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We study the ground state properties of classical Coulomb charges interacting with a 1/r potential moving
on a plane but confined either by a circular hard-wall boundary or by a harmonic potential. The charge density
in the continuum limit is determined analytically and is nonuniform. Because of the nonuniform density there
are both disclinations and dislocations present and their distribution across the system is calculated and shown
to be in agreement with numerical studies of the ground state �or at least low-energy states� of N charges,
where values of N up to 5000 have been studied. A consequence of these defects is that although the charges
locally form into a triangular lattice structure, the lattice lines acquire a marked curvature. A study is made of
conformal crystals to illuminate the origin of this curvature. The scaling of various terms which contribute to
the overall energy of the system of charges, viz., the continuum electrostatic energy, correlation energy, surface
energy �and so on� as a function of the number of particles N is determined. “Magic number” clusters are those
at special values of N whose energies take them below the energy estimated from the scaling forms and are
identified with charge arrangements of high symmetry.
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I. INTRODUCTION

Classical charges moving on a plane and repelling each
other via a Coulomb 1/r potential have a ground state which
is a triangular lattice �for appropriately chosen periodic
boundary conditions�. This is a two-dimensional �2D� ex-
ample of Wigner crystallization and is known to occur in
diverse areas of physics, such as electrons trapped in surface
states of liquid helium �1�, colloidal suspensions, and quan-
tum dots. In this paper we examine situations when the
charges do not have a uniform density across the system.
This occurs, for example, when the charges are confined by a
circular hard wall or when they are confined by a harmonic
potential.

From a geometrical viewpoint a perfect crystal lattice is a
periodically repeating arrangement of identical structural
cells which fit together without gaps or overlap. The question
we seek to answer for a classical Wigner crystal of nonuni-
form density is: how much of what we mean by “crystal
lattice” still applies to the resulting structure? On the one
hand, one expects the structure of the lattice to be locally
triangular, so that each lattice site has six nearest neighbors,
since this is the optimal energy arrangement for uniform den-
sity. On the other hand, due to the changing density, not all
the symmetries of the triangular space group, such as the
translational and rotational invariances can continue to apply.
We seek to understand how this conflict is resolved. We are
particularly interested in knowing if the resulting structure
can be understood within the framework of elasticity theory,
and if so, what role is played by plastic deformations, such as
dislocations and disclinations. In addition, using a continuum
model we shall attempt to quantify the scaling with N of
various phenomena associated with the structure of the clus-
ter of charges, such as the energy, correlation energy �see
below for its definition�, surface energy, and so on. This will
in turn allow us to develop a link between symmetry and the
energy of the lattice; we expect states with a high degree of
symmetry to have a particularly low energy. Such states are

known in the literature as “magic number” states.
An experimental realization of a system of 2D charges

confined by a hard wall might be electrons trapped in surface
states of liquid 4He �1�. The hard wall potential could be
effected by a circular boundary made from an electrical in-
sulator. A harmonic confining potential also produces a non-
uniform density across the system and has been studied by
Koulakov and Shklovskii �see �2,3��. Their study is relevant
to the properties of quantum dots. It was found that the den-
sity of the charges was greatest at the center, and diminished
upon approaching the edge �whereas with hard-wall confine-
ment, the density rises from the center of the disk towards
the wall because of the repulsion between the charges�. Their
simulations showed that although the charge density was not
uniform, nevertheless, the lattice was locally triangular. They
showed that this is possible because the changing lattice den-
sity is accompanied by plastic deformations.

It is a consequence of topology that both the hard-wall
and the harmonic potential systems must contain an excess
of six positive disclinations or pentagonal regions. Further-
more, the changing density introduces disclinations through-
out the cluster. Disclinations also occur at the edges of the
clusters to allow the lattice to adapt to the imposed circular
structure. In addition to disclinations, the cluster includes
dislocations �a tightly bound five-seven coordinated disclina-
tion pair�. Unlike disclinations the total number of disloca-
tions is not fixed by topology; dislocations are present to
reduce the strain energy in the crystal which is induced by
the circular edge and the disclinations. Dislocations are
present in large numbers near the lattice edge, where they
form a cloud around any disclinations and help reduce the
large elastic stress induced by the latter. However, it was
found by Koulakov and Shklovskii that disclinations and dis-
locations are to be found also in the lattice interior and act as
a mechanism for reducing the strain energy there.

A number of other authors have carried out numerical
simulations in situations where the classical 2D Wigner crys-
tal has a nonuniform density. Bedanov and Peeters �4� con-
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sidered particles interacting via the pure Coulomb potential
and confined either by a hard wall or a parabolic potential.
Simulations on the hard wall problem have also been carried
out by Kong et al. �5�; in addition to the Coulomb interaction
they also consider the dipole and Yukawa potentials. Ying-Ju
Lin and Lin I �6� have studied a number of systems with
different interaction and confining potentials. Our work con-
firms and extends these earlier numerical studies, but also
includes an account of our attempts to understand the nu-
merical results.

The paper is organized as follows. In Sec. II, we present
the systems we study and our numerical approach. In Sec. III
we expand on the work by Koulakov and Shklovskii and
derive the continuum approximation for the cluster of
charges. We can then give an analytical calculation for the
density of charges in the continuum limit, and for the density
of dislocations and disclinations. We give a series expansion
which we believe describes the various contributions to the
ground state energy of the cluster. These results are com-
pared to numerical experiments in Sec. IV. The discussion is
in Sec. V, especially of the striking lattice curvature effect
visible in our studies of large clusters which is compared to
that seen in conformal crystals.

II. NUMERICAL APPROACH

The energy of a cluster of N charges confined to a disk of
radius R, by a hard-wall potential is given by

EH = �
i

N

V�ri� + �
i�j

N
1

�ri − r j�
, �1�

where

V�ri� = �0 for ri � R

� for ri � R .
�

The energy of a cluster of N charges in a parabolic confining
potential is given by

EP = A�
i

N

ri
2 + �

i�j

N
1

�ri − r j�
, �2�

where we set A=1/2.
Finding the global minimum for a function such as EH or

EP is a very difficult task. The number of metastable states
proliferate exponentially with N; consequentially the global
minimum is obscured by a vast number of local minima with
energies close to that of the global minimum. There exist a
number of heuristic methods for such problems. Although
there is no guarantee of finding the global minimum, it is
possible to find states close to it.

We found that for the hard-wall system the standard Me-
tropolis simulated annealing algorithm was more effective
than a conjugate gradient algorithm �7�. For a system with N
charges the simulated annealing algorithm was run with typi-
cally N� �5�106� Monte Carlo steps. The temperature of
the simulation was decreased linearly. The average displace-
ment of the charges at each temperature step was chosen by
an automatic process to give an acceptance probability of

0.5±0.01. Promising states were reheated and annealed re-
peatedly to iron out as many defects as possible. Finally, the
results were put through a conjugate gradient algorithm to
remove any residual strains.

For the harmonic �parabolic� potential case, we found the
conjugate gradient algorithm to be as effective as simulated
annealing. We used the former method for this system as it
ran faster. Results were generated starting from an initial
random configuration, which had a radial density profile
matching the continuum limit density given below in Eq.
�12�.

III. CONTINUUM LIMIT

In the following we develop the continuum model of the
two systems. For the case of parabolic confinement, many of
the important results have already been derived by Koulakov
and Shklovskii �see �2,3��, so where appropriate we shall
simply quote the relevant result. The bulk of the material in
this section is concerned with the system with a hard-wall
confining potential.

In the following, for the system with the hard-wall con-
fining potential, we use a variational approach to derive the
�nonuniform� charge density in the continuum limit. Next we
demonstrate that as a consequence of the nonuniform density
the system interior will contain topological defects, where
the density of these defects depends on the rate of change of
the density. Finally, for the system with a hard-wall confining
potential, a series is developed which includes the contribu-
tions to the energy of the cluster which scale smoothly with
system size.

