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When a fluid surface adheres to a substrate, the location of the contact line adjusts in order to minimize the
overall energy. This implies boundary conditions which depend on the characteristic surface deformation
energies. We develop a general geometrical framework within which these conditions can be derived in a
completely systematic way. We treat both adhesion to a rigid substrate and adhesion between two fluid
surfaces, and illustrate our general results for several important Hamiltonians involving both curvature and
curvature gradients. Some of these have previously been studied using very different techniques. With the
exception of capillary phenomena, the Hamiltonian will not only be sensitive to boundary translations, but may
also respond to changes in slope and even in curvature. The functional form of the additional contributions will
follow readily from our treatment. We will show that the boundary conditions describing adhesion between two
fluid surfaces express the balance of stresses and torques, as one would expect. At a rigid substrate, however,
this simple identification will generally fail. This is because local rotations of the surface normal will be
entirely “enslaved” to translations on the substrate. As a consequence, stresses and torques enter a single
balance condition and cannot be disentangled.
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I. INTRODUCTION

When surfaces occur in physical systems, the energy as-
sociated with them is often completely described by a Hamil-
tonian that depends only on the surface geometry. The easiest
and the best known examples involve capillary phenomena
�1,2�, in which the shape of a liquid-fluid interface is the
geometry minimizing its area. The same physics underlies
the behavior of soap films. Higher-order surface properties,
notably its curvature, play a role in the description of fluid
lipid membranes or microemulsions �3,4�, and even higher
derivatives have been implicated in the occurrence of certain
corrugated membrane phases �5�. In all these cases the shape
of the surface follows from minimizing the surface Hamil-
tonian, a variational problem. The corresponding Euler-
Lagrange differential equations are known as the shape equa-
tions.

However, such surfaces are generally not isolated but
rather in contact with something else. Water droplets or lipid
membrane vesicles may rest on a substrate, and this gener-
ally influences their shape quite strongly. For instance, water
droplets on hydrophilic substrates �e.g., clean glass� re-
semble flat contact lenses, while on very hydrophobic sub-
strates �e.g., Teflon� they are almost completely spherical.
When gravity can be neglected �6�, the shape equation dic-
tates a constant mean curvature surface in both cases �in fact,
a spherical cap�, but the contact angle at the three-phase line
where water and substrate meet is different for the two dif-
ferent substrates.

In the majority of cases the spatial extension of the sur-
face being studied exceeds the range of the interaction be-
tween it and the substrate by a large amount. For instance,
van der Waals forces, hydrophobic interactions, or �screened�
electrostatic forces typically extend over several nanometers,
while the extensions of vesicles or droplets can be microns

or even millimeters. Under these conditions the interaction is
well approximated by a contact energy—i.e., an energy per
unit area, w—liberated when the surface makes contact with
the substrate. It is this adhesion energy, together with the
energy parameters characterizing the contacting surfaces,
which determines the boundary conditions holding at the
contact line. In the case of capillary phenomena, for ex-
ample, the ratio between adhesion energy w and surface ten-
sion � determines the contact angle � between liquid and
substrate surface by means of the well-known Young-Dupré
equation �1,2,7�

w

�
= 1 + cos � . �1�

The “standard” derivation of this equation involves a bal-
ance of tangential forces at the contact line. Yet, despite its
very intuitive nature, the requirement of surface stress bal-
ance does not yield the correct condition for more compli-
cated surface Hamiltonians, even if the concept of surface
stress is generalized properly. Higher-order Hamiltonians
give rise to additional energy contributions when the contact
line is varied. It is the purpose of the present article to show
how these contributions can be accounted for in a systematic
and parametrization-free way, and without assuming any ad-
ditional symmetries �such as axisymmetry or translation
symmetry along the contact line�. We study adhesion to rigid
substrates as well as to deformable surfaces also character-
ized by a surface Hamiltonian. Our presentation generalizes
and strongly simplifies the analysis previously given in Ref.
�8�.
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II. MATHEMATICAL SETUP

