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An external mechanical torque on colloids immersed in a nematic liquid crystal can induce a Coulomb-like
1/r interaction between them �Lev and Tomchuk, Phys. Rev. E 59, 591 �1999�; Lev et al., ibid. 65, 021709
�2002��. In this paper we show that the director-mediated Coulomb-like interaction of two colloids is deter-
mined by the vectors �

�

�1� and �
�

�2� of the transverse external torques exerted upon these colloids. We derive the
1/r potential in which the scalar product −��

�

�1� ·�
�

�2�� of the two torques plays the role of the product of two
electrostatic charges. The 1/r interaction is attractive for ��

�

�1� ·�
�

�2���0 and repulsive for ��
�

�1� ·�
�

�2���0
�“parallel torques” attract whereas “antiparallel torques” repel each other�. The vector of transverse torque
determines the two-component “elastic charge” �dyad�, which is illustrated by the 1/r2 and 1/r3 terms in the
elastic energy �the elastic analogs of the monopole-dipole and dipole-dipole interactions�. The general status of
the pairwise approach to nematic emulsions is considered in terms of the elastic charge density.
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I. INTRODUCTION

Particles of submicrometer and micrometer size immersed
in a nematic liquid crystal interact via the director field n
which mediates the distortions induced by their surfaces
�1–11�. The new field of nematic colloidal systems, or nem-
atic emulsions �11,12�, has gained continuously growing in-
terest over the past few years. The physics of these aniso-
tropic colloidal systems has a deep similarity to
electrostatics. It has been shown that the director-mediated
interaction is of a long range and possesses many other prop-
erties characteristic of the interaction between electric di-
poles and quadrupoles �1–11�, and even charges �1,2�. Par-
ticle trapping techniques �14� have been used to test this
analogy and demonstrate experimentally the dipole-dipole
�15,16� and quadrupole-quadrupole �17,18� pair interactions.
Very recently, reorientation of the elastic dipoles was shown
to be responsible for phase transitions between different two-
dimensional colloidal lattices on a nematic-air interface �13�.
In the context of this analogy it is natural to expect that the
Coulomb interaction, which is fundamental to the electrostat-
ics, has an important implication in the physics of nematic
emulsions, too. However, the electrostatic analogy has not
been fully developed to this level.

Mathematically, the similarity between the director-
mediated and electrostatic interactions lies in the massless
nature of both theories and the Coulomb-like behavior of the
Green functions which derives from it. The massive term,
which has the form of the square of the order parameter, is
absent in the fundamental functionals of both theories. The
theory of the electrostatic field � is massless as the term
m�2 /2 is absent in its energy. It is this property that gives

rise to the Coulomb 1/r potential: a finite massive term
would have made it short range, i.e., exp�−mr� /r. In turn, the
elastic theory of a nematic liquid crystal describes the field
of the director n which is a unit vector. The massless nature
of the director field follows from this definition: the energy
term quadratic in n is trivial as n2=1 �19�. As a result, the
elastic theory allows for director components that far from
the distortion source behave as 1/r and its higher powers,
which is formally similar to the potential of an electric
charge, electric dipole, and so on.

The two systems are not, however, completely similar.
The electrostatic potential is a scalar described by the linear
Laplace �or Poisson� equation. It is the linearity that under-
lies the definition of the electric charge and its density as the
source of the electric field. At the same time, n is a vector
field described by a linear equation �in the one-constant ap-
proximation� only in two dimensions. Owing to the linearity,
the deformation source can be straightforwardly established:
the core of a point defect plays the role of a charge in two
dimensions �19–22�. But in three dimensions the field n is
described by highly nonlinear equations �19� and point de-
fects cannot be linearly connected with the distortions of n
they induce �9,11�. In principle, solutions to these nonlinear
equations with appropriate boundary conditions determine
the director field produced by any source, but in most cases
an analytical solution to this problem is not known.