A. Charge density

For charges confined by a hard-wall potential, the energy
expression in Eq. �1� can be approximated by the integrals
over the disk r�R,

E =
1

2
	 d2r	 d2r

�H�r��H�r��
�r − r��

. �3�

The continuum approximation treats the density �H�r� as a
smooth function rather than the sum of delta functions

�H�r� = �
i=1

N

��r − ri� , �4�

where ri is the position of the ith charge. One then minimizes
the energy of the cluster, with respect to the smooth function
�H�r�, subject to the constraint that the number of particles

N =	 d2r�H�r�� , �5�

is constant. Introducing the Lagrange multiplier � the con-
strained equation is

E =	 �H�r��
1

2
	 d2r

�H�r�
�r − r��

− ��d2r�.

A variation in the energy is given by
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�E = E��H�r� + ��H�r�� − E��H�r�� , �6�

where ��H�r� represents a small change in the charge den-
sity. Keeping only terms up to first order, Eq. �6� gives

�E =	 ��H�r��
	 d2r
�H�r�

�r − r��
− ��d2r�. �7�

To make the functional derivative stationary we require

	 d2r
�H�r�

�r − r��
− � = 0. �8�

To solve this integral equation it is convenient to write the
integral in Eq. �8� in terms of radial and angular variables as
follow:

� = 	
0

R

�H�r�rdr	
0

2	 d


�r2 + r�2 − 2rr� cos 
�1/2

= 	
0

R

dr
4r�H�r�
r + r�

K�2rr�

r + r�
� ,

where K�k� is an elliptical integral of the first kind. This is a
Fredholm integral equation of the first kind which has the
radially symmetric solution �8�

�H�r� =
�

	2

1
R2 − r2

. �9�

To determine the Lagrange multiplier we substitute Eq. �9�
into Eq. �5�, which gives �=N	 /2R, and we finally have

�H�r� =
N

2	R2

1

1 − � r

R
�2

. �10�

This result has already been found by previous authors �see
�9,10��. We have included the derivation here for the sake of
completeness. Incidentally, this result is the density profile
obtained if a hemispherical shell of charge is projected onto
a plane.

It is important to note the physical meaning of the
Lagrange multiplier �; it is the electric potential at any point
inside the disk when the charge is distributed according to
Eq. �10�. This can be seen by referring back to the original
formulation of the problem as given by Eq. �8�.

The number of charges within a distance r from the center
of the disk is given by integrating Eq. �10� over the region
r��r as follows:

NH�r� = N�1 −1 − � r

R
�2� . �11�

The charge density in the continuum limit for a cluster of
charges in a parabolic confining potential is �3�

�P�r� = �o1 − � r

R
�2

, �12�

where

R = �3	N

8A
�1/3

and �o =
4AR

	2 .

The total number of charges within a distance r from the
center of the disk is

NP�r� = N�1 − 
1 − � r

R
�2�3/2� . �13�

B. Density of defects

Volterra dislocations are plastic imperfections characteris-
tic of a deformed solid �11�. For a 2D lattice the only rel-
evant Volterra dislocations are the edge dislocations and the
wedge disclination; these we discuss in turn below.

A dislocation in a perfect lattice can be created by making
a cut in the lattice, translating the cut edges with respect to
each other and inserting �removing� material. This process
can also be viewed as the insertion �removal� of a half plane
of atoms, it is characterized by a discrete Burgers vector B
which measures the amount by which the Burgers circuit
around the dislocation fails to close �12�.

A disclination can be created in a perfect lattice by mak-
ing a cut, rotating the cut edges with respect to each other
�this then defines a disclination axis� and inserting �remov-
ing� a wedge of material. After the wedge is inserted �re-
moved� the whole construction is welded together and al-
lowed to relax. The closure failure of a Burgers circuit
around a disclination is given by

B = � � r , �14�

where r is the distance from the disclination axis �, and ���
is the wedge angle �13�. In a real lattice the wedge angle is
quantized by the lattice symmetry, thus in a triangular lattice
matter is inserted into the lattice if ���= +2	 /6 and removed
if ���=−2	 /6, which corresponds to a heptagon or a penta-
gon in the crystal lattice, respectively.

It is important to know the relationship between disloca-
tions and disclinations. A dislocation is a tightly bound pair
of disclinations of the opposite sign. A disclination can be
decomposed into a series of dislocations, each of which have
the same sign. For an illustration of both these points see
�13�.

Disclinations can be present in the ground state of a sys-
tem for two reasons; either because they are demanded by
topology �a consequence of Euler’s theorem�, or because the
lattice density is nonuniform.

The first point has been covered in depth elsewhere �3�, it
will suffice to say that a Delaunay triangulation of a lattice
will produce a unique planar graph. Euler’s theorem states
that for any such graph in flat space the following relation-
ship holds between the number of vertices v, edges e and
faces f:

v + f − e = 1.

As a consequence of applying Euler’s theorem to a triangular
lattice we can assign a topological charge to each lattice site
�or vertex�. The sign and magnitude of the charge depends on
by how much the coordination number �i.e., the number of
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nearest neighbors the site has� differs from 6. For example, a
pentagon has a topological charge +1, while a square has a
charge of +2. Similarly a heptagon has a topological charge
of −1 while an octagon has −2. Obviously a hexagon is
topologically neutral. The total topological charge for any
cluster is always conserved and must always be equal to +6.

We now show that a change in the density of the lattice
leads to a closure failure of the Burgers circuit. This will
allow us to calculate the Burgers vector density, from which
the density of dislocations and disclinations can be deter-
mined.

Consider a lattice with smoothly varying density and let
us suppose that the increase in density depends only on the
radial distance r. Drawing a square of dimensions �r around
such a region of lattice �see Fig. 1�, we see that the number
of lattice rows crossing the side pq is given by

L�r� =
�r

a�r�
,

and the number crossing the side sr is given by

L�r + �r� =
�r

a�r + �r�
,

where a�r�, the lattice spacing, is a function of density and in
a triangular lattice is given by

a�r� = 2

��r�3
. �15�

In constructing a Burgers circuit we take the same number of
steps in the horizontal and vertical directions; however, due
to the change in the lattice spacing there will be a closure
failure on the side sr. Assuming the closure failure is due to
an excess of dislocations of the same sign �which are the
origin of the extra half planes�, then the total Burgers vector,
due to all the dislocations enclosed, is given by

B��r� = �r − L�r�a�r + �r� , �16�

where L�r� is the number of steps taken in the Burgers circuit
on the side pq �note that the direction of the Burgers vector is
perpendicular to the direction in which the density is increas-
ing�. From Eq. �16� we have

B��r� = �r − L�r�a�r + dr� = a�r + �r�
 �r

a�r + �r�
− L�r��

= �ra�r + �r��a−1�r + �r� − a−1�r�� .

Taylor expansion to first order yields

B��r� = �ra�r�
�r
da−1�r�

dr
� .

To get the Burgers vector density we divide through by the
area of the square and take the limit �r→0, giving

b��r� = lim
�r→0

B��r�
��r�2 = a�r�

da−1�r�
dr

=
1

2

d

dr
ln ��r� . �17�

�Generalizing Eq. �17�, the Burgers vector density in a 2D
plane is given by the vector field �3�

b�r� = a�r�ẑ � �a−1�r� , �18�

where ẑ is the unit vector perpendicular to the surface.�
The density of the Burgers vector is then

b��r� = ±
r

2R2

1

1 − � r

R
�2 , �19�

where b��r� is positive upon substituting Eq. �10� into Eq.
�17� and negative upon substituting Eq. �12� into Eq. �17�.
This then defines a Burgers vector density field present
throughout the lattice. The total Burgers vector within a ra-
dius r can be found by integrating Eq. �19� over the area of
the disk.