A. Differential geometry

In order to describe the adhering surfaces in a
parametrization-free way, we use a covariant differential
geometric language. Our notation is essentially standard and
will follow the one used in Refs. �8–12�. Briefly, a surface S
is described by the embedding function X��1 ,�2��R3, where
the �a�a� �1,2�� are a suitable set of local coordinates on the
surface. This induces two local tangent vectors ea=�X /��a

and a normal vector satisfying n ·ea=0 and n2=1. Further-
more, the two fundamental forms of the surface are needed:
namely, �i� the metric tensor gab=ea ·eb and �ii� the extrinsic
curvature tensor Kab=ea ·�bn=−n ·�aeb. The symbol �a is
the metric-compatible covariant derivative. The trace of the
extrinsic curvature tensor will be denoted by K=Ka

a=Kabgab,
which for a sphere of radius r with outward-pointing normal
vector is positive and has the value K=2/r. The determinant
KG=det�Ka

b� is the Gaussian curvature. It can be written as
half the Ricci scalar curvature R=gacgbdRabcd, the double
contraction of the Riemann tensor. This link between intrin-
sic and extrinsic curvatures is a consequence of the �doubly
contracted� Gauss-Codazzi equation R=K2−KabKab

�=2 det�Ka
b��. As usual, indices are lowered or raised with the

metric or its inverse, respectively, and a repeated index a
�one up, one down� implies a summation over a=1,2. More
background on differential geometry can be found in Refs.
�13–15�.

B. Geometry at the contact line

By “contact line” we will denote the curve C along which
the surface detaches from the substrate. Its local direction is
given by the tangent vector t= taea �see Fig. 1�, which is
tangential to C, the surface S, and the substrate surface S�
�which itself might also be deformable�. Here and in what
follows �with the exception of Sec. IV B� we will use under-
lining in order to indicate quantities referring to the sub-
strate.

Perpendicular to C we can define local normal vectors
which are either tangential to S or S� : namely, l= laea and l�
= l�ae�a, respectively �see Fig. 1�. Also, we will have two sur-
face normals n and n� . If the surface contacts the substrate

smoothly at a contact angle of 180°, we will have ea=e�a, n
=n� , and l= l� there; however, their derivatives perpendicular
to the contact line need not coincide, since the curvatures of
surface and substrate generally need not be identical. In fact,
the values of perpendicular and parallel components of these
curvatures �and possibly their higher derivatives� will be
among the primary focus of this paper. They will be denoted
by

K� = lalbKab = − n · ��l , �2a�

K� = tatbKab = − n · ��t , �2b�

K�� = K�� = latbKab = − n · ��t = − n · ��l , �2c�

where we also introduced the two directional surface deriva-
tives perpendicular and parallel to C,

�� = la�a and �� = ta�a. �3�

We analogously define K� �, K� �, and K� ��.

C. Hamiltonian

In the present work we will exclusively study surfaces
whose energy H is given by a surface integral over a scalar
energy density H, which is constructed from the local sur-
face geometry:

H = �
S

dA H�gab,Kab,�aKbc, . . . � . �4�

The integral extends over the entire surface S, and the area
element dA is given by 	gd�1d�2, where g=det�gab� is the
metric determinant. For those parts of the surface which ad-
here to a substrate we will assume an additional adhesion
energy density

Hadhesion = − w��1,�2� � 0, �5�

which may in general be a function of position.

III. DETERMINING THE BOUNDARY CONDITIONS

A. Continuity considerations

As we will see, the adhesion balance between surface and
substrate will result in a discontinuous change of some sur-
face property across the contact line. However, the form of
the energy density restricts which quantities can be discon-
tinuous, since it needs to remain integrable.

Most obviously, the shape itself has to be continuous. Yet
already its first derivative may display a jump, as it does in
the case of capillary adhesion. The energy density is given
simply by

Hcapillary = � , �6�

and a kink in the surface at the contact line—i.e., a finite
contact angle—is not associated with an extra energy.

