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Stability of biaxial nematic phase for systems with variable molecular shape anisotropy
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We study the influence of fluctuations in molecular shape on the stability of the biaxial nematic phase by
generalizing the mean-field model of Mulder and Ruijgrok [Physica A 113, 145 (1982)]. We limit ourselves to
the case when the molecular shape anisotropy, represented by the alignment tensor, is a random variable of an
annealed type. A prototype of such behavior can be found in lyotropic systems—a mixture of potassium
laurate, 1-decanol, and D,0, where distribution of the micellar shape adjusts to actual equilibrium conditions.
Further examples of materials with the biaxial nematic phase, where molecular shape is subject to fluctuations,
are thermotropic materials composed of flexible trimericlike or tetrapodlike molecular units. Our calculations
show that the Gaussian equilibrium distribution of the variables describing molecular shape (dispersion force)
anisotropy gives rise to new classes of the phase diagrams, absent in the original model. Depending on
properties of the shape fluctuations, the stability of the biaxial nematic phase can be either enhanced or
depressed, relative to the uniaxial nematic phases. In the former case the splitting of the Landau point into two

triple points with a direct phase transition line from isotropic to biaxial phase is observed.
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I. INTRODUCTION

The biaxial nematic phase is one of the perennially chal-
lenging problems of experimental soft matter physics. Al-
though predicted theoretically by Freiser in 1970 [1] it was
not until 1980 that the first experimental observation of this
phase has been reported [2]. The phase was discovered in a
lyotropic, ternary mixture of potassium laurate, 1-decanol,
and D,0 and its stability attributed to shape change of the
micellar aggregates as a function of temperature and concen-
tration of amphiphilic molecules [3]. The search for a ther-
motropic biaxial nematic has proved highly controversial for
more than two decades. A first qualitative report on a stable
uniaxial-to-biaxial nematic phase transition has been re-
ported by Li ef al. [4] in their system of flexible, ring-shaped
trimeric liquid crystal. Recently, this phase has also been
detected in two classes of thermotropic materials. It was re-
ported in “banana-shaped” mesogens [5,6] and in liquid crys-
talline tetrapodes [7]. The last class of materials is particu-
larly interesting for it comprises molecules with four
mesogenic units connected together through a flexible
spacer. The optimal packing of such tetrapodes in the biaxial
nematic phase is achieved for a quasiflat, platelet configura-
tion of the tetrapod’s mesogens that are, on the average,
tilted in the plane of the platelet.

A challenge for theory is to find molecular factors respon-
sible for absolute stability of the observed biaxial nematic
phase. The presently existing microscopic models [1,8—11]
show that the molecular shape and pair interaction biaxiality
are obviously important for the biaxial phase to exist. How-
ever, as numerous experimental reports have demonstrated
[12], they seem not sufficient to get the absolutely stable
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biaxial phase. In the present paper we show that a variable
(fluctuating) anisotropy of the molecular shape can be an
important stabilizing factor for this phase to occur. Indeed, it
seems that this factor appears commonly in the micellar, tri-
meric, and tetrapod systems. Let us mention that the theoret-
ical studies and computer simulations so far have addressed
the size and shape of the micelles in lyotropic systems
[13-16], but a connection between the shape anisotropy dis-
tribution and the stability of the biaxial nematic phase have
not yet been explored.

The present paper is arranged as follows. After the intro-
duction of the model in Sec. II, we explore stability of the
biaxial nematic phase on shape fluctuations in Sec. III. Sec-
tion IV is devoted to a short summary.