We have assumed that the changing lattice density is due
to the insertion of extra half planes into the lattice. Thus to
get the density of dislocations, we divide the Burgers vector
density by the distance between crystalline rows, h=a3/2,
which gives for the hard wall case

∆

p

q r

s

φ

a(r)
a(r+ ∆r)

∆r

r

r

B(r)| |

FIG. 1. Consider a region of crystal in which the lattice density
is increasing in the r direction. It can be seen that by drawing a
square Burgers circuit �of dimension �r� around the region that
there are more lattice lines crossing the side sr than crossing the
side pq �while the number of lattice lines crossing the side ps is
equal to the number crossing the side qr�. The difference in the
number of lattice lines leads to a closure failure of the Burgers
circuit. This closure failure implies that the square contains an ex-
cess of dislocations of the same sign. The sum of the length of their
individual Burgers vector is equal to the length of the total Burgers
vector. Note that the presence of a dislocation is indicated by a �.
The horizontal bar of the � indicates the side on which the extra half
plane of atoms is inserted into the lattice, while the vertical bar
indicates the point at which the extra half plane of atoms terminates.
Thus the Burgers vector is parallel to the vertical bar of the �.
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�d
H�r� =

b��r�
h

= N

4	3

r

R3

1

�1 −
r2

R2�5/4 , �20�

and there is a similar result for the parabolic case �3�. Hence,
the number of dislocations within a radius r can be found by
integrating Eq. �20� over the area r��r.

In addition to dislocations we expect disclinations in the
lattice. These are present if the Burgers vector density is
rotational. The density of disclination charge s̃�r� is given by
the ẑ component of the curl of b�r� which reduces in our
situation to

s̃�r� =
1

r

�

�r
�rb�� =

1

2
�2 ln ��r� = R�r� , �21�

where R�r� is the scalar curvature and is equal to the density
of disclination charge. This quantity is also known in the
theory of plasticity as the incompatibility �14�. This relation-
ship can be generalized to include free disclinations as fol-
lows:

s̃�r� = s�r� − ik�kbi�r� = R�r� . �22�

In analogy to a dielectric the s�r� term is the charge density
of the free disclinations, induced say as a consequence of the
topology of the space in which the lattice is embedded, and
−ik�kbi�r� is the polarization contribution from dislocations
�11�. It turns out that for the hard-wall case the six disclina-
tions induced by the disk topology are always at the edge of
the system. For the harmonic potential they are close to the
edge in small systems, but as N increases, the six topologi-
cally induced disclinations migrate towards the interior. Thus
for values of r away from the hard wall, the density of dis-
clination charge for the hard-wall system, can be found by
substituting Eq. �10� into Eq. �21�,

s̃�r� =
1

2
�2 ln ��r� =

1

R2

1

�1 −
r2

R2�2 . �23�

Integrating Eq. �23� over the area r��r gives the total
disclination charge within a radius r,

��r� = 2		
0

r

r�s̃�r��dr� �24�

=� r

R
�2 	

1 − � r

R
�2 . �25�

If the lattice only contains disclinations with charge 	
3 , then

the number of disclinations within a given radius is

Ndisk�r� =
��r�
	/3

= � r

R
�2 3

1 − � r

R
�2 , �26�

where for the hard-wall confined system we expect the lattice
interior to contain an excess of seven coordinated disclina-

tions. For the harmonically confined system the number of
five coordinated disclinations induced by the changing den-
sity can be similarly calculated and equals Ndisk�r�. The fact
that both the density of the Burgers vector Eq. �19� and the
disclination charge density due to the changing density are
equal but opposite for the two systems suggests that they are
“mirror images” of each other. It makes sense then to com-
pare and contrast the properties of these two systems.

C. Smooth part of the energy

In the following we examine the various terms which con-
tribute to the overall energy of the system of charges in a
hard-wall confining potential. A similar study has already
been made for the system with parabolic confinement �2�.
We believe that the energy will have the form, as N becomes
large, of a series in decreasing powers of N1/2 as follows:

Esmooth = �1
N2

R
+ �2

N3/2

R
+ �3

N

R
+ �4

N1/2

R
+ �5. �27�

The first coefficient �1=	 /4; this is calculated next. We have
obtained from our numerical estimates of the ground state
energy of systems with varying values of N the following
estimates of the other coefficients: �2=−1.562 033, �3
=0.975 852, �4=−0.008 196, and �5=−0.307 608.

The first term is the “electrostatic energy.” It can be cal-
culated by approximating the density by its continuum limit
form to give

EES =
1

2
	 ��r�d2r	 ��r��d2r�

1

�r − r��
.

Upon recognizing the second integral as the electrostatic po-
tential �, �see Eq. �8��, this can be written as

EES = �
1

2
	 ��r��d2r� =

	

4

N2

R
.

The next largest term is the “correlation energy” which is
the first correction to the continuum limit approximation be-
cause the charges are discrete. Koulakov and Shklovskii �2�
suggested that it could be estimated by using the local den-
sity approximation �LDA�, which states that for a large
enough cluster, locally the density can be assumed to be
constant, so the correlation energy of a lattice with nonuni-
form density should be the same as the first correction to the
electrostatic energy of an infinite system of uniform density
as follows:

ECorr = −
1

2
	

0

R

2	rdr��r����r� = − � 1

2	

N3/2

R
,

where the value of � depends on the geometric properties of
the lattice. For a triangular lattice �=��=3.921 034 and for
a square lattice �=��=3.898 598 �15�. Visual inspection of
the ground states of the system �see Sec. IV A 5� suggest that
locally the lattice is triangular, thus in calculating the corre-
lation energy we expect that �=��. If this expectation were
correct it would predict that �2=−1.564 293 9, which is quite
close to our numerical estimate −1.562 033. We discuss in
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the following sections some possible explanations for this
small discrepancy and also how the remaining � coefficients
were obtained.

IV. NUMERICAL RESULTS

In this section we present the results of our numerical
simulations and compare them with the continuum model
developed in Sec. III. Simulated annealing experiments were
carried out for the system with a hard-wall boundary, as de-
scribed in Sec. II, for systems ranging in size from N=2 to
N=100. Our results either agreed with or gave a slightly
lower energy than those published by Kong et al. �5�. Simu-
lated annealing experiments were also carried out for larger
systems, N=150, 200, 250, 500, 1000, 2000, and 5000. To
ensure good results a range of annealing schedules were
tried. Upon finding the optimal schedule, minimization was
repeated as many times as possible, thus not only improving
the chances of finding a good result but also generating a
collection of states which could be used for further analysis.

For the system with parabolic confinement we restrict our
efforts to a large system, i.e., N=1000, 2000, and 5000. Nu-
merical experiments have already been carried out for small
systems by Koulakov and Shklovskii �see �2,3��. Starting
with a random initial configuration of charges, a conjugate
gradient algorithm was used to minimize the energy of the
system. In each case this process was repeated 1000 times
and the cluster with the lowest energy was identified.

For each system the best result was triangulated; this was
done by projecting the charges onto a paraboloid and using
the Delaunay triangulation package Qhull �16�. The results
were then displayed using the graphics package GEOMVIEW

�17�. An additional routine was used to highlight defects in
the clusters; points with five nearest neighbors were colored
red, while those with seven and eight nearest neighbors were
colored green and blue, respectively.

A. Hard-wall system

1. Distribution of charges

In the continuum limit the charge is distributed according
to Eq. �11�; this quantity can be compared with its actual
value in a finite sized cluster which we call Nfin�r�, where for
a given radius r, Nfin�r� is the number of charges enclosed
within that radius. We choose to compare the integrated
quantity as opposed to the charge density itself as this yields
a less noisy result. Figure 2 gives the fraction of the total
charge enclosed as a function of radius, i.e., Nfin�r� /N, for
the three largest systems simulated �in each case the result
with the lowest energy is used�. Also shown for comparison
is the fraction of charge enclosed in the continuum limit, i.e.,
N�r� /N. By scaling the charge enclosed in this manner, dif-
ferent sized systems can be easily compared. The curves in
Fig. 2 suggest that with increasing system size the charge
distribution approaches the continuum result.

However, there is a systematic difference between the
charge distribution in the continuum limit and that for finite
sized systems which is not just a local effect but varies on the
scale of the radius R of the system. Its presence is revealed

on plotting �N�r�=Nfin�r�−N�r� for the three largest sys-
tems. There is a correction to the continuum expression for
N�r�, which is of order N. �The continuum expression for
N�r� is of order N�. �N�r� /N is plotted in Fig. 3 for the
three largest system sizes, which we studied.

FIG. 2. �Color online� Histograms of the fraction of the total
charge of the system within a given radius r. Results for clusters
containing 1000, 2000, and 5000 charges are colored red, green and
blue, respectively. The continuum limit result is given by the black
dotted line. The inset is a magnification of the last 20% of the
graph. Note that the steplike behavior towards the edge indicates
that the charge in this region is concentrated into a series of con-
centric shells; the charge arrangements in this area are very different
from those in the cluster interior.