For curvature elastic surfaces the situation is different.
There, the energy density of the surface is given by the well-
known expression �3,4�

t

S

π−ϑ C
−l

S

−l

FIG. 1. Illustration of the geometry of surface adhension. Per-
pendicular to the contact line C two vectors exist, l and l�, which are
tangential to the surface S and substrate S� respectively.
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Hbend =
1

2
��K − K0�2 +

1

2
�̄R , �7�

where � and �̄ are bending modulus and saddle-splay modu-
lus, respectively, and K0 describes a spontaneous curvature
of the elastic surface. A kink in the surface at the contact line
implies a � singularity in the curvature, whose square is non-
integrable. Hence, the surface needs to be differentiable
across the contact line, and the distinction between surface
and substrate tangents and normals drawn in Sec. II B be-
comes unnecessary. Moreover, a quick glance at Eqs. �2b�
and �2c� shows that both K� and the off-diagonal curvature
K�� are expressible as a tangential derivative along the curve
C of a quantity continuous across C; hence, both these cur-
vatures will also be continuous. It is only the perpendicular
curvature component K� which might possess a discontinu-
ity, and indeed we will see that it does.

Finally, even higher-order derivatives might occur in sur-
face Hamiltonians. For instance, Goetz and Helfrich have
studied a curvature-gradient term of the form

Hgrad =
1

2
����aK���aK� 


1

2
����K�2, �8�

which in a generalized higher-curvature Hamiltonian pre-
vents the occurrence of infinitely sharp curvature changes
�5�. In this case it is obvious that all curvature components
have to be continuous along the substrate, since otherwise
again a squared � singularity results. Moreover, most of the
first-order directional derivatives are automatically continu-
ous: the parallel ones, ��, again differentiate quantities along
C which are continuous across C and thus are themselves
continuous. For the perpendicular ones it turns out that ��K�

and ��K�� are continuous, while ��K� is not. This is intu-
itively reasonable, since every term involving a “�” features
at least one less derivative across the contact line and thus
cannot jump. A rigorous proof is, however, a bit more in-
volved. One may, for instance, proceed like this: start with
the contracted Codazzi-Mainardi equation �13–15� �aKab

−�bK=0 and project onto lb. By decomposing the resulting
identity into the local �l , t� frame, it can be cast in the form

��K� = ��K�� + �K� − K��t · ��l + 2K��l · ��t . �9�

Since every term on the right-hand side is continuous across
C �recall that derivatives of tangent vectors are essentially
curvatures�, ��K� must be continuous as well. By projecting
the contracted Codazzi-Mainardi equation on tb instead, one
can show that ��K�� is also continuous.

B. Contact line variation

For an adhering surface the total energy is stationary with
respect to variations of the contact line along the substrate.
Such a variation contributes twofold to the Hamiltonian: as-
sume that locally the contact line is moved such that a bit of
surface unbinds from the substrate. This removes its corre-
sponding binding energy, as well as any elastic energy asso-
ciated with the constraint of conforming to the substrate, and
thus gives rise to an energy change �Hbound. On the other
hand, the unbound part of the surface acquires at the contact

line a new boundary strip which implies also a change �Hfree
in its elastic energy. The boundary condition at the contact
line then follows from the stationarity condition

�Hcl = �Hbound + �Hfree = 0. �10�

In the case of adhesion to a rigid substrate the bound contri-
bution involves the variation along a surface of known
shape. The corresponding term is thus conceptually very dif-
ferent from a deformable substrate or even the free variation,
because in both these cases the local shape of the surface is
not known. Below we will see how these differences mani-
fest themselves when computing the boundary terms.

1. Bound variation

For definiteness, let the normal l� to the contact line C be
directed towards the adhering portion of the surface �see Fig.
1�. A local infinitesimal normal displacement � of the contact
line along a rigid substrate thus implies the following obvi-
ous change in the bound part of the surface:

�Hbound = − �
C

ds�H� − w���s� . �11�

The underlining of H should again indicate that it is evalu-
ated with geometric surface scalars �such as curvatures� per-
taining to the substrate. If the substrate is flexible, the w term
remains, but the change in elastic energy will instead be
taken care of by an additional free boundary variation.