The deformations, however, are decreasing functions of
the distance r from the source so that far enough they be-
come sufficiently weak to allow for a linear description and
thus for the electrostatic analogy. Then the problem is to
make a connection between the asymptotic electrostaticlike
far director field and its nonlinear source. Lev et al. �2� ex-
plicitly introduced a surface separating the nonlinear near
zone �called the elastic coat in �2�� from the linear far zone.
The director in the far zone is connected to the source via*Electronic address: victorpergam@yahoo.com
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this phenomenological surface and polar anchoring on it; the
surface shape is chosen so as to reflect the distortion sym-
metry in the near zone and the coordinate-dependent anchor-
ing so as to provide the correct deformation magnitude in the
far zone. The result is a pair interaction potential that con-
tains all powers of 1 /r: the 1/r term first obtained in �1� is
interpreted as a Coulomb interaction, 1 /r3 as the dipole-
dipole interaction, and so on �2�. This enabled the authors of
�2� to express the dipole and quadrupole coefficients, earlier
introduced phenomenologically in �9,11�, as integrals over
the chosen surface. Moreover, in �2�, a Coulomb-like attrac-
tion of two similarly oriented colloids was discussed and a
scalar quantity for the elastic charge was introduced. Based
on the well-known result �19� that the source of the 1/r
director behavior is the mechanical torque exerted on the
colloid, Lev et al. emphasized that the Coulomb-like attrac-
tion can be induced by the vector of external torque �. In �2�,
however, � does not explicitly determine the magnitude of
the 1/r attraction; instead, it is expressed in terms of the
specific colloid’s shape and anchoring. Apparently for this
reason, the Coulomb term is suggested to be nonzero when
the elastic coat has no horizontal or vertical mirror symme-
tries. But this does not require any torque if the particle is
asymmetric.

In this paper we show that the director-mediated
Coulomb-like interaction of two colloids is fully determined
by the vectors �

�

�1� and �
�

�2� of the transverse external torques
�perpendicular to the unperturbed director at infinity� applied
on the colloids. We derive the 1/r interaction potential in
which the scalar product −��

�

�1� ·�
�

�2�� of the two torques
plays the role of the product of two electrostatic charges.
Consequently, the interaction can be both attractive and re-
pulsive: it is attractive for ��

�

�1� ·�
�

�2���0 and repulsive for
��

�

�1� ·�
�

�2���0 �“parallel torques” attract whereas “antiparal-
lel torques” repel each other�. Although the colloids must be
anchored to the director, the Coulomb-like interaction does
not directly depend on their specific shape and anchoring.
Instead, the elastic charge is determined by the coefficients
describing the torque exerted upon the colloid by a given
type of external field. For instance, this can be the vector of
a permanent electric and magnetic dipole or the electric and
magnetic polarizability tensors of a given colloid. We also
propose a representation in which, because of the difference
between the scalar electrostatics and vector nematostatics,
the elastic analogs of the surface charge density, charge, and
higher multipole moments consist of two tensors �a dyad�.
The multipole moments are naturally expressed via the elas-
tic charge density which is determined by the two transverse
director components on the surface imposing the director
deformations.

II. LINEARIZED DIRECTOR DISTORTIONS
AND THEIR SOURCE

Consider a three-dimensional �3D� director field n�r�,
uniform and parallel to the z axis at infinity, n�= �0,0 ,1�,
and distorted in a finite number of particlelike �compact�
domains. We call such deformation domains particles though

the distortion therein can be induced by the surface of a real
particle, by topological defects with zero total topological
charge �9,11�, or by an external field dying out outside the
domain area. Generally, the deformations at the domain cen-
ter are strong and satisfy nonlinear equations, but sufficiently
far away they become weak �Fig. 1�. Here the transverse
director n�= �nx ,ny ,0� �perturbation to n�� is small, �n��
�1, and satisfies linear equations.

Enclose the ith domain by a spherical surface Si of radius
ai such that outside it �n���1. At the same time, the sphere
can be small as compared to the interparticle distances, and
the radius-to-distance ratio is a small parameter. Inside Si the
theory is nonlinear, intractable in standard terms �maybe ex-
perimentally inaccessible�, and we will consider the director
n��s� on each Si as a given function of s�Si. A sphere has
the following unique advantages: first, it does not introduce
any symmetry element so that the outer director is fully de-
termined by n� on the sphere, and, second, it enables us to
calculate Green functions, which seems to be a task impos-
sible for other surfaces. The final results do not depend on
the choice of the surface.