FIG. 3. �Color online� Plot of �N for the three largest systems,
scaled by N versus distance r from the center. �N is the difference
between the number of charges within a given radius for finite
systems Nfin�r� and the continuum result N�r� �which is given by
Eq. �11��. The black dashed line is an attempt to fit the data by
replacing N by N−CN1/2 in Eq. �11� with C�1.6.
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As Fig. 3 shows there is a deficiency of charge in the
system interior, with the exception of the central point at r
=0 and the outer edge of the system at r=R. In the first case
we have �N�r=0�=0 �from Eq. �11�� and we also have
Nfin�r=0�=0 �since Nfin�r� represents the total amount of
charge found within a disk of radius r, as r tends to zero we
find the total amount of charge enclosed also vanishes—it is
highly unlikely that a charge is located at exactly the center
of the system�. In the second case, at the edge of the system
we have �N�r=R�=0 which means that the missing charge
is to be found here in the form of extra charges, Ns in num-
ber, at the surface �note the large positive gradient in the
curves of �N�r� just before the region r=R which indicates
the presence of a large concentration of charges�. The lead-
ing term for the density is the result in the continuum limit
and is of order N /R2 as in Eq. �10�; Fig. 3 shows that there
are corrections to it of order N1/2 /R2. We have been unable to
obtain any analytic understanding of this correction term, but
we have noticed that it can be quite well approximated by
replacing N in Eq. �10� by N−Ns where Ns=CN1/2 and C
�1.6. We shall estimate the number of charges in the outer
shell of the system, i.e., on the hard wall, and show that in
fact the “excess” surface charge Ns, �which is of order N1/2�
is only a small contribution to it at large N as the number of
charges in the outer shell increases as N2/3.

The number of charges we would expect to find at the
edge of the system can be estimated by the following argu-
ment: let the lattice spacing at the edge of the crystal be
given by ae, then the number of charges contained within a
disk centered on the origin of radius R−ae is

N�R − ae� = N�1 − 1 − �1 − X�2� ,

where X=ae /R. Expanding the �1−X�2 term to first order
gives

N�R − ae� � N�1 − 2X� .

Therefore the number of charges within a distance ae from
the edge is

Ne = N − N�R − ae� � N2ae

R
.

Imposing the condition that Ne must be equal to the number
of charges on the perimeter Np=2	R /ae, yields the ratio

R

ae
� � N

	2
�2/3

, �28�

hence the number of charges on the edge, in the continuum
limit, scales with N2/3. To compare with the results of our
numerical simulations we therefore plotted Nfin�R�, the total
number of charges in the outermost shell of each cluster,
against N2/3. As shown in Fig. 4 there is good agreement
between these estimates and the results of our numerical
simulations.

2. Local density approximation

In Sec. III C we calculated the correlation energy of the
lattice using the local density approximation �LDA� which is

based on the idea that locally the lattice appears to be trian-
gular. Physically this seems to be a very reasonable approxi-
mation, but we observed that the numerical data was not in
perfect agreement with this approximation. In this section we
shall investigate the matter further.

The correlation energy of a given charge will be defined
as the difference in energy between the interaction of a
charge with all the other charges in the system after the sub-
traction of the interaction of the charge with the continuum
approximation for the other charges �15� as follows:

�E�ri� = 
�
j�i

N
1

�ri − r j�
−	 �H�r�d2r

�ri − r� �
= 
�

j�i

N
1

�ri − r j�
−

	N

2R � . �29�

In the LDA, this quantity would be expected to equal
−����ri�. In Fig. 5 we have plotted �E�ri� /��ri� against
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FIG. 4. �Color online� A plot of Nfin�R� �shown by the points�
against N2/3 for systems in the range N=150–5000. To find Nfin�R�
we simply counted the number of charges in the outermost shell in
each system. The red line is a fit of the form y=mx+c.

FIG. 5. �Color online� Test of the LDA approximation. If the
approximation were perfect �E�ri� /��ri� would be independent of
ri /R and equal to the numerical value −3.921 034.
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ri /R to test this expectation. The agreement is nonexistent.
The origin of this discrepancy is not hard to find. It arises

because �E�ri� is a quantity of size N1/2 /R. ��ri� is of this
magnitude, but so are also the contribution of the deviations
of the density from �H�r� which are of order N1/2 /R2. Alas,
we do not have a calculation of these deviations. However,
we have found that our attempts to model them by changing
N in the expression for �H�r� to N−C�N and allowing for
the compensating surface charge needed for charge neutrality
does at least reduce the discrepancy in Fig. 5. So it could be
that with proper allowance for these corrections to the den-
sity, the LDA might still be valid.

3. Distribution of disclinations

The number of excess disclinations located within a given
radius is predicted by Eq. �26�. To compare this with our
simulations we use the following method: for a given radius,
we count the number of positive and negative disclinations
enclosed, where we expect from Eq. �26� that in the interior
of the lattice the number of negative disclinations will al-
ways be greater than the number of positive disclinations.
We adopt the convention that a seven coordinated point
counts as one negative disclination, an eight coordinated
point as two negative disclinations and a five coordinated
point counts as one positive disclination. In Fig. 6 we plot
the number of excess negative disclinations within a given
radius and compare with Eq. �26�. It is evident that there is
convergence with increasing system size. For every negative

disclination in the lattice interior there is a compensating
positive disclination on the lattice edge. In addition, the lat-
tice edge also contains six extra positive disclinations due to
Euler’s theorem.

4. Cluster energies

In this section we compare the scaling of the energy as
given in Sec. III C with the energies found by simulated
annealing. Having identified the electrostatic and correlation
energies as the first two leading order contributions to the
energy of the cluster, which scale as N2 and N1.5 respectively,
we make the ansatz that the remaining terms in the series
descend in powers of N, thus

Esmooth =
	

4

N2

R
+ �� − �� 1

2	
�N3/2

R
+ �3

N

R
+ �4

N1/2

R
+ �5.

�30�

The second term is divided into two parts: �� is the corre-
lation energy if the lattice is strictly triangular everywhere
and the LDA applies; the term containing the parameter � is
a correction to this assumption.

We now compare the scaling of the energy given by Eq.
�30� with the energies found by simulated annealing. Since
the electrostatic and correlation or surface terms dominate
for large systems, it is natural to ask what influence the re-
maining terms may have, so we plot

�E

N3/2 =
1

N3/2�E −
	

4

N2

R
+ �� 1

2	

N3/2

R
� �31�

against N−1/2 �see Fig. 7�. From the intercept we find �
=0.002 232 95 and from the gradient �3=0.975 852. Let us
replace the coefficients multiplying the N1.5 /R term in Eq.
�30� with

�2 = 1

2	
�o = � − 1

2	
��, �32�

where �o=3.915 436 is the “observed” value of �. It differs
from �� by approximately 0.15%. This might be due to a

FIG. 6. �Color online� Histogram giving the total number of
disclinations within a given radius. Clusters containing 1000, 2000,
and 5000 charges are colored red, green, and blue, respectively. The
analytical curve is given by the black dashed line. The inset is a
magnification giving the last 20% of the graph showing there is
good agreement right up to the edge.
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FIG. 7. �Color online� �E
N3/2 against N−1/2 plotted for N=150 to

N=5000 �shown by the points�. The red line is a fit of the form y
=0.975 852x+0.002 232 95.
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failure of the LDA approximation, but it might also be due to
the fact that we are almost certainly not obtaining the ground
states for each value of N, which has uncertain consequences
for the accurate determination of the coefficient �2.

There is no appreciable bending of the curve shown in
Fig. 7, which suggests that the remaining terms in Eq. �30�
are insignificant in the large N limit. �The coefficients �3, �4,
and �5 were actually determined by using a curve fitting

package in the range N=2–100.� Furthermore, as all the data
points lie almost perfectly on a straight line, we conclude
that the numerical results are fairly reliable. In fact for large
systems, this plot often enabled us to determine which clus-
ters generated by the simulated annealing algorithm required
further annealing. These were the clusters for which the data
points were slightly above the fit plotted in Fig. 7.