2. Free variation

The change in energy due to the addition or removal of
unbound parts to the boundaries of the surface is identical to
the boundary terms in the variation of the free surface. In
Ref. �10� it has been shown that for Hamiltonians up to cur-
vature order these terms are given by �16�

�Hfree = − �
C

ds la�fa · �X + Habn · �eb� . �12�

Here, fa is the surface stress tensor, given by

fa = �Tab − HacKc
b�eb − ��bHab�n , �13�

and we have also defined

Hab =
�H

�Kab
�14a�

and

Tab = −
2
	g

��	gH�
�gab

. �14b�

Finally, �X and �eb denote the change of contact line posi-
tion and the associated change in the slope of the tangent
vectors, respectively. Notice that the second term in Eq. �12�
is only relevant if Hab�0.

IV. SPECIFIC EXAMPLES

In this section we will illustrate the above formalism by
applying it to several important situations and surface Hamil-
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tonians. In Sec. IV A we first treat the problem of adhesion
to a rigid substrate. We will see how known results �the
Young-Dupré equation and the contact curvature condition
for Helfrich membranes� follow with remarkable ease and
can be extended just as quickly to new Hamiltonians. In Sec.
IV B we look at the boundary conditions involving adhesion
to deformable substrates. Specifically, in Sec. IV B 1 we look
at the triple line between three tension surfaces, and in Sec.
IV B 2 we study the adhesion of two vesicles.

A central ingredient in all this will be knowledge of the
two tensors Hab and Tab defined in Eqs. �14a� and �14b�.
While their determination is not particularly involved, these
calculations have been performed previously by us �9–12�
and we will thus simply reuse the results here.

A. Adhesion to a rigid substrate

Since the variation of the contact line has to proceed
along the substrate, we must have

�X = �l�. �15�

No component in the t direction is necessary, since for fluid
surfaces this amounts to a reparametrization of C. Notice that
Eq. �15� is nothing but the Lie derivative of X along the
substrate, since L�l�X=�l�a�aX=�l�ae�a=�l�. This property
holds generally, and we will make use of it later.

The normal component of the change in the surface tan-
gent vectors eb only contributes if Hab�0—i.e., if curvature
terms enter the Hamiltonian. We will assume that they do it
in such a way that differentiability of the surfaces is implied
�see Sec. III A�, so that no distinction needs to be drawn
between normal and tangent vectors of substrate and adher-
ing surface. We then find

n · �eb = n · �b�X = �lcn · �be�c = − �lcK� bc, �16�

where in the last step the equation of Weingarten �13–15� has
been used; this is again the Lie derivative along the substrate
�17�. Notice that there still remains a distinction between
curvatures of substrate and surface; hence, the derivative of
the tangent vectors resulting from a variation along the sub-
strate yields the substrate curvature and not the free surface
curvature.

1. Capillary surfaces

In this case the energy density is given by Eq. �6�, and as
we have seen in Sec. III A, we will expect a discontinuity in
slope at C. The bound variation is

�Hbound = − �
C

ds�� − w���s� . �17�

For this Hamiltonian we have �9–12� Hab=0 and fa=
−�gabeb=−�ea, and therefore

lafa · �X = − �laea · �l� = − ��l · l� = − �� cos�� − �� ,

�18�

where � is the angle between capillary surface and
substrate—in other words, the contact angle �see Fig. 1�.
Equation �10� thus specializes to

�Hcl = − �
C

ds�� − w + � cos ����s� . �19�

Since ��s� is arbitrary, the term in square brackets must van-
ish, which gives the Young-Dupré equation �1�.

2. Helfrich Hamiltonian

Let us now look at the energy density �7� which describes
the continuum behavior of �tensionless� fluid lipid bilayers.
Since K appears quadratic, the surface will now be differen-
tiable across the contact boundary, as pointed out in Sec.
III A.

