in a planar AFLC cell using MC881 �upper�, director distributions
near the boundary for the two states P1 and P2 �middle�, and the
potential energy U and the angle � calculated from Eqs. �1� and �8�
�lower�.
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AF state is VAF state as already found �15�, the solitary wave
propagation cannot appear unless their model is altered, as
shown here.

We used MC881 for the electro-optic measurements,
which is an optically pure AFLC compound synthesized by
Mitsubishi Gas Chemical Company Inc. �MGC� �Fig. 2�.
This material does not have SmC* phase. The phase se-
quence is Iso. �120 °C� SmA �112.5 °C� SmCA

*. To check
the direction of the c director in the intermediate unwound
state, we measured the retardation by increasing the field
using a PEM system �18� which enables a measurement of
the difference in the refractive indices along the two eigen
axes in the plane parallel to the cell. In the lower part of Fig.
3, the increasing retardation at low voltages indicates that the
c directors lie close to y axis, which is the VAF state shown
in Fig. 2. The HAF state has a lower retardation than the
virgin chiral antiferroelectric state. The increasing apparent
tilt angle at low fields in Fig. 2 also leads to the same con-
clusion. The sudden jumps in the retardation and tilt angle
indicate the AF-F transition.

To model the solitary wave in the VAF state, we start off
with the free energy expression of an unwound helical lim-
iting case. The free energy of ith layer can be written using
the coordinate system and definitions of angles in Fig. 2 as

f i =
K

2
sin2 �� ��i�x�

�x
�2

− P0E cos �i�x�

−
���

8�
sin2�i�x�E2 + V����x��

�
K

2
sin2 �� ��i�x�

�x
�2

+ U��i�x�,���x�� . �1�

Here, V���� is the interlayer interaction depending on the
angle between the adjacent layers, and the effective dielectric
anisotropy ���=�� sin2 �. In Eq. �1�, the first term of the
equation is the elastic energy of the solitary wave, and the
second and the third terms correspond to the coupling of the
spontaneous polarization and the dielectric anisotropy with
the applied field. The total potential energy U��i�x� ,���x��
is defined as the sum of the interlayer interaction and the
coupling with the applied field.

Corresponding to Eq. �1�, the equation of motion of the
solitary wave can be written as �1,11,12�

I
�2�

�t2 + �
��

�t
− K�

�2�

�x2 = −
dU��i,���

d�i
, �2�

where I is the moment of inertia of a molecule and � is the
viscosity of the medium and K�=K sin2 �. I can be neglected
in the overdamped limit where � is large, as is usually the
case.

If only the dipolar interlayer interaction �V=V0�cos��i

−�i−1�+cos��i+1−�i��=2V0 cos�2��	 is considered as al-
ready assumed by Li et al. �1�, the only possible solitary
wave solution of Eq. �2� can be found to be

� = 2 tan−1ed1�x−v1t�, �3�

where ���i�x� and

d1 = 
− 2����

8�
E2 + 2V0�/K��1/2

, �4�

v1 =
PE

�d1
. �5�

This solution does not correspond to the solitary wave for the
AF-F transition usually observed in the AF cells, but does
that of the transition from one F state to another F state at
very large fields. Note that in the solitary wave solution �Eq.
�3��, directors change from �=0 �for x=−�� to �=� �for
x= +��, that is, from ��=0 to ��=2�. To have a real value
of d1, the dielectric anisotropy should be negative and the
applied field E�4�−�V0 /��� �
1.6	103 stat V/cm−1�
��Eth�, which is quite a large field. Even though this solitary
wave is physically possible, the moving speed is too fast to
be observed in the usual microscopic experiment. Thus, with
only the dipolar term present in the interlayer interaction, the
solitary wave from the AF to F state cannot be attained irre-
spective of the sign of the dielectric anisotropy. This is due to

FIG. 2. Chemical structure of MC881. Molecular and c directors
in the intermediate unwound antiferroelectric state �VAF state� in a
planar AFLC cell.