Having determined the form of the “smooth” part of the
energy we can determine the fluctuating part of the energy,
which is defined as �E=E−Esmooth. The results are shown in
Fig. 8. Some clusters have a particularly low value of �E
such as N=34, 49, and 62. These clusters are known as
“magic number states” and possess a high degree of geo-
metrical symmetry. To illustrate this point Fig. 9 shows a
Delaunay triangulation of the system with 62 and 69 charges,
which correspond to the lowest and highest points, respec-
tively, in Fig. 8.

5. Small, medium, and large clusters

Small clusters, those which contain less than 100 par-
ticles, are dominated by the circular hard-wall boundary. In
particular, clusters containing less than 50 charges show no
hint of hexagonal order. Instead the charges are arranged in
concentric shells, where many of the charges have seven or
eight nearest neighbors. We identify this type of ordering as
“shell-like;” it is present at the edge of all the systems. For
systems containing more than 50 particles, a region of the
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FIG. 8. A plot showing the difference between the energy for
small clusters found by simulations and the smooth part of the
energy.

FIG. 9. �Color online� Clusters
with a hard-wall confining poten-
tial. Top left: 62 charges; top
right: 69 charges; bottom left: 500
charges; bottom right: 1000
charges. The cluster with N=62
has the lowest measured value of
�E, while the cluster with N=69
has a particularly high value. This
is because the N=62 cluster pos-
sesses a high degree of circular
symmetry, which is commensurate
with the hard-wall boundary. The
lack of circular symmetry in the
N=69 cluster is evident from the
off-center negative disclination. In
addition the boundary imposes a
shell-like order towards the edge
of the cluster, which is indicated
by the presence of a large number
of seven and eight coordinated
disclinations. For larger systems
the shell-like order is confined to
within a few lattice layers of the
edge. The lattice interior is com-
posed of a triangular lattice with
some charged grain boundaries.
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cluster free from the influence of the hard-wall boundary
begins to emerge; this region looks like a triangular lattice.
At this point there is a competition between shell-like order
and the emerging hexagonal order. The clusters with the low-
est energy are the ones which can satisfy both simulta-
neously. Both N=62 and N=69 are clusters which contain a
region where most of the charges have six nearest neighbors.
The charges near the center in both clusters can be consid-
ered to be part of a disclination as the central charge has a
different coordination number compared to its neighbors. Of
all the clusters, N=62 has the lowest value of �E while N
=69 has the highest. The difference is that for N=69 the
disclination is off center which breaks circular symmetry
while in the case of N=62, the disclination is perfectly in the
center of the cluster and is surrounded by a ring of charges
which have six nearest neighbors.

For the medium sized clusters, i.e., 100�N�1000, the
influence of the hard-wall boundary on the cluster is con-
tained within a narrow annular region at the edge. This again
is the shell-like region and contains a large number of seven
and eight coordinated disclinations, which have the effect of
destroying the hexagonal order. On the other hand, the inter-
nal region of the lattice is comprised of a relatively undis-
torted triangular lattice. The lattice interior contains an ex-
cess of negative disclinations. However, for every excess
negative disclination in the interior there is a compensating
positive one on the lattice edge. Using the rule that a charge
with seven or eight nearest neighbors is a disclination with
topological charge −1 and −2, respectively, while a charge
with five nearest neighbors has charge +1, the total topologi-
cal charge of all the clusters was found to be +6. The six
positive disclinations due to Euler’s theorem are also located
on the lattice edge, hence Euler’s theorem is satisfied.

Also with increasing system size isolated disclinations be-
come less common and are replaced by small topologically
charged grain boundaries; these are chains of alternating
positive and negative disclinations, which contain in total
one excess negative disclination. As shown in Fig. 15, the
alternating Burgers vectors of the charged grain boundary
cancel out and the overall arrangement constitutes a discli-
nation.

Large clusters are those which contain more than 1000
charges �see Fig. 10�. In this regime, the interior contains
large areas of lattice separated by charged grain boundaries,
which are numerous and long. As will be shown in Sec. V A,
excess disclinations of one sign in the lattice interior gener-
ate lattice curvature, the effect of which is to bend the lattice
lines into a series of arches. This can be seen with great
clarity in the N=5000 system. For this system, the bending is
sufficiently strong to make the arched structure incompatible
with the ordinary triangular lattice. It would seem that the
grain boundaries arrange themselves to screen off the two
regions.

B. Harmonically confined system

In this section we consider a 2D cluster of charges con-
fined by a harmonic confining potential. This system has
been studied in considerable detail by Koulakov and Shk-

lovskii �see �3,2��, and here we expand on their work.
As for the system with the hard-wall confining potential,

the actual density differs from the continuum limit result by
subdominant contributions which are difficult to quantify.
Plotting �N=Nfin�r�−NP�r� for the three largest systems
shows that there is a deficiency of charge in the system in-
terior which is once again compensated for by a shell of
excess charge at the edge of the system edge �note for the
same reasons that were given for the system with a hard-wall
boundary we also have in this case that �N�r=0�=0�. A
good collapse of the data for different values of N was found
as in when we plotted

�N

N0.6 =
Nfin�r� − NP�r�

N0.6 , �33�

but the origin of this correction with the power 0.6 is a mys-
tery to us �see Fig. 11�.

In the continuum limit, the density of excess disclinations
and the density of the Burgers vector for this and the hard-
wall systems are the same except for the sign. It follows that
the number of excess disclinations within a given radius is
the same for the two systems. A comparison with our nu-
merical simulations is given in Fig. 12.

Koulakov and Shklovskii demonstrated that provided the
cluster is small �N�150� then there exist certain magic num-
ber states which contain only six five-coordinated disclina-
tions demanded by Euler’s theorem. These disclinations are
not right on the lattice edge but are close to it. Beyond this
limit �N�150� the disclinations are always accompanied by
a screening cloud of dislocations. It was further shown that
provided the cluster is not too large �N�700� then the only
defects in the lattice are the disclinations and their screening
clouds, which together form six small separate topologically
charged grain boundaries. In fact, providing that N�700, the

FIG. 10. �Color online� 5000 charges in a hard-wall confining
potential. The remarkable feature of this system is the archlike
structure towards the edge. This curvature is due to an excess of
negative disclinations in the lattice interior. Most of the charged
grain boundaries appear to be located in the region between the
relatively undistorted triangular lattice and the arches. We believe
that the grain boundaries act to screen off the two incommensurate
regions.
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lattice can be divided into an inner region and an outer re-
gion, where the boundary between the two is given by the
radius at which the charged grain boundaries are located. The
inner region is a largely undeformed triangular lattice while
in the outer region the lattice lines are curved.

Beyond this limit �N�700� dislocations not associated
with screening begin to appear. These dislocations are
present in order to ensure that Eq. �23� is satisfied; conse-
quentially, the lattice cannot be divided so neatly into two
separate regions �3�.

The numerical work of Koulakov and Shklovskii only
dealt with systems containing less than 700 charges. Our
work is concerned with the behavior of the system as the
cluster grows beyond this limit. An examination of the clus-
ter containing 1000 charges �see Fig. 13�, shows that in ad-
dition to the topologically charged grain boundaries the sys-
tem also contains a few isolated dislocations. These

dislocations are orientated so that the five coordinated discli-
nation points towards the center of the lattice while the
seven-coordinated disclination points radially outwards.
With increasing system size the general trend is that the
screening cloud around the disclinations continue to grow in
length. In addition the isolated dislocations become increas-
ingly numerous �see the cluster containing 2000 charges in
Fig. 13�. Eventually, in addition to isolated dislocations we
can observe uncharged grain boundaries �i.e., extended
chains consisting of alternating disclinations but which have
no overall topological charge�. See the system containing
5000 charges �Fig. 14�.

Even though the continuum disclination charge density is
the same for the hard-wall system and the system with har-
monic confinements, nevertheless there is a remarkable dif-
ference between the two in their approach to the continuum

FIG. 11. �Color online� Plot of �N for the three largest systems
with a harmonic confining potential, scaled by N0.6, vs distance r
from the center.