II. THE MODEL

We assume that the Hamiltonian H({u},{S}) of N liquid
crystalline molecules with dynamical degrees of freedom {S}
also depends on the {u} variables, which parametrize mo-
lecular shape. The partition function is calculated for each
allowed configuration of randomly chosen {u}. Then, in
analogy to statistics of disordered systems with annealed dis-
order [17], {u} is treated as a set of dynamical variables that
adjust to actual equilibrium conditions. Under these circum-
stances the free energy, F, of the system can be approximated
by the logarithm of the {u} averaged partition function,

F=—kzTInZ, (1)
Z= 2 P({p}) 2 e PI0SD, )
{u {s}

where P({u}) is the probability distribution of the {u} vari-
ables. A role played by the distribution P on the formation of
the biaxial nematic phase is studied by generalizing a very
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elegant mean-field model of Mulder and Ruijgrok [8] (MR),
which employs a connection between the SU(3) symmetry
and the biaxial nematic liquid. The most important feature of
the model is that its partition function can be calculated ex-
actly, which, as we are going to show, allows one for a semi-
analytical treatment of the annealed average (2). More spe-
cifically, in the MR model the internal, dynamical state of
each molecule is parametrized by eight degrees of freedom:
three components L, of the angular momentum L and five
components O, of the symmetric and traceless quadrupole
moment Q. These eight variables are next combined to form
eight generators S, of the SU (3) algebra, establishing
equivalence between {L,Q} and S=3%_,S \,, where \, are
the Gell-Mann matrices: (S),5=Q,p~ %EysaByLy,a,,B, v
=1,...,3. The MR Hamiltonian is the mean-field (MF) ver-
sion of the Heisenberg-type interaction [8]

N
JN_ —  J -
H=Hyg= TTr(SS) - EE Tr(SS)), (3)

=1

where the dynamical variables S; are subject to two
i-independent constraints, represented by Casimir invariants
of the SU(3) algebra

3
Tr(S}) = Tr(Q) = 2 7 = 2D(mo), 4)

a=1

3
Te(S7) = Tr(Q)) = 2 w7 = 205w, (5)

a=1

with w; 1+ ;o +m;3=0; N is the number of molecules and S
is the thermodynamic average of S;. The u;, variables are

the eigenvalues of the traceless matrices S;, or Q;, where 6,»
is the quadrupole moment of the ith molecule at rest
(L;=0), obtained from S; by applying an SU(3) transforma-

tion. Hence, if (~),- represents, e.g., the quadrupole moment of
a mass distribution the intrinsic properties of a given mol-
ecule, like the ratios of its principal axes, enter through the
Casimir invariants I,(u;), I3(g;), Egs. (4) and (5). This re-
mains in full analogy with what we practice for an ordinary
quadrupolar tensor, where the /,- and I/5-like invariants are
used to characterize biaxiality of a relevant physical observ-
able [18,19]. More specifically, depending on the values of I,
and I, or their ratio

I~ [3
w3, 6)
)7

three possibilities can be distinguished: (a) for I,=1;=0 the
tensor is isotropic; (b) for 3]2=I; the tensor is uniaxial; and
(c) for 33<13 the tensor is biaxial with maximal biaxiality
being obtained for I3=0. The sign of I3 decides about
whether the tensor is prolate (plus sign) or oblate (minus
sign). Respectively, w=1 (w=-1) and |w| <1 refers to rod-
like (disklike) and biaxial molecules. By construction the
MR model is SU(3) invariant with degrees of freedom run-
ning over the group manifold and its free energy is given in
an analytical form as derived by Itzykson and Zuber [20].
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FIG. 1. Comparison of the MR phase diagram [8] (continuous
lines) with one calculated for the Luckhurst et al. dispersion model
[21,22] (dashed lines); —1=w=6 Tr(R?)=[(1-6x2)/(1+2x%)3?]

=1.

From physical point of view the model matches the stan-
dard Landau-de Gennes phase diagram for biaxial nematics
[18], known to characterize systems with purely dispersion-
type interactions. It also reproduces the mean-field results for
the dispersion model of Luckhurst er al. [21,22], Fig. 1,
given that we take the pair interactions of the form
V=—¢ Tr(ﬁ R’ ), where R denotes the normalized quadru-
pole tensor (TrR2?=1) defined through the relation
V1+26°R=£(3202-1) £ k(X @X-§®F); « is the ratio of
biaxial-to-uniaxial polarizability of the molecule. The rela-
tive error for the Ny -Np boundary calculated for both models
does not exceed 2% and is even smaller for the nematic order
parameter (see Fig. 4 in [8]). Note however the usefulness of
the SU(3) symmetry. It avoids calculation of integrals over
Euler angles inherent to the dispersion model, which, in turn,
allows for comprehensive studies of flexible quadrupoles.