A simple argument shows that the intrinsic contribution
1
2 �̄R= �̄KG will not matter for the boundary conditions. Since
the contact line is varied locally, we can focus our attention
on a membrane strip of finite width and fixed edges, covering
the contact line. Due to the Gauss-Bonnet theorem �13–15�,
its contribution will not change upon variation of the contact
line �which lies in the middle of the strip� and must therefore
not enter any condition resulting from it. For readers not
convinced by this quick argument, the following derivation
shows explicitly �but less elegantly� that the �̄ contributions
indeed drop out.

Let us begin with the stress tensor. From Refs. �9–12� we
find

lafa · l = −
1

2
��K − K0�2 + ��K − K0�K�. �20�

Notice that this expression is independent of �̄: the Gaussian
contribution in the Helfrich Hamiltonian does not create
membrane stresses. Next, we look at the dependence of H on
the extrinsic curvature. From Ref. �12� we get

Hab = ��K − K0�gab + �̄�Kgab − Kab� . �21�

Here the �̄ contribution does not cancel right away. To obtain
the necessary derivatives of the Ricci curvature, we exploited
the identity R=K2−KabKab. With the help of Eqs. �16� and
�21� we can further calculate

laHabn · �eb = �− ��K − K0�K� � − �̄�K�K� � − K��K� �����

= − ���K − K0�K� � +
1

2
�̄R��� . �22�

The final step follows from the continuity conditions K� �

=K� and K� �� =K�� from Sec. III A and the representation of
the Ricci scalar curvature as the Gaussian curvature determi-
nant 1

2R� =K� G=K� �K� � −K� ��
2 .

Inserting Eqs. �20� and �22� into the general expression
for the free variation, Eq. �12�, and adding the bound varia-
tion �11�, we arrive at the total energy change upon contact
line variation:
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�Hcl = − �
C

ds�1

2
��K� − K0�2 +

1

2
�̄R� − w

−
1

2
��K − K0�2 + ��K − K0�K�

− ��K − K0�K� � −
1

2
�̄R����s� �23a�

=− �
C

ds�1

2
��K� − K� ��2 − w���s� , �23b�

where in the second step we again made use of the continuity
condition K� =K� �. Notice that the �̄ dependence has finally
canceled out completely, as we have argued above. Equation
�23b� implies a discontinuity in the perpendicular curvature
K� as the appropriate adhesion boundary condition:

K� − K� � =	2w

�
. �24�

The correct sign after taking the square root follows from the
fact that the detaching surface must not penetrate the sub-
strate; unfortunately, this depends on ones specific choice of
the surface normal vectors.

Quite remarkably, this boundary condition depends nei-
ther on the spontaneous curvature K0 �the contribution to the
Hamiltonian linear in K does not enter� nor on the local
parallel curvature K�. It would also remain unaffected if the
bilayer were under a finite tension �. Formally, it is easily
seen to cancel; physically, the reason is that the jump we
would expect from the Young-Dupré equation �1� cannot ma-
terialize since the curvature terms in the energy density en-
force differentiability of the profile at C.

Equation �24� coincides with the result given previously
in Ref. �8�. Its axisymmetric version was first quoted in Ref.
�18�, and its specialization to a straight contact line can be
found in Ref. �19�. We want to stress that the Habn ·�eb term
in Eq. �12�, which is responsible for the third line in Eq.
�23a�, was crucial in obtaining Eq. �24�. Leaving it out—i.e.,
only treating the problem as a stress balance—will not result
in the correct boundary condition, as first pointed out in Ref.
�20�. The only exception �treated via stress-balance in Refs.
�8,21�� is the special case of a flat substrate, in which case
�eb
0 and the missing contribution vanishes anyway. The
deeper reason for the apparent failure of a stress-based ap-
proach is the interdependence of the variations �X and �eb,
as enforced by the rigid substrate. This point will become
more clear once we have studied deformable substrates in
Sec. IV B.