FIG. 12. �Color online� A plot of the number of excess positive
disclinations within a distance r /R where we use the rule that a
five-coordinated and a seven-coordinated disclination count as a
single positive or negative disclinations, respectively. Results for
clusters containing 1000, 2000, and 5000 clusters are colored red,
green, and blue, respectively. The analytical curve is given by the
black dashed line. Note that at the edge of the cluster the number of
excess positive disclinations falls to +6. Unlike the number of ex-
cess disclination in the hard-wall system, the number in this system
lags behind the continuum value significantly.

FIG. 13. �Color online� Clusters with a harmonic confining po-
tential. Top: 1000 charges: This cluster contains both charged grain
boundaries and also some isolated dislocations. These dislocations
are not involved in screening, but serve to relax the strain energy.
Bottom: 2000 charges: With increasing system size, the charged
grain boundaries continue to grow in length. Also the isolated dis-
locations become more numerous, especially near the edge of the
system. Note these dislocations are oriented with the five-
coordinated disclination pointing towards the center of the system.
There is a rapid rise in the number of positive disclinations just
before the lattice edge which are canceled by the negative disclina-
tions close to the edge.
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limit with increasing system size. Compared to the hard-wall
system, the number of disclinations in this system is far
fewer. From Fig. 12 we can see that the number of disclina-
tion within a given radius lags behind the continuum value,
while the opposite is true in the hard-wall system. For in-
stance, for 5000 charges in a harmonic trap the number of
excess disclinations at the edge is about 25, while in the hard
wall case this is 400. Even though the curvature of lattice
lines in the continuum limit �which is given by the density of
Burgers vector� is the same for the two systems, the curva-
ture of the lattice lines appears to be far less pronounced for
the system with harmonic confinement. This may be due to
the lack of disclinations, since the curvature depends on the
number of disclinations enclosed within a radius �see Eq.
�38��.

Unlike the hard-wall system, which requires an excess of
seven-coordinated disclinations in the interior, the harmonic
system already contains six free five-coordinated disclina-
tions due to Euler’s theorem. In the case of the hard-wall
system these topologically induced disclinations are pushed
to the edge of the system while in the harmonic case these
disclinations sink into the interior and help in accommodat-
ing the nonuniform density. In contrast to the hard-wall sys-
tem, the density of free disclinations, given by s�r� in Eq.
�22�, cannot be ignored. From Fig. 12 it can be seen that up
to r=0.8R the total disclination charge does not exceed +6.
Thus up to this point the mechanism by which the lattice
adapts to the decreasing density towards the edge of the sys-
tem depends on the arrangement of these free disclinations.
In order for the total disclination charge to match that given
by Eq. �23�, dislocations arise to screen the disclinations.
These screening dislocations have the effect of smearing out
the disclination charge. To explain what we mean by this,
consider the following qualitative argument. To define a dis-
clination we must be able to draw a Burgers circuit around it.
The smallest Burgers circuit around a single disclination has
a radius equal to the local lattice spacing. This then defines

the minimum size of the defect. By screening the disclination
to form a charged grain boundary, of the type shown in Fig.
15, the radius of the Burgers circuit needed to enclose the
object becomes larger, hence the size of the defect is in-
creased. However, the total disclination charge enclosed is
still the same. Thus the total density of disclination charge,
i.e., s̃�r�, is reduced. Or to put it another way, unlike an
isolated disclination, which is a single point in the lattice, the
charged grain boundary is an extended object. However, the
total charge of the grain boundary is still ±1. Thus we can
consider this charge to be smeared out over its length.

Beyond r=0.8R there is a sharp increase in the number of
dislocations, which for the largest systems condense into un-
charged grain boundaries. These dislocations are oriented
such that the five-coordinated disclination points inwards
while the seven-coordinated disclination is on the lattice
edge. Thus towards the edge of the lattice there is a sudden
jump in the number of excess positive disclinations followed
by an equally sudden fall. Perhaps as the number of charges
in the system is increased further, these dislocations might
unbind so that the seven-coordinated disclinations are pushed
to the lattice edge while the five-coordinated disclinations
remain in the interior.

V. DISCUSSION

A. Lattice curvature

The most remarkable feature of the numerical simulations
is the bending of lattice lines towards the edge of the cluster,
which is particularly strong in the larger systems—see, for
example, Fig. 10. This bending is due the fact that the lattice
contains an excess of dislocations of one sign. The original
argument explaining this phenomena was given by Nye �18�,
who showed that the curvature of the lattice is equal to the
Burgers vector density. However, Nye’s exposition assumes
that the lattice spacing remains constant everywhere. Blindly

FIG. 14. �Color online� 5000 charges in a harmonic confining
potential. For very large systems, the additional dislocations re-
quired to accommodate the changing density form uncharged grain
boundaries �i.e., grain boundaries with no overall topological
charge�. Clear examples of such grain boundaries can be seen to-
wards the edges of the cluster.

FIG. 15. �Color online� A close up of a small grain boundary
with a total topological charge of −1. The arrangement can also be
thought of as a pair of dislocations with opposite Burgers vectors
which cancel. Drawing a Burgers circuit around the grain boundary
leads to a closure failure which, like a disclination of charge −1,
increases with distance from the center.
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applying Nye’s result to our system would predict that the
lattice lines bend in the opposite direction. With a slight
modification we can adapt Nye’s argument to explain lattice
curvature in crystals with a changing density.

Consider a square section of lattice pqrs of dimension �r
as shown in Fig. 16�a�; the lattice has a constant density
everywhere and so there are an equal number of lattice lines
crossing each side of the square. If, on the other hand, the
density is increasing in the r direction it means there must be
more lattice lines crossing the side sr than pq. Drawing the
Burgers construction around the square leads to a closure
failure. Consequentially the square must contain an excess of
edge dislocations of one sign, the sum of their individual
Burgers vector being equal to the total Burgers vector B.
This situation is shown in Fig. 16�b�. It can be imagined that
the total Burgers vector is split into two equal parts and all
the dislocations are contained within the triangles p�t�s� and
q�u�r�—both of which subtend an angle of 
 /2—it follows
that




2
�

1

2
nB

�r
, �34�

where for small values of 
 we can ignore higher order
terms. It is useful to imagine that the original lattice has been
plastically deformed into the quadrilateral p�q�s�r�. How-
ever, this picture is misleading as none of the lattice lines
which were originally parallel to ps and qr suffer a change in
length; thus the state shown in Fig. 16�b� is for illustrative
purposes only. The true state of the deformed lattice is shown
in Fig. 16�c�. By mapping the sides pq and sr of the original
square onto the circular arcs p�q� and s�r�, all of the lattice
lines originally parallel to ps and qr remain of length �r—at
the expense of being no longer parallel to each other. To find
the curvature k of the bending of the arcs, let the length of
the lines o�p� and o�q� be equal to L. We use the relationship

�r =



k
,

where k=1/L. Upon substituting for 
 from Eq. �34� and
taking the continuum limit we have

k�r� = lim
�r→0

nB

��r�2 = b�r� . �35�

Hence the curvature is equal to the Burgers vector density. If
on the other hand the lattice density is decreasing in the r
direction then we expect the sense of curvature to be re-
versed. Furthermore, for lattice lines not parallel to the local
Burgers vector, then the curvature of the lattice line ko de-
pends on the angle � it makes with the local Burgers vector
�18�

ko�r� = k�r�cos � . �36�

The next logical step is to show that the lattice curvature
in the systems which we have simulated is given by the
Burgers vector density. Consider the deformed hexagon
shown in Fig. 17 where the direction of b is marked by an
arrow. We expect the curvature of the lattice lines to be de-
scribed by Eq. �36�. To make a connection with our simula-
tions, for the N=5000 system with a hard-wall boundary
shown in Fig. 10, each hexagon is decomposed into three
arcs, each of which can be further decomposed into three
points as in Fig. 17. By fitting the points to the equation of a
circle we determined the curvature of each arc. We assume
that each arc yields the curvature of the lattice at the center
of the hexagonal cell. Depending on the radial distance of the
cell from the center of the lattice we expect this curvature to
have any value between 0 and �b�r�� �depending on the ori-
entation of the lattice line with respect to the local Burgers
vector density field�. For the hard-wall systems with 5000
charges, Fig. 18 shows the curvature of each such arc against
radial distance; also plotted for comparison is the Burgers
vector density given by Eq. �19�. Ideally the curvature ought
not to exceed the limit set by Eq. �19�, however, this is not
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FIG. 16. �a� An undeformed lattice of dimensions �r. �b� A lattice of increasing density, where the change in lattice density depends only
on the r direction. In effect, the original square lattice has been plastically deformed into the quadrilateral p�q�r�t�. This diagram is
geometrically incorrect as only the lines originally parallel to pq and sr should suffer a change of length, while those originally parallel to
ps and qr should remain of the same length. �c� The true deformed state of a lattice with increasing density, the lattice lines pq and sr are
deformed into the circular arcs p�q� and s�r�. This state is geometrically correct as all of the lattice lines which were originally parallel to
ps and qr are still of the same length. Note this construction only tells us how to calculate the curvature of lattice lines which were originally
parallel to B
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possible in reality as lattice lines close to disclinations suffer
much greater curvatures than Eq. �19� would allow. From the
general similarity of the curvature data and Eq. �19� we con-
clude that the cause of the bending of lattice lines is indeed
due the plastic deformation of the lattice.