A generalization of the MR model to systems with vari-
able anisotropy of the molecular shape (dispersion forces) is
straightforward. We assume that w;; and u,, are annealed
degrees of freedom weighted with the probability
P(pi 1o tap Moty finn) =T Py, ). The  mean-
field partition function, Z=Z’,V, and the dimensionless free
energy are then given by

7, = e—Tr(gg)/MQ’ (7)
_ 2 3
0= < f dSe™ S Zt%g - Iz(ﬂ)) 5( Tr(zs )_ I3(M)> >
8)
F=-NtInZ, ©)

where t=kpT/J is the dimensionless temperature and where
Co=L¢)P(uy, mo)dpdp,. According to Itzykson and
Zuber [20] the integral over S in (8) can be carried out to
give
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0=-(2 (10)
S AZ\A,[C
where
eV el pY3H1
D =det| e"*2 N2t2 oV3H2 , (11)
eVIH3 Va3 pY3M3
and where
Ay = (x) = x2)(xp = x3) (X3 = x1).. (12)

The eigenvalues Y, of the traceless matrix S/(21), are deter-
mined from the minimum of the free energy (9). In analogy
to (4) and (5) the invariants I,(%) and I5(7y) are used to dis-
tinguish between (a) the isotropic phase [I,(7)=15(y)=0];
(b) the uniaxial nematic phase [315(%)>=1,(%)%]; and (c) the
biaxial nematic phase [31;(%)*<1,(%)?]. In addition, I5(¥) is
positive for the prolate uniaxial phase (N,) and negative for
the oblate uniaxial phase (Ny_).

The annealed averaging (- --) over P(u;, u,), Eq. (8), has
a very simple interpretation in the mean-field theory. Setting
Y,=0 (a=1,2), which is always one of the mean-field solu-
tions, we find that P(u,, u,) matches the density distribution
of the molecular shape anisotropy in the reference (stable or
metastable) disordered phase. We believe therefore that for a
credible choice of P(u;,u,) the model correctly reproduces
generic phase behavior for flexible quadrupoles in the vicin-
ity of the isotropic phase. Clearly, the original MR model is
recovered if P(u;,u,) is given by the Dirac delta distribu-
tion. In what follows we take P to be the Gaussian distribu-
tion. This choice is consistent with the maximum entropy
principle applied in the isotropic phase and the observation
that usually only the first two moments of P can be deter-
mined reasonably well from experiment [3]. Assuming that
in the reference (disordered) phase these moments are given
b)’ </~La>=ma’ <(Ma_ma)2>:0-i7 and <(/~Ll_m1)(lu2_m2)>
=\o0, (@=1,2) we find

~-
Va
Plpas ) = 5 e WL taslig ) (13)
T 0y
where
a A
o oo
o=| ! o (14)
Noa
01073 0'%

with N being the real parameter, a=%(1+\e“'1+4)\2) and —1

SX:%S 1. The distribution P(us3) of us, obeying the con-
straint w;+ uy+u3=0, is also a Gaussian with average {us)
=my=-m;—m, and dispersion o3=07+2\a 0, +0%(|o

(,u3+m,+m2)2) I
V270 203 - 0 gen-

eral, the parameters of the distribution (13) can depend on
temperature, but this possibility, which can be relevant for

—oy| = o3=01+0y), Pus)=5— exp(—
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quantitative understanding of phase diagrams in lyotropic
systems, will not be discussed here.