It is implied in what follows that the index t takes values
x or y, greek indices run over x, y, and z, the index i stands
for the particle number, summation over repeating indices is
performed, and vector s refers to a point on the surface of
any of the spheres. For simplicity, we omit the divergence
free energy �FE� terms and work in the one-constant approxi-
mation �19�. Then the distortion FE functional for the area
Vout outside all the enclosing spheres is given by

F�n� =
K

2
� ��nt · �nt�d3Vout. �1�

The static transverse director component nt satisfies the
Laplace equation �nt=0. Integrating �1� by parts in the con-

FIG. 1. Particlelike distortion domain with nonlinear core �dark-
ened�. At the enclosing spherical surface S the director component
normal to the unperturbed uniform director n� is small, whereas at
the nonlinear core it can be large. i is the image of the point r in S.
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text of this equation, the equilibrium FE reduces to the inte-
gral over the total surface �Si of all spheres:

F =
K

2
�

�Si

nt�� · ��ntd
2s , �2�

where �=��s� is the unit outer normal to the surface �Si at
s �23�. If G�r ,r�� is the Green function of the Laplace equa-
tion subject to the boundary condition G�r ,s�=0 for s
� �Si, G�r ,s�→0 for �r−s�→�, then the solution to the
Laplace equation in the area Vout is fully determined by the
distribution of nt on its inner boundary �Si via the following
Green formula �24�:

nt�r� = − �
�Si

nt�s����s� · �s�G�r,s�d2s . �3�

We see that in the linearized theory, the surface director
component nt�s� plays the role of the source of the director
component nt�r� in the outer area. We show below that nx�s�
and ny�s� determine the surface densities of what can be
considered as a two-component elastic charge.

III. ELASTIC CHARGE DENSITY AND MULTIPOLES
OF A SINGLE PARTICLE

Consider first a single particle enclosed by a sphere S of
radius a and set the coordinate origin at its center. The one-
particle Green function G1 subject to the boundary condition
G1�r ,s�=0 for s�S is known exactly �24,25�:

G1�r,r�� =
1

4�
	 1

�r − r��
−

a

r

1

�i�r� − r��

 , �4�

where i�r�= �a /r�2r is the location of the image of the point
r in the spherical surface which has to be taken with the
coefficient a /r. The normal surface derivative of the Green
function G1 is obtained in the form �24�

���s� · �s�G1�r,s� = −
1

4�

r2 − a2

a�r − s�3
. �5�

Substituting �5� in integral �3� gives the outer Poisson inte-
gral, which is the exact formula for the director induced out-
side the single sphere by the given director on its surface,
i.e.,

nt�r� =
1

4�
�

S

nt�s�
r2 − a2

a�r − s�3
d2s . �6�

Expanding �6� in a power series of the inverse distance r
from the origin yields

nt�r� =
qt

r
+ 3

�dt · r�
r3 + 5

�Qt:r:r�
r5 + ¯ , �7�

where

	t�s� = nt�s�/a2, �8�

qt =
a

4�
�

S

	td
2s , �9�

dt,
 =
a2

4�
�

S

	t�
d2s , �10�

Qt,
� =
a3

8�
�

S

	t�3�
�� − 
��d2s . �11�

Equations �7�–�11� suggest the following interpretation. qt
is the tth component of the elastic charge and 	t�s� is its
surface density at point s on the sphere. The vector dt and
tensor Qt are the tth dipole and quadrupole moments deter-
mined in the standard way by the surface charge density 	t
on the sphere. As 	x and 	y are separate sources, they deter-
mine not only the x and y director components outside the
particle, Eq. �7�, but also two independent tensors �dyad� for
each multipole moment, i.e., qx and qy, dx and dy,Qx and Qy,
and so on.

It is known that the Coulomb term in the director expan-
sion �7� is fully determined by an external torque � applied
on the particle �19�, i.e.,

nt�r� =
�� � n��t

4�Kr
+ O	 1

r2
 . �12�

Comparing �7� with �12�, we find the formula that ex-
presses the two-component elastic charge via the external
torque:

qt =
�� � n��t

4�K
. �13�

The charge components qx and qy can be induced only by
the transverse torque components as �13� reads qx
=�y / �4�K�, qy =−�x / �4�K�. Notice that multipoles of a
higher order than qt also depend on �, but, in contrast to the
charge, they can be nonzero even for �=0.