Next we wish to make the connection between curvature
as defined by the work of Nye to some well-known results
about parallel transport of a unit vector about a disclination
�19�. If a unit vector is transported on a lattice along some
path enclosing disclinations, then when the vector returns to
its original position its orientation will have changed. The
total change depends on the number of disclinations enclosed
and in a triangular lattice must be a multiple of 	 /3. To show
this connection we can invert Eq. �21� to express the density

of the Burgers vector in terms of the disclination charge en-
closed,

b��r� =
1

r
	

0

r

s̃�r��r�dr� =
1

2	r
	

0

r 	
0

2	

s̃�r��r�dr�d� .

�37�

If as before we let ��r� be the total disclination charge
within a disk of radius r, then using Eq. �35� we can write
Eq. �37� as

k��r� =
��r�
2	r

. �38�

This equation expresses the fact that the curvature at a dis-
tance r from the center of the system depends on the total
disclination charge enclosed within a disk of radius r. For a
given curve the curvature is defined as the rate of change of
the angle of its tangent vector �, thus for the circular path
enclosing a disclination charge ��r� we have

1

r

d��r�
d�

= k��r� .

To find the total change in the angle of the tangent vector we
integrate over the length of the circular path giving,

��r� = 	
0

2	

rk��r�d� = ��r� ,

where in a real lattice the disclination charge is quantized.
This result explains why the orientation of the lattice cells in
images such as Fig. 10 is observed to rotate upon traversing
a circular path centered on the origin.

γ

b

FIG. 17. This diagram shows a hexagonal cell in a lattice with a
nonzero Burgers vector density field b. The hexagonal cell can be
decomposed into three arcs which cross the center of the cell. If the
arc makes an angle � with the vector b then we expect its curvature
to be given by �b�cos �. Thus as shown in this diagram the horizon-
tal arc, which is perpendicular to b, has no curvature.

FIG. 18. �Color online� Curvature of lattice lines in the system with 5000 charges in a hard-wall confining potential. As discussed in the
text, each hexagonal cell can be decomposed into a set of three arcs; for each such arc the curvature is computed and plotted against the
radial distance of the parent hexagon—this is shown by the black dots. Theoretically the maximum curvature that an arc can have is given
by �b�r�� which is shown by the red dotted line. Thus depending on the orientation of the lattice line, the curvature ought to range from 0
to �b�r��. The fact that the lattice curvature exceeds �b�r�� for some arcs is due to the fact that close to the core of a defect the curvature
becomes much larger than that set by the continuum limit calculation.
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It should be noted that as long ago as 1955 the geometry
of imperfect lattices had been developed by Kondo and co-
workers into non-Riemann differential geometry �20�. By
analogy to general relativity, one can think of an undeformed
lattice as a region of flat space, which becomes warped in the
presence of defects. The authors demonstrated that disloca-
tions and disclinations generate torsion and curvature, re-
spectively.

B. Conformal crystals

The systems we have discussed thus far have been con-
structed using optimization algorithms to generate ground
state configurations. Surprisingly there exists an unusual
class of 2D lattices which have a nonuniform density but
which can be constructed by a purely analytical method.
These structures are known as conformal crystals �21�. As
the name suggests the positions of the lattice sites can be
obtained in the image plane by applying a conformal trans-
formation to a regular lattice in the z plane.

An example of a conformal lattice with circular symmetry
is shown in Fig. 19. As evident from the way in which the
lattice lines curve towards the edge and the increasing den-
sity, there is a resemblance between the conformal crystal
and the clusters studied in Sec. IV. Initially it was hoped that
these conformal crystals might help explain the origin of the
lattice curvature observed in the other 2D systems, but this
did not turn out to be the case. In this section we show that
conformal crystal can be regarded as a giant disclination.

Originally the idea of conformal crystals was used to de-
scribe a structure formed by a cluster of mutually repelling
magnetized spheres dubbed “gravity’s rainbow.” In an ex-
periment, metallic spheres were confined to a thin rectangu-
lar box which is placed in a magnetic field. The field induces
a magnetic moment in each of the spheres which causes
them to repel. Under the action of gravity the spheres crys-
tallize into a lattice with nonuniform density, which con-
sisted of a series of archlike structures. The authors sug-
gested that the unusual lattice could be obtained by a
conformal transformation of a regular triangular lattice �22�.

Consider, for example, a regular triangular lattice in the z
plane such as that shown in Fig. 19 �left�. By applying an
analytical transformation w= f�z� the corresponding coordi-
nates in the w plane are

u + iv = f�x + iy� ,

where w=u+ iv=rei
 and z=x+ iy=r�ei�. In the case of
f�z�=z1/2 the result of the transformation is shown in Fig. 19.
This transformation belongs to a set of transformations

w = Cz1/� or w = eCz, �39�

which yield conformal lattices of circular symmetry. Here we
shall only concern ourselves with the first of these transfor-
mations.

Conformal transformations have three important features.
Firstly, they are locally angle preserving �isogonal� transfor-
mations. This means that upon mapping an infinitesimal hex-
agonal lattice cell in the z plane to the image plane, the cell
will still have all its internal angles equal to 	 /3. It is im-

portant to note that because of the local nature of the angle
preserving property this is only strictly true for an infinitesi-
mal lattice cell. For a real lattice with a well-defined lattice
spacing, the mapping distorts the shape of the hexagonal
cells. This distortion is stronger towards the center of the
lattice than the edge �see Fig. 19 for an illustration of this�.
At the origin the conformality of the transformation breaks
down completely. In the case of the transformation w�z�
=z1/2, instead of preserving angles, the angle of 	 /3 at the
origin is halved in the image plane. No matter how small the
lattice cell enclosing the center in the z plane is made, this
breakdown of conformality will remain. If the conformality
of an otherwise conformal mapping breaks down at a par-
ticular point, then that point is called a critical point of the
mapping. The critical points of a conformal transformation

0

0 1

1

−1
−1

U coordinate

V
co

or
di

na
te

FIG. 19. �Color online� Top: a circular cutout of a triangular
lattice in the z plane, where the angle between each successive red
line is 	 /3. Bottom: the effect of the transformation w=z1/2 in the
image plane, where the lattice has been produced by allowing the
range of the z plane to extend to ��4	. Conformal transforma-
tions are locally angle preserving transformations, therefore an in-
finitesimal hexagonal lattice cell in the z plane is not deformed upon
mapping to the image plane. However, this angle preserving prop-
erty of the transformation breaks down at certain points which are
known as critical points. For the transformation w=z1/2 this occurs
at the origin, where instead of preserving the angle 	 /3, it is
halved. Note that the lattice cells are more distorted closer towards
the critical point.
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exist at any point where either �dw /dz� or its inverse is equal
to zero �23�. Secondly, a lattice with constant density �z in
the z plane will have a density �21�

�w = �z�dw

dz
�−2

, �40�

in the w plane. Thirdly, it was shown that if the transforma-
tion is conformal then the density of lattice points in the
image plane is constrained by the following condition �22�:

�2 ln ��r� = 0, �41�

which interestingly is also the condition that the lattice has
no disclination charge induced by a varying density �see Eq.
�21��.