III. RESULTS

The phase diagrams, obtained from the global minimiza-
tion of the free energy (9) with respect to {y,,a=1,2}, de-
pend on the values of five parameters: m,, m,, o, 0, and A
(or o3) of the Gaussian distribution (13). To make a direct
comparison with the earlier work [8] we use, instead of m,
and m,, the molecular shape parameter w(m) and I,(m), Eqgs.
(4) and (6). A connection between the parametrizations is
given by

my+my=u, (15)

m1m2=u2—12, (16)

where u is a solution of the cubic equation

J—
[

2\3
W = uly + %(12)3%:0. (17)

The three real roots u; <u,=<us of Eq. (17) correspond to
different permutations between axes of the molecule-fixed
frame. In what follows we choose the u, solution to identify
the corresponding m, and m,. Solving Egs. (15) and (16) for
given u, and I, still leaves a freedom to choose the pair
{m;,m,} up to a permutation. We select the solution for
which  m;=m,. Permutation symmetry of Q:
O(myt{ogt, ... )=0{mpy}1op)}, --.), where P is an ar-
bitrary permutation of {1,2,3}, allows us to construct the
remaining diagrams for m; =m, from the ones given.
Numerical calculations are carried out for fixed values of
01, 05, and N\. The phase diagrams are shown in plane with

the molecular shape parameter w(m) and the reduced tem-
(Ir(m)

perature t/t;, with ;= being the isotropic-nematic
transition temperature for w(m)=0. In all cases the numeri-
cal value of I, was fixed to I2=:¢. The diagram for 12=i§2,
o;, and N\, where £ is an arbitrary real number, can be ob-
tained from that for 12=3¢, g;— o;/ & and N, which follows
from invariance of Q, Eq. (8), with respect to ¢ rescaling of
the parameters: Q({m;},{c;},\,1) = Q({ém;}.{éa;}.\,&). In
addition, the invariance of Q, Eq. (8), with respect to change
of {¢, ¥} into {—p, -7} makes the phase diagrams symmetric
with respect to the line w(m)=0.

Numerical minimization of the free energy allows us to
divide all of the diagrams into classes shown in Figs. 2—4.
The corresponding isotropic-nematic transition temperature
t; is plotted in Figs. 5 and 6. At high temperatures, in the
vicinity of isotropic-nematic phase transition, the results can
be understood qualitatively from the expansion of Q, Eq.
(10), about y;=0. Up to sixth order in 7; it reads

0 = 1+ HILYL(9) + 15{I)5(7) + 15(B)(7)?
+ I LIYLDL() + (7056 — 505V L(7)
+ (25 () = e BV L+ (18)

where the averages over u are given by
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FIG. 2. Phase diagrams for o,=0. Diagrams labeled A;, B;, and
C; correspond to o;=0 [8], 0.15, and 0.3, respectively. Subscript i
=1 refers to the isotropic (iso)nematics phase transition lines
whereas subscript i=2 refers to the uniaxial nematic-biaxial nem-
atic (Np) lines.

(L) =Ty + I,
(I3) =I5+ 315,
(I3) = Ly + 61y, + 31y,
(I13) = Lyl3g + 615l 15 + 430102 + 91 14,

(LY=L, + 1815, + %106 + 151,150+ 3115) + %102(130 +21

9
+ 2l0o0h0 = 91p4) = 1810415 — 51502,

(B) =By + 31009y — 415, — 1205510 — I5g) + 271l

+ 1815, (31, + 1), (19)
with
1 3
ly=5 2 meol (h=hyl=Ig).  (20)
a=1
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FIG. 3. Phase diagrams for o;=0,. Diagram labeled A; corre-
sponds to o;=0 [8], while diagrams D; and E; to o;=0.15. Sub-
script i=1 refers to the isotropic (iso)nematics phase transition lines
whereas subscript i=2 refers to the uniaxial nematic-biaxial nem-
atic (Np) lines. For diagrams D; and E; we took A=0.99 and X\
=-0.99, respectively.
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FIG. 4. Phase diagrams for 0y=0.15 and A=0. Diagram B; cor-
responds to 0,=0, while diagrams F;, G;, and H; correspond to
0,=0.15, 0.1, and 0.05, respectively. Subscript i=1 refers to the
isotropic (iso)nematics phase transition lines, whereas subscript i
=2 refers to the uniaxial nematic (Ny+ ,Ny—)-biaxial nematic lines.
The lines for the isotropic-nematic phase transitions occur in the
following order (from left to right): B, G;, F, and H|.