From the physical point of view, all we know about the
source is either the director distribution in its close proxim-
ity, or the asymptotic far distortions induced by it in the
homogeneous director field. The general problem of finding
elastic multipole moments of a particle is therefore solved by
Eqs. �8�–�11�, in the first case, and by Eqs. �7� and �13�, in
the second case. Moreover, in Sec. V we show that the mul-
tipoles are unambiguously determined by the single-particle
director distribution nt�s� �elastic charge density 	t�s�� un-
perturbed by other particles.

IV. COULOMB-LIKE INTERACTION
OF TWO PARTICLES

Now consider two particles enclosed by the spheres S1
and S2 with the centers at o1 and o2 and radii a1 and a2,
respectively �Fig. 2�. The two-particle FE F1&2 is obtained
by substituting �3� into �2�, which gives F1&2=F1+F2+F12,
where F1 and F2 are the self-energies of the particles 1 and 2,
and F12 is the interaction energy, which is of the form

F12 =
K

2
�

S1

�
S2

	t�s2�	t��s1�U�s2,s1�d2s2d2s1, �14�

where
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U�s2,s1� = − a1a2���2 · �2���1 · �1�G2�s2,s1� + ��1 · �1�

���2 · �2�G2�s2,s1�� , �15�

and �i is the outer normal to the surface Si at si�Si. The
potential U is expressed via the two-particle Green function
G2�r ,r��, which satisfies the boundary condition G2�r ,s�
=0 for s�S1�S2. As it cannot be found exactly �25�, we
developed a successive perturbation procedure to find G2 in
the form of an expansion in a power series of the small
parameter a /R, where R=o1−o2 is the center-to-center sepa-
ration vector �see the Appendix�. In terms of the unit vector
u�u12=R /R, this expansion of U takes the form

2�

a1a2
U�s1,s2� = −

1

R
+

a1��1 · u� − a2��2 · u�
R2

−
a1a2���1 · �2� − 3��1 · u���2 · u��

R3 + ¯ .

�16�

Substituting �16� into �14� gives the interaction energy
F12. Using the definitions �9� and �10� of the elastic charge
and dipole, the main-order terms can be reduced to the fol-
lowing form:

F12 = −
�t

�1� · �t
�2�

4�KR

+
���2� � n��t�dt

�1� · u� − ���1� � n��t�dt
�2� · u�

R2

− 4�K
�dt

�1� · dt
�2�� − 3�dt

�1� · u��dt
�2� · u�

R3 + ¯ , �17�

where we replaced expression �9� for the elastic charge qt in
terms of the surface director by its expression �13� in terms
of the transverse external torque. The first term in �17� is the
Coulomb-like interaction. The importance of the formula �9�
for the two-component elastic charge qt is that, owing to it,
the Coulomb term −4�Kqt

�1�qt
�2� /R is expressed solely via the

transverse components ��=�− �� ·n�� of the torques ex-
erted upon the particles:

FCoulomb = −
���

�1� · ��
�2��

4�KR
. �18�

This formula shows that the Coulomb attraction, consid-
ered in �2�, can be induced only by more or less parallel
torques, while opposite torques induce Coulomb repulsion,

the inversion geometry being �
�

�1�
��

�

�2�. The Coulomb term
does not directly depend on details of the colloids’ shape and
surface anchoring �see the discussion below, in Sec. V�. We
see that breaking the horizontal and vertical mirror symmetry
of the director field induced by asymmetrical particles is only
a necessary but not a sufficient condition for the Coulomb
interaction: irrespective of the symmetry, the 1/R term can
be induced only by the external torques on colloidal par-
ticles. In particular, this interaction does not depend on the
radii of the two spheres chosen at the intermediate stage of
the derivation.

If one admits the interpretation of Eqs. �9� and �10� as the
definition of a two-component elastic charge �monopole� and
dipole, then the three terms in the elastic energy expansion
F12 �17� can be naturally associated with the elastic energies
of Coulomb, monopole-dipole, and dipole-dipole interac-
tions, respectively.