3. General curvature Hamiltonians

It is not difficult to extend the above analysis to the entire
class of Hamiltonians which depend on intrinsic and extrin-
sic surface curvature. Since �i� for two-dimensional surfaces
the Ricci scalar R uniquely determines the Riemann tensor
via Rabcd= 1

2R�gacgbd−gadgbc� and since �ii� the Codazzi-
Mainardi equation permits the replacement of products of the
extrinsic curvature tensor Kab with powers of the extrinsic

curvature scalar K and the Ricci scalar R, we can without
loss of generality assume that any such curvature Hamil-
tonian has been brought into the form

H = H�K,R� . �25�

Once more using R=K2−KabKab, we can derive the identities

�R

�gab
= − 2Rab =

d=2

− Rgab, �26a�

�R

�Kab
= 2�Kgab − Kab� . �26b�

Notice that the first equality in Eq. �26a� holds generally,
while the second is specific for surfaces, since it uses the
identity Rab= 1

2Rgab valid only in two dimensions.
We can now determine the two tensors Tab and Hab. Us-

ing the definitions �14� and the identities �26�, a quick cal-
culation leads to

Tab = − Hgab + 2
�H
�K

Kab + 2
�H
�R

Rgab, �27a�

Hab =
�H
�K

gab + 2
�H
�R

�Kgab − Kab� . �27b�

Before we proceed, let us look once more at the continu-
ity requirements spelled out in Sec. III A. The question to be
answered is whether our general Hamiltonian H enforces
differentiability. If it does not involve the curvature at all, it
is of the form �6� and will permit kinks, but this case has
been treated in Sec. IV A 1. However, differentiability is not
automatically guaranteed once curvature appears. In particu-
lar, kinks are possible if H is linear in K or R, since both
curvatures involve the component K� across the boundary
only linearly. The resulting � singularity is hence integrable
and adds a finite extra contribution to the energy �and its
variation� which we would need to consider separately.
While such a situation can also be treated within the general
framework presented in this paper, the details are surpris-
ingly tricky. Since we prefer not to obfuscate the overall
picture by devoting a disproportionate amount of space to
these singular cases, we will from now on assume that dif-
ferentiability holds. The reader should notice that this will be
the case once a nonzero bending modulus � is present. In-
deed, for dimensional consistency it is implausible to assume
that a term linear in R will occur without its “partner” qua-
dratic in K. However, a Hamiltonian of the form �+	K is
not irrelevant and occurs, for instance, if one asks what are
the shapes for vesicles of given area and area difference �be-
tween outer and inner monolayer� which have maximal vol-
ume, as Svetina and Žekš have done �22�. The treatment of
the adhesion balance for this case can be found in Ref. �8�.

Assuming differentiability from now on, we can combine
the expressions �27� for the tensors Tab and Hab with the
boundary variations in Eqs. �15� and �16� and from this
readily find
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lafa · �X = − �H −
�H
�K

K� −
�H
�R

R� , �28a�

laHabn · �eb = − � �H
�K

K� � +
�H
�R

R�� . �28b�

The total contact line variation is therefore given by

�Hcl = − �
C

ds�H� − w − H +
�H
�K

K� +
�H
�R

R

−
�H
�K

K� � −
�H
�R

R����s� . �29�

The requirement �Hcl=0 now gives rise to the remarkably
succinct boundary condition

�H� − H� −
�H
�K

�K� � − K�� −
�H
�R

�R� − R� = w . �30�

This equation generalizes the contact curvature condition
�24� to arbitrary Hamiltonians of curvature order. Notice that
despite its rather “systematic” appearance, this general con-
dition is not symmetric between surface and substrate; i.e., it
does not remain invariant when replacing underlined and
not-underlined quantities, unlike the special case of the con-
tact curvature condition �24� for Helfrich membranes. Also,
the parallel curvature K� will generally enter the boundary
condition, exposing the cancellation in the case of the Hel-
frich Hamiltonian as “accidental.”