Using Egs. (9) and (18) we find that in the limit of small
{¥;} the bifurcation from isotropic to nematic phase takes
place at tb=%(12). Due to the [y, contribution to (I,)
(In,=0) the bifurcation temperature, f,, is always greater
than the corresponding bifurcation temperature for the mono-
dispersive system with molecules characterized by the aver-
age shape parameters {m;}. Similar result should hold for the
transition temperatures, for they usually follow behavior of
tb.

In the vicinity of the isotropic phase the terms higher than
sixth order in {¥;} can be neglected in the expansion (18).
Out of the six terms that are left one can associate (I;) with
an effective molecular shape anisotropy of the system in the
isotropic phase. The I, term, contributing to (I5) and being
of undetermined sign, effectively changes this anisotropy and
thus has a profound effect on stability of the biaxial phase.
More specifically, as (I,) = I, and (I3) = I3, for Iy and I, of
opposite sign with |I,,| <|I3| the (I5) coefficient can effec-

0.1
i C-
5 L
0.06 -
LA B ]
0.02 PR T S N S T TN S N T T ST [N SN S T T T T S S S W
0 0.1 0.2 0.3

(o

FIG. 5. Isotropic-nematic transition temperature #; for w(m)
=0 as a function of o or 0, collectively denoted o. For continuous
line o=0 with 0,=0, whereas for dashed line =0, 0;=0.15, and
A=0. Points A, B, and C correspond to o;=0, 0.15, and 0.3, respec-
tively. Points F, G, and H correspond to 0,=0.15, 0.1, and 0.05,
respectively.
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FIG. 6. Isotropic-nematic transition temperature ¢; for w(m)
=0 as a function of X for o1=0,. Points D, E, and F correspond to
):=0.99, —-0.99, and 0, respectively.

tively be reduced by the shape fluctuations. If, simulta-
neously, the invariant (I,/3) is also reduced by fluctuations,
which as we checked is easily achieved in the parameter
space, the range of stability of the biaxial phase in
[w(m),#/1;] space gets enhanced as compared to the case
without shape fluctuations. That is, a sufficient condition to
observe a constructive role of shape fluctuations in stabiliz-
ing the biaxial nematic phase is the simultaneous fulfilment
of two inequalities

KI3)| = |L50], (21)

(I13)| = In|I3). (22)

Interestingly, any shape fluctuations about spherically sym-
metric shape (m,=0) stabilize the biaxial nematic phase of
maximal biaxiality ((/53/3)=0), without the intermediate
uniaxial phase.

Now we turn to detailed analysis of the model. We carried
out numerical minimization to determine phase diagrams for
a representative set of model parameters. All distinct classes
of the diagrams identified are shown in Figs. 2-4. In particu-
lar, we found that the class of parameters where the biaxial
nematic phase enhances its stability is much more possible
than the condition (21) may suggest. However, we are unable
to find numerical limitations on the model parameters in a
compact form, except for some limiting cases. But even in
these limiting cases we recover all observed classes of the
phase diagrams. The simplest case occurs when one of the
dispersions, say o, vanishes. This corresponds to the Gauss-
ian distribution for u; and w; (0,=03), and Dirac delta dis-
tribution for u,. Phase diagrams, influenced by this polydis-
persivity, already exhibit quite different topology as
compared to the original MR model. This we illustrated in
Fig. 2, where diagrams B and C correspond to o;=0.15 and
0,=0.3, respectively. Note a considerable enhancement of
stability of the biaxial phase along with splitting of the origi-
nal MR quadruple Landau point into two triple points. The
triple points are connected by the line of the first-order tran-
sition between the isotropic and biaxial phases. Moreover, as
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expected, the transition temperature, f;, of the isotropic-
nematic phase transition increases with increasing value of
g, Flg 5.