V. PAIRWISE APPROACH AND THE ELASTIC CHARGE
DENSITY REPRESENTATION

The FE expansion in a power series of the finite parameter
�a /R�, obtained in this paper, allows one to explore the gen-
eral status of the pairwise approach to nematic emulsions
�the details can be found in �26��. A system of N particles
interacting via a pairwise potential has a finite number of
degrees of freedom. In contrast, the nematic liquid crystal is
a field system which, generally speaking, cannot be reduced
to a finite number of degrees of freedom, and thus the pair-
wise approach to this system is approximate and has a cer-
tain range of applicability. Indeed, it is not difficult to see
that, if N�3, the two particles can interact via other particles
which gives rise to an irreducible many-body interaction. For
instance, the interaction of charged particles 1 and 2 via par-
ticle 3 gives rise to an irreducible three-particle correction
F12,3 to the pair interaction �14�. This term is obtained from
the three-particle Green function, which can be derived by
the perturbation method developed in the Appendix, and has
the form �26�

F12,3 = −
a3

4�K

�t
�1��t

�2�

R13R23
, �19�

where R13 and R23 are the corresponding distances and a3 is
the radius of particle 3. We see that F12,3��a /R�F12. This
shows that the pairwise approximation to elastic charges is
violated in the order next to the leading one in the parameter
a /R. Thus, this parameter must be small and the interaction
potential �14� is meaningful only to leading order.

This drives us to the following important conclusion: the
elastic charge �9� of a particle can be calculated with the
elastic charge density 	t�s� �8� in which the perturbations
induced by other particles are neglected. Indeed, the pertur-
bation induced by particle 2 at particle 1 is 	1,2�Cq2 /R,
where C�1 describes the elastic resistance of the director
field at particle 1 to the external perturbation. At the same
time, the unperturbed elastic charge density 	1�q1 /a1.
Therefore, the charge induced on particle 1 is q1,2
� �a1 /R�q1, and the correction to the unperturbed Coulomb

r

o 1 o 2

i1

i2

i12i21

s 1

S1 S2

s 2

i121

FIG. 2. Two spheres enclosing particles 1 and 2.
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term F12�q1q2 /R is �F1,2�	�� �a1 /R�F12�F12,3 �for
brevity, here and in what follows the factor 4�K in the en-
ergy estimates is omitted�. This correction cannot be consis-
tently incorporated in the pairwise approach and is small
within its applicability range. Similarly, it can be shown that,
in a system of elastic dipoles or quadrupoles, these multipole
moments of each particle can be calculated from formulas
�10� and �11� with the surface director distribution �charge
density� 	t�s�, unperturbed by other particles.

So far we have been considering the elastic energy of the
outer zone outside the spheres. The energy Fin of the unper-
turbed inner zone of a particle has not been considered as it
does not contribute to the interaction. But when the inner
zone is perturbed by other particles, Fin acquires a depen-
dence on their coordinates which can result in some interac-
tion term �Fin�	�. It is not difficult to see that this �Fin

�F12,3. By definition of the equilibrium surface director dis-
tribution, 	t�s� satisfies the equation Fin /	t=0, so that
�Fin�	� is quadratic in 	. As Fin�q2 /a, one has �Fin

��q�2 /a�q2�a /R�2 /a��a /R�q2 /R��a /R�F12. Thus, the
interaction terms originating from the inner zones of par-
ticles can be neglected in the pairwise approach.

Now consider the requirement that the components nt
should be small at the auxiliary sphere S and derive the re-
striction it implies in the case of elastic charges. When nt is
large, the inaccuracy is related to neglecting the nonlinear
�anharmonic� terms. The estimates for the nonlinear �anhar-
monic� corrections to the director field nan and energy Fan
were derived in Ref. �9�. In the case of elastic charges, Fan is
found to be �F12n�2 �26� where n� is the average magni-
tude of the transverse director on the sphere with the radius
a, n��q /a; see Eq. �9�. At the same time, the many-body
correction F12,3��a /R�F12. The anharmonic correction Fan

can be neglected in the pairwise approach if Fan�F12,3
which gives

n� � �a/R . �20�

Of course, large nt�1 on the sphere S that separates the
inner and outer zones can result in an inaccuracy in the val-
ues of the multipole moments �9�–�11�, but below we will
see that this might be a rather weak restriction.