FIG. 3. �Color online� Apparent tilt angle �upper, 25 
m planar
cell� and retardation �nd �lower, 5 
m, planar cell� as a function of
the applied field.
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the fact that the potential energy U is not a double well
potential having the synclinic and the anticlinic minima.

Now, we need to add the quadrupolar term in the inter-
layer interaction. The quadrupolar term was introduced in a
phenomenological model of Landau expansion for AFLC by
Orihara and Ishibashi �9�, and an experimental evidence was
suggested by Qian and Taylor �7� by observing the switching
behavior in a AFLC cell. Thus, it is reasonable to add the
quadrupolar term in the interlayer interactions:

V = V0�1 + cos ��� + V0b�1 − cos 2���

= V0�1 + cos 2�i� + V0b�1 − cos 4�i� . �6�

Here, the quadrupolar coefficient b is related to the relative
depth of the synclinic minimum compared with that of the
anticlinic minimum. The equation of motion �Eq. �2�� can be
rewritten as

�
��

�t
− K�

�2�

�x2 = − PE sin � + ����

8�
E2 + 2V0�sin 2�

− 4V0b sin 4� �7�

Here, I is ignored. Unfortunately, it is not easy to find the
exact solution of this differential equation, but is obtained as
an approximate solution of Eq. �7� as

��x� �
2

�
�0 tan−1 ed�x−vt�, �8�

where �0 depends on the applied field E and is the angle �
for x→�, where the potential energy U has a minimum.
Equation �8� is plotted in the lower part of Fig. 1, where the
c directors are highly distorted at the solitary wave and pro-
duces a large potential barrier U at the same position. The
large energy barrier sustains the strong elastic restoring force
by the distorted c directors. With a slight difference between
the potential energies in F and AF states, the solitary wall
moves and the one state enlarges with a consequential reduc-
tion in the size of the other state. Equation �8� is the solution
for the ith layer, and the adjacent layer has an opposite sign
of the angle of the c directors as seen in Figs. 1 and 2, so
�odd�x�=−�even�x�. Here, we can find that the solitary wave
in a layer is coupled with that of the adjacent layer, i.e., the
solitary wave could propagate normal to the layer plane,
though the speed is much slower than that along the x direc-
tion. On the other hand, in the conventional model �1�, only
the odd layers are supposed to have the solitary waves, and
the even layers stay and act as obstacles to prevent the soli-
tary wave propagation occurring normal to the layers, and as
a consequence, the solitary wave in each layer is independent
of the others. Usually, the solitary wave has a fingerlike
shape and builds up as a bundle of rays, the width of which
is more than several thousand times the thickness of a single
layer and becomes thicker with time. The special shape of
the solitary wave can be explained by the proposed model as
a coupling between the solitary waves in the adjacent layers.

The necessary condition for the differential Eq. �7� to
have a real solution can be found by analyzing the total po-
tential energy U. To have the solitary wave, �U /��=0 and
�2U /��2�0 should be satisfied at �=�0 �anticlinic mini-

mum� and 0 �synclinic minimum�. This is the same condition
for having the first order transition between the AF and the
field induced F states, and the details were already studied by
Qian and Taylor �7�. By ignoring the dielectric anisotropic
term, we can find that when b�1/20, the potential energy U
has a double well potential near the critical field �Eth� and the
cell could exhibit a solitary wave, and when b�1/4, the
potential energy U has a double well form even at the zero
field. Thus, the solitary wave does not originate from the
dielectric anisotropy, but does from the quadrupolar term of
the interlayer interaction.

From the condition �U /��=0 at �=�0, we can find
���=� /2−�0��1:

�� �
PE

4V0�4b + 1� +
���

4�
E2

. �9�

Since ���
4� E2 is lower than 4V0�4b+1�, �� related to the ap-

parent tilt angle increases linearly with the applied field ac-
cording to Eq. �9�, which accords well with the experimental
results shown in Fig. 3 �see also �10��.

When the applied field=Eth, where the solitary wave ve-
locity is zero, the potential energy at the two minima �syn-
clinic and anticlinic� should be equal to each other.