A subsequent case to consider is the full Gaussian distri-
bution. We limit ourselves to the symmetric distributions
with o;=0,. Now the phase diagrams exhibit yet another
topology, which is represented by the diagram D in Fig. 3.
Amazingly, there are two triple points and the Landau point
on one diagram, and two lines of the direct first-order phase
transition between the isotropic and biaxial phases for
|w(m)| Z0.8. Stable uniaxial phases form two bubblelike is-
lands. As before, the transition temperature, 7;, between the
isotropic and nematic phases is higher than that of the MR

model and increases with increasing X, Fig. 6. Other possible
diagrams obtained for this case are shown in Fig. 4. In the
diagram F the biaxial phase is practically eliminated being
reduced to a line w(m)=0. It is interesting to follow reduc-
tion of stability of the biaxial phase by comparing diagrams
B, H, G, and F, where changes of o, from zero to oy, for
fixed oy, correspond to successive phase diagrams. Numeri-
cal estimates of the low-temperature part of the phase dia-
grams have been checked to stay consistent with asymptotic
expansion (}—» ®) of the self-consistent equations
{0F103,=0} for {¥;}.

IV. SUMMARY

We have studied the influence of the variable molecular
shape anisotropy on stability of the biaxial nematic phase. To
make the analysis as simple as possible we generalized the
exact mean-field solution obtained by Mulder and Ruijgrok
[8] for biaxial molecules to the case when the quadrupole
tensor is a dynamical variable. We assumed that at equilib-
rium, the molecular shape anisotropy can be approximated
by the (annealed) distribution, P, of the molecular param-
eters {u,}. In the mean-field approximation the natural
choice for P, consistent with the maximum entropy principle
applied in the isotropic phase, is the two-dimensional Gauss-
ian distribution.

The nonzero second moments of the Gaussian distribution
lead to important remodeling of the original MR phase dia-
gram. We observe that polydispersivity changes the range of
the stable biaxial phase and that behavior of the system can
qualitatively differ from its monodispersive counterpart char-
acterized by the average shape parameters {m;}. Generally,
the transition between the isotropic and the nematic phases
occurs at higher temperatures when molecular shape changes
are allowed. The phase diagram is modified, for instance, by
showing the quadruple Landau point being split into two
triple points connected by a line of first-order transitions be-
tween the isotropic and biaxial phases. By comparing dia-
grams B, D, and E we can conclude that strong correlations
between shape fluctuations along the main molecular axes

(|)t | —1), or fluctuations along two of the three molecular
principal axes lead to a particularly large region of stable
biaxial phase. Importantly, fluctuations about isotropic shape
give rise to stable biaxial nematic without intermediate
uniaxial phase, while fluctuations about fixed w(m), diagram
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G, show on the temperature axis two uniaxial phases sepa-
rated by the biaxial nematic.

In some cases the biaxial phase can be destabilized in the
vicinity of the isotropic phase giving only the uniaxial nem-
atic phases and first-order phase transitions between them
(class F, Fig. 4). A similar case has recently been observed
by Bates [23] in his computer simulation of a generic, flex-
ible V-shaped molecules on a lattice. The only difference
between our predictions and that of [23] is that we do not
observe a biaxial nematic phase at low temperatures, shown
in Fig. 5(a) of [23]. A reason for that is our neglecting of
temperature dependence in the isotropic distribution (13) at
low temperatures [24]. Clearly, to be consistent with general
thermodynamics at 7=0 the distribution (13) should ap-
proach Dirac delta function about m,,. In our studies we have
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disregarded any temperature dependence in (13), being pri-
marily interested in the system’s behavior close to the isotro-
pic phase. However, the diagram predicted in [23] can also
be obtained within our model if we replace o, by \to, in
(13). Then the ground state of (9) for w(m) # =1 would al-
ways be the biaxial nematic phase and, consequently, the
phase diagrams of the class F, Fig. 4, would go into generic
diagrams found by Bates.
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