The elastic charge is determined solely by the external
mechanical torque applied on a deformation source. How-
ever, in order to transfer this torque to the director, the source
and director must be connected. If the source consists of,
e.g., the defect pair radial hedgehog–hyperbolic hedgehog,
this connection is provided by the elastic resistance to devia-
tions of the vector connecting the two defects from the equi-
librium direction along n� �see Ref. �9��. If the deformation
source is a particle, then the connection is provided by the
surface anchoring. Nevertheless, the formula �18� implies
that to establish the Coulomb interaction one needs consid-
erably less information about the particle than is contained in
its shape and surface anchoring �whose easy axis and
strength depend on a point of the surface�. This situation is
similar to that in electrostatics: to describe the interaction of
charged bodies at large separations, one needs to know just a
few electric multipole moments rather than the exact charge

distribution in the bodies. For instance, if the anchoring is
very strong, the vector of a permanent dipole �electric or
magnetic� or the polarizability tensor of the particle deter-
mines the torque exerted by a given �electric or magnetic�
field, and no further information about the anchoring is
needed. If the anchoring is not infinitely strong, then the field
can change the orientation of the particle, and to find the
torque one needs to know the angular restoring force con-
stant k� of the source �9�. This discussion clearly shows that
a deformation source in nematic emulsions has to be charac-
terized by a few parameters such as k�, the vectors of electric
and magnetic dipole moments and polarizability tensors,
elastic dipoles, and quadrupole tensors. As we showed
above, all these quantities are characteristics of an individual
unperturbed source which makes the pairwise description
uniquely determined. In particular, the elastic dipole and
quadrupole moments can be, in principle, obtained from the
far field distortions the particle induces in a homogeneous
director field.

Let us give some illustration of the elastic charge density
representation developed in this paper. In general, the dipole-
dipole potential, given by the third term in Eq. �17�, depends
on the angles made by dx

�1� and dx
�2�, dy

�1� and dy
�2�, as well as

by these vectors and the separation vector u. But if each
particle is axially symmetric about the z axis �parallel to n��,
the potential depends solely on the angle �=arccos uz; in this
case Eq. �10� gives dx

�i�= �di ,0 ,0�, dy
�i�= �0,di ,0�, and the po-

tential simplifies to

Fdd =
4�Kd1d2

R3 �1 − 3 cos2 �� . �21�

This particular case corresponds to the phenomenological
dipole-dipole interaction considered in Ref. �9�.

Let us now illustrate our theory by a specific calculation.
The authors of Ref. �9� described and considered the follow-
ing complicated dipole system: a sphere imposing normal
surface director alignment �imaginary radial hedgehog� ac-
companied by a hyperbolic hedgehog at distance rd from the
sphere’s center o. If the sphere’s radius is equal to 1, this
rd�1.22. Using a unique ansatz method, the dipole moment
P of the pair was found to be P=2.04. In our approach the
dipole moment can be obtained from Eq. �10� by integrating
the director distribution over the auxiliary sphere S enclosing
the sphere-hedgehog pair. We thus need the director distribu-
tion in a close proximity of this pair. Such a director distri-
bution was obtained by rotating the two-dimensional ansatz
about the symmetry axis, Eq. �29� of Ref. �9�. Thus obtained
function has an incorrect far asymptotics and cannot be used
in the far zone. Moreover, it does not satisfies the nonlinear
Euler-Lagrange equations for the 3D director in the near
zone, but just gives a distribution qualitatively similar to the
true one. Nevertheless, we expect that the dipole moment
calculated from this ansatz should be close to its true value;
the correct asymptotics is guaranteed by our Eq. �7�. We
choose our auxiliary sphere S with the center at o and radius
a�rd. Notice that, while in Ref. �9� the dipole moment was
identified with the total prefactor of the 1/r2 term in the far
field, our dipole moment is just 1 /3 of that in the expansion
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�7�, and thus our dipole moment should be compared with
P /3=0.68. Equation �10� with ansatz �29� of Ref. �9� gives
the components of the dipole dyad in the form dx= �d ,0 ,0�,
dy = �0,d ,0�. The numerical integration yields d=0.66 for a
=1.7 and d=0.54 for a=1.5 �of course, with ansatz �31� of
Ref. �9�, which has the correct far asymptotics, and for suf-
ficiently large a�5, Eq. �10� automatically gives d=0.68
with a high accuracy�. This shows that the goal of calculating
the multipole moments from the director field at the source
can be achieved reasonably well even if the director at the
source is known only qualitatively. Moreover, although on
the above sphere with a=1.7 the maximum transverse direc-
tor component is as large as nt�0.8, the calculated dipole
moment 0.66 is quite close to its exact value 0.68. Therefore,
the inaccuracy in the elastic dipole moment imposes practi-
cally a very weak restriction on the magnitude of nt on the
integration sphere S. Notice that Eq. �10� has already proved
very practical in Ref. �13� where it was used to estimate the
dipole moment of liquid droplets trapped at a nematic-air
interface.