U�E = Eth,� = 0� = U�E = Eth,� = �0�� . �10�

By using �U /��=0 at the two minima and Eq. �10�, we can
find b, V0, and Eth:

V0 = PEth
3 cos �0� + 2

4�cos �0� + 1�2 −
���

16�
Eth

2 , �11�

b =
PEth

16V0 cos �0��cos �0� + 1�2 , �12�

Eth =
16V0b cos �0��cos �0� + 1�2

P
, �13�

where �0�=�0�E=Eth�. �0� can be obtained by �0�
=cos−1�tan �� / tan ��, where �� is the apparent tilt angle at
Eth and � is the tilt angle of the director from the layer
normal.

FIG. 4. �Color online� Measured Ps, Eth, and �� at E=Eth

�25 
m planar cell�.
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Figure 4 shows the measured values of PS, Eth, and
���E=Eth� using a planar cell of 25 
m thickness. Using
both homeotropically and planar-aligned cells, we measured
���−0.7 in SmCA

* phase. The upper graph in Fig. 5 gives
calculated V0 and b from the measured results. It shows that
V0 increases with decreasing temperature and is saturated at
low temperatures. Meanwhile, the quadrupole coefficient b is
almost constant over a wide range of temperatures and in-
creases dramatically near the transition temperature to SmA.
This means that the synclinic minimum gets closer to the
anticlinic minimum as the temperature approaches the tran-
sition temperature even though the barrier potential between
them remains reasonably high as shown in the lower part of
Fig. 5.

By inserting the approximate solution �8� into the differ-
ential Eq. �7� and using the measured values of V0, b, we can
find the velocity �v� and the width parameter �d� of the soli-
tary wave as function of the applied field as shown in Fig. 6.
Here, v and d are determined by fitting two equations in both
sides of Eq. �7�, and the coefficient of determination, R2 for
the fitting at each electric field is higher than 0.999, which
means that Eq. �8� is quite an accurate approximation for the
solution of the differential equation. In this simulation, we
assumed that K=10−6 dyn and �=5.0 P so as to match the
simulation results with the experimental results. The velocity
of the solitary wave shows a linear dependence as function of
the applied field near Eth.

To summarize, the conventional model �1� explains well
the basic mechanism for the solitary wave propagation in the
AFLC cells, but due to its oversimplified nature, it gives

several incorrect conclusions: the solitary wave is due to the
negative dielectric anisotropy, and the pretransitional effect
cannot appear, and the solitary wave in each layer is sepa-
rated from the neighboring ones. Our model based on the
transition from the VAF to the unwound ferroelectric state
can reasonably explain all of the observations: the solitary
wave is due to the quadrupolar term in the interlayer inter-
action but is not related with the sign of the dielectric aniso-
tropy, and the pretransitional effect always exists, and the
solitary wave of each layer affects the neighboring layers and
can also propagate normal to the layers. The solitary wave
builds up like a bundle of rays giving it the shape of a finger
as observed. We predict the generation of a new type of
solitary wave due to a negative dielectric anisotropy when a
very large square shaped field is applied, even though its
detection may not be easy. We calculate V0, and the quadru-
polar coefficient, b, of the interlayer interaction in a pure
AFLC in the entire range of temperature of the SmCA

* phase
by observing the solitary wave. Surprisingly, the results show
that even the pure AFLC not having SmC* phase has a deep
synclinic minimum since the quadrupolar coefficient b
�1.14 is larger than that for a commercial AFLC mixture
�Chisso, CS4001: b�0.67� having SmC* phase �8�. More-
over b increases exponentially near the transition. This
means that the antiferroelectric coupling becomes weaker
near the transition temperature to the SmA phase.
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sence from Seoul. We thank the MGC Company of Japan for
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FIG. 5. �Color online� Calculated V0 and b �upper graph� and
interlayer interaction energy as a function of �� �lower graph�. The
scale on the abscissa is multiplied by �.

FIG. 6. �Color online� Measured velocity of the solitary wave
and simulation result by using Eqs. �7� and �8� �25 
m planar cell,
50 °C�. Simulation parameter: �=5 P, K=10−6 dyn. Error bars de-
note the standard deviation over ten measurements for each data
point.
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