Thus a circularly symmetric conformal crystal such as the
one shown in Fig. 19 is locally hexagonal but has curvature.
It has an increasing density and except for the point at the
center has no apparent internal defects �by which we mean
that a triangulation only shows internal points which have six
nearest neighbors�. Yet the framework developed in Secs.
III B and V A demonstrates that a change in the lattice den-
sity must be accompanied by lattice defects, which in turn
are responsible for curvature. How are these two seemingly
conflicting statements to be resolved? A clue is provided by
the point at the center of the lattice with the anomalous co-
ordination number.

Consider the conformal lattice generated by the transfor-
mation

w�z� = z6/7,

which is shown in Fig. 20. Superimposed on top of the con-
formal lattice are a number of Burgers circuits which enclose
the central point. Whereas previously we were dealing with a
continuum, in which the defects were assumed to form a gas
throughout the system, here there is only a single defect at
the center of the system. Since there are no other defects, any
Burgers circuit which does not enclose this central point will
close. As shown the circuits start at a ,b. . . and end at

a� ,b�. . .; in each case there is a closure failure, which in-
creases with distance from the central point; indeed the suc-
cessive Burgers circuits trace out a wedge. Thus we propose
the central point in a conformal lattice can be thought of as a
“disclination.” The same rules which apply to a disclination
also apply here, i.e., the wedge angle is quantized by the
symmetry of the lattice and the wedge in turn can be decom-
posed into a series of half planes �13�. To see how a wedge
can be decomposed into a series of half planes, note that the
difference in the closure failure between any two successive
Burgers circuits, such as aa� and bb�, is always one lattice
spacing, which implies that between a pair of circuits an
extra half plane has been inserted at the points labeled
a ,b�. . .. The question of where the half planes have been
inserted is arbitrary as it depends on where the Burgers cir-
cuits start and end. Thus as for a disclination the relationship
given by Eq. �14� also holds for a conformal lattice. In the
case of w�z�=z6/7 �also for a −1 disclination� the wedge
angle is given by �=	 /3. By considering a series of circular
concentric circuits whose origin coincides with the critical
point of the transformation, it is possible to draw a series of
Burgers circuits and calculate the Burgers vector density us-
ing the approach outlined in Sec. III B. In either case the
result is still given by Eq. �17�.

Since at the critical point the lattice ceases to be confor-
mal, Eq. �41� is true everywhere except for the origin. This
suggests that it can be written as

�2 ln ��r� = ���2��r� , �42�

where � is an undetermined constant and ��2� is the two-
dimensional delta function. To find �, we are going to as-
sume that the point at the center of the lattice is a disclination
with charge s̃�r�. We have the following relationship between
Eq. �42� and Eq. �21�:

2s̃�r� = �2 ln ��r� = ���2��r� . �43�

Substituting w�z�=Cz1/� into Eq. �40� gives

��r� = �z�
2r�2��−1�/� = �z�

2r2��−1�, �44�

where we have used the relationship r=r�1/�. Thus we can
write Eq. �43� as

2s̃�r� = 2�� − 1��2 ln r = ���2��r� . �45�

Recognizing �2 ln r=2	��2��r� as the two-dimensional
Green’s function and canceling out the factor of 2, Eq. �45�
becomes

s̃�r� = 2	�� − 1���2��r� = ����2��r� .

Thus the central point of the conformal transformation has a
disclination charge density of ��=� /2=2	��−1�. The total
disclination charge contained within the disk can be found by
simply integrating over its area, thus

��r� = 	
0

R 	
0

2	

s̃�r�rdrd
 = 2	�� − 1�	
0

R 	
0

2	

��2��r�rdrd


= 2	�� − 1� . �46�

In the case of �=2, which corresponds to the transformation

a a’

b
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c
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d’
d
e

e’
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f’

FIG. 20. �Color online� A conformal lattice generated by the
transformation w=z6/7 which is similar to a disclination with charge
−1. Also shown are a series of Burgers circuits enclosing the central
point.
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w�z�=z1/2, the central point of the transformation has a dis-
clination charge of 6�	 /3�=2	, i.e., a disclination consisting
of six wedges, each of which subtend an angle of 	 /3 in the
z plane.

This realization that the central point in a conformal lat-
tice is actually a disclination can be used to calculate the
lattice curvature. The conformal lattice shown in Fig. 19 was
generated by applying the transformation w=z1/2 to a hex-
agonal lattice. The original lattice contained Nz points within
a disk of radius R, thus �z=Nz /	R2, setting �=2 in Eq. �44�
yields

�w�r� = 4r2�z.

Using the framework developed in Sec. V A we know
that the maximum curvature k is related to the density of the
Burgers vector by Eq. �35�, thus

k�r� = �b�r�� =
1

2

d

dr
ln �w�r� =

1

2

d

dr
ln 4r2�z =

1

r
, �47�

where we have used Eq. �17�. On the other hand, using Eq.
�14� with �=2	 gives �B�r� � = �2	�r. Inverting the relation-
ship given by Eq. �21� yields

k�r� = �b�r�� =
1

2	r

d

dr
�B�r�� =

1

2	r

d

dr
2	r =

1

r
. �48�

Alternatively, using Eq. �38�, we can assume that the dis-
clination charge enclosed is equal to 2	 and this gives the
same result. Thus a comparison can be made between this
analytical result and the actual measured lattice curvature
�just like we did for N=5000 in the hard-wall case�, Fig. 21.
There is perfect agreement between the two curves which
leads to the conclusion that a conformal lattice can be
thought of as a type of disclination.

C. Experimental realizations

The system with the hard-wall confinement could poten-
tially be realized in a number of different physical contexts.
One possible experimental situation involves a collection of
polystyrene beads on a disk, located on the edge of which is
an insulated boundary. The beads are then exposed to ioniz-
ing radiation and the liberated electrons are sucked out of the
system by an electrode, leaving behind a collection of posi-
tively charged beads. The cluster can then be annealed to the
ground state by shaking the disk.

Alternatively the system could be realized using colloidal
particles. For these systems one would have to ensure that
the Yukawa screening length was made larger than the sys-
tem size. By using less polar organic solvents, screening
lengths as long as 12 �m can be achieved �24�. Thus to
realize large systems one would need colloidal particles with
diameters of, say, 0.1 �m.

The system with parabolic confinement is of considerable
interest to the field of quantum dots. For review articles dis-
cussing the fabrication of quantum dots and the harmonic
confining approximation, see �25,26�, respectively, and the
references contained.

D. Other systems

There are a number of systems in which lattice curvature
is quite prominent; one such system is the growth of crystals
in amorphous films �27�. Up until now the suggestion has
been that these systems possess a conformal geometry be-
cause the lattice lines are curved. This work demonstrates
that this is not necessarily so. The condition that a system has
a conformal geometry is very strict, i.e., the lattice density
has to obey Eq. �44�. It is possible that these systems contain
an excess of disclination charge in the interior, which in turn
results in the bending of lattice lines. It would be interesting
to reexamine such systems in light of the results of this pa-
per. Even the original experiment which sparked the interest
in conformal crystals, the so-called gravity’s rainbow struc-
ture, has been shown not to be stable �28�, meaning that it is
likely that the system does not form a perfect conformal
crystal. Numerical simulations suggest that the system is
composed of domains which are separated by defects �28�;
these defects may be the actual cause of the lattice curvature
in this system. Other interesting systems in which almost
perfect conformal crystals have been generated include fer-
rofluid foams in magnetic fields �29� and soap foams �30�; in
some cases the resulting structure contains internal defects. It
is hoped that the present work may give some insight into
their role.

ACKNOWLEDGMENTS

One of us �A.M.� would like to thank EPSRC for financial
support. We would also like to thank Matthew Hastings and
Paul McClarty for useful discussions.

FIG. 21. �Color online� Curvature of the lattice lines for a con-
formal crystal generated by the transformation w�z�=z1/2. The red
line gives the maximum curvature using Eq. �47�. The black dots
give the actual curvature of the lattice line, as calculated by the
method outlined in Sec. IV A 5.
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