VI. CONCLUSION

In this paper we developed an elastic charge density rep-
resentation of the pairwise approach to the colloidal interac-
tion via the nematic director field. The elastic multipole mo-
ments are expressed via the director distribution in the
colloid, which plays the role of the elastic charge density.
These formulas are practically convenient as they determine
the elastic multipoles via the director distribution in the col-
loid’s proximity. It is essential that the multipoles of a par-
ticle are its unambiguous individual characteristics, deter-
mined from the single-particle problem. In particular, we
derived the general formula �18� which shows that the
Coulomb-like interaction is determined by external torques
applied on the colloids. This formula can greatly simplify
and facilitate the theoretical description of nematic emul-
sions in external fields. Indeed, external fields exert mechani-
cal torques on colloidal particles thus distorting the nematic
director and resulting in the interparticle interaction. The re-
sults of this paper show that the very complicated problem of
calculating the director distortions induced by the surfaces of
specific colloids can be avoided: the field-induced interaction
term can be immediately written down provided the field-
induced torques are known. Thus, the problem of the field-
induced interaction in nematic emulsions reduces to describ-
ing the distribution of torques, which in many cases is
equivalent to the distribution of, e.g., the electric or magnetic
dipoles of the colloids. The physics of nematic emulsions
under the influence of external fields can be very interesting.
An example of such a system, where the role of colloids is
played by columnar nanosize aggregates, assembled from
dye molecules in a nematic host, is considered in Refs.
�27,28�.
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APPENDIX: THE TWO-PARTICLE GREEN FUNCTION

In contrast to the single-sphere case, the Green function
for two spheres cannot be found in the form of a sum of the
Coulomb source and a finite number of its pointlike images.
Here we obtain the lowest-order terms of expansion of the
Green function in a power series of the small radius-to-
distance ratio by considering a few successive images of the
Coulomb source in two spheres.

Figure 2 shows the two spheres S1 and S2 of radii a1 and
a2 representing two particles. The radius vectors of the points
o1 ,o2 ,r ,s1 , . . .. will be denoted by the corresponding bold
symbols. The Green function G2�r ,r�� for the Laplace equa-
tion, subject to the boundary condition G2�r ,r��=0 for any
r��S1�S2, is of the form

G2�r,r�� = �4��−1�J�r − r�� + I�r,r��� , �A1�

where I�r ,r�� is a field of unknown “image” source that must
compensate the field of the Coulomb source J= �r−r��−1 on
S1�S2 �24�. The vectors i1 and i2 represent the first-order
images of r, respectively, in S1 and S2. As described after Eq.
�4�, their dependence on the location r of the source and the
ith sphere center oi is determined by the formula �24,25�

ii�r� − oi = q̃i
2�r − oi� , �A2�

where

q̃i =
− ai

�r − oi�
. �A3�

The first-order image source Ii�r ,r�� is in the ith sphere and
has the strength given by the ratio q̃i �A3�, i.e.,

Ii�r,r�� =
q̃i

�ii�r� − r��
. �A4�

The unique advantage of the specific geometry of a sphere is
that the distance from the image at ii to any point r� on the
sphere Si is proportional to the distance from this point to the
source at r:

�ii − r�� = �q̃i��r − r��, r� � Si. �A5�

Owing to this relation the sum J�r ,r��+ Ii�r ,r�� vanishes on
the sphere Si and thus gives the exact single-particle Green
function �4�.

The vectors i12 and i21 are the second-order images of the
point r; i12 is the image of the point i1 in sphere S2, and i21 is
the image of the point i2 in sphere S1. In the context of Eq.
�A2�, it follows that the sources I12 and I21 of the secondary
images i12 and i21 are of the following form:

I12�r,r�� =
q̃1q̃12

�i12 − r��
,

q̃12 =
− a2

�i1 − o2�
,

i12 − o2 = q̃12
2 �i1 − o2� , �A6�

and
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I21�r,r�� =
q̃2q̃21

�i21 − r��
,

q̃21 =
− a1

�i2 − o1�
,

i21 − o1 = q̃21
2 �i2 − o1� . �A7�

The point i121, which is the image of i12 in sphere 1, and
the corresponding source I121 are determined by the follow-
ing formulas:

I121�r,r�� =
q̃1q̃12q̃121

�i121 − r��
,

q̃121 =
− a1

�i12 − o1�
,

i121 − o1 = q̃121
2 �i12 − o1� . �A8�

Consider the case when the arguments of the Green func-
tion belong to different spheres. Let s1�S1 and s2�S2; the
point r is very close to a point s2 on S2 ,r�s2, whereas r�
lies on S1, r�=s1 �Fig. 2�; the reason why we do not set r
=s2 will be clarified below. The sum I�r ,s1�= I1+ I2+ I21

+ I12+ I121 takes now the following explicit form:

I�r,s1� = −
a1

�r − o1�
1

�i1 − s1�
−

a2

�r − o2�
1

�i2 − s1�

+
a2a1

�i2 − o1��r − o2�
1

�i21 − s1�
+

a1a2

�r − o1��i1 − o2�
1

�i12 − s1�

−
a1a2

�r − o1��i1 − o2�
a1

�i12 − o1�
1

�i121 − s1�
. �A9�

Let us estimate the order of smallness of each term in
this sum. To this end we notice �see Fig. 2� that
�s2−s1���o2−o1���r−o1���i2−s1���i2−o1���i1−o2���i12
−s1���i12−o1��R, whereas �i1−s1���r−o2���i21−s1�
��i121−s1��a1�a2�a. It is now seen that I1� I2� I21
�R−1 and I12� I121��a /R�2R−1. The reflection process can
be continued, but the last terms I12 and I121 in �A9� and
higher-order terms do not contribute to Eq. �14�, and we will
restrict I �A9� to the first three terms. Then, up to terms
�O��a /R�2�, the Green function G2= �4��−1�J+ I1+ I2+ I21�
and can be written as

4�G2�r,s1� = 	 1

�r − s1�
−

a1

�r − o1�
1

�i1 − s1�

−

a2

�r − o2�	 1

�i2 − s1�
−

a1

�i2 − o1�
1

�i21 − s1�
 .

�A10�

Equation �15� contains the two successive normal deriva-
tives of Eq. �A9� on S1 and S2. The normal derivative of
G2�r ,r�� at r�=s1�S1 can be calculated similarly to the
single-particle case as the expressions in the parentheses are
merely G1�r ,s1� and G1�i2 ,s1� for particle S1. One has

4����s1� · �s1
�G2�r,s1� =

a1
2 − �r − o1�2

a1�r − s1�3

−
a2

�r − o2�
a1

2 − �i2�r� − o1�2

a1�i2�r� − s1�3
.

�A11�

To get the normal derivative of �A10� at r=s2�S2 we first
calculate it at r�s2, taking into account the r dependence of
all the image sources, and then pass to the limit r→s2; the
reason is that this passage does not commute with the r
derivative. This gives

4����s2� · �r����s1� · �s1
�G2�r,s1�

= ����s2� · �r�	a1
2 − �r − o1�2

a1�r − s1�3

 −

a2

�r − o2�
���s� · �r�

�	a1
2 − �i2�r� − o1�2

a1�i2�r� − s1�3

� − 	a1

2 − �i2�r� − o1�2

a1�i2�r� − s1�3



����s2� · �r�	 a2

�r − o2�
 . �A12�

At the limit r→s2, the vectors i2�r�, r, and s2 coincide,
�r−o2�→a2, and the expression in square brackets tends to
zero. Using that �s2−o2�=a2 and s2−o1=R−��s�a2, we ob-
tain

lim
r→s2

���s2� · �r����s1� · �s1
�G2�r,s1�

= −
1

4�a1a2

a1
2 − �R − a2��s2��2

�s2 − s1�3
. �A13�

The second term in Eq. �15� is obtained from Eq. �A12�
by interchanging the indices 1 and 2 �implying R→−R�, i.e.,

lim
r→s1

���s1� · �r����s2� · �s2
�G2�r,s2� =

−
1

4�a1a2

a2
2 − �R + a1��s1��2

�s2 − s1�3
. �A14�

Substituting both terms in Eq. �15� and taking into ac-
count that s2−s1=R+a1��s1�−a2��s2�, yields

U�s2,s1� = −
a1a2

2�

�R · �s2 − s1��
�s2 − s1�3

. �A15�

Equation �16� is obtained by expanding �A15� in a power
series of the inverse separation 1/R.
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