We can readily see how Eq. �30� reduces to the special
cases we have treated above: for H= 1

2�K2 we have
�H /�K=�K and �H /�R=0, such that the left-hand side of
Eq. �30� becomes 1

2��K� 2−K2�−�K�K� �−K��= 1
2��K� �−K��2,

which leads to the contact curvature condition �24�. And for
a contribution 1

2 �̄R in a Hamiltonian which enforces differ-
entiability by the presence of other terms we have
�� 1

2 �̄R� /�K=0 and �� 1
2 �̄R� /�R= 1

2 �̄, such that it cancels in the
left-hand side of Eq. �30�. We thereby see once more that the
Gaussian curvature term in the Helfrich Hamiltonian �and
thus the saddle splay modulus �̄� does not contribute to the
boundary condition.

Let us conclude this section by casting a quick glance
onto one more interesting special case: namely, the Hamil-
tonian

H =
1

2
�̄2R2. �31�

This quartic expression, which also enters the theory devel-
oped in Ref. �5�, is the lowest-order non-trivial intrinsic cur-
vature Hamiltonian one can write down for two-dimensional
surfaces. Since �H /�K=0 and �H /�R= �̄2R, we arrive at the
�purely intrinsic� boundary condition

R − R� =	2w

�̄2

, �32�

whose similarity with the usual contact curvature condition
�24� is quite striking.

4. General quartic Hamiltonian

The Helfrich Hamiltonian terminates the expansion of the
surface energy at the dimensional order length−2. For sym-
metric membranes the next order is the quartic one, length−4,
and it adds four more terms to the energy �23�:

H4 =
1

4
�4K4 + �
K2R +

1

2
�̄2R2 +

1

2
����K�2. �33�

While all four moduli have the same units—energy times
length4—they are not of the same order in surface deriva-
tives. The first three terms are scalar functions of the surface
curvatures—i.e., special cases of the Hamiltonian �25�—but
the fourth term involves the derivative of the curvature and is
therefore of third order in surface derivatives. This has sig-
nificant implications for the boundary conditions holding at
quartic order: while one might initially surmise that all quar-
tic moduli �and possibly also the quadratic ones� enter in a
presumably lengthy equation, the continuity considerations
from Sec. III A imply that all curvatures are continuous
across the contact line due to the occurrence of the gradient-
K term in �33�. In consequence, none of the undifferentiated
curvature terms influences the boundary condition, which is
exclusively determined by the gradient term.

We have thus seen that it suffices in quartic order to study
the implications of curvature gradients alone—i.e., the
Hamiltonian �8�. From earlier work �11,12� we know that in
this case

lafa · l = �����K�2 −
1

2
��K�2 − K��K� , �34a�

Hab = − ����K�gab. �34b�

However, simplemindedly inserting these expressions into
the formulas we have used so far does not give the correct
result. Here is why: when calculating Hab and Tab to obtain
Eqs. �34�, we varied the Hamiltonian �8� with respect to Kab
and gab, respectively, and identified the bulk terms �see Sec.
IV in the Appendix of Ref. �12��. Yet these variations also
leave boundary terms, since the curvature K=gabKab appears
differentiated. For the purpose of identifying Hab and Tab

they are irrelevant, but they evidently matter now that we are
interested in the total energy change upon displacing the
boundary. Moreover, within the variational framework intro-
duced in Ref. �10�, on which the present treatment relies, the
�Kab and �gab variations are indeed independent from the �X
and �ea terms already included in Eq. �12�, so they can be
simply added to this expression. If we go through the calcu-
lation, we see that the two tensor variations can be combined
nicely into a single scalar one, since they occur in the com-
bination gab�Kab+Kab�gab=�K, and we end up with the ad-
ditional boundary contribution

�Hfree,grad = ���
C

ds la��aK��K . �35�

This is of course exactly the boundary term we would expect
for the variation of a Hamiltonian density whose functional
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form is the square of the gradient of a scalar, so everything is
consistent.

To evaluate the right hand side of Eq. �35�, note that the
variation is once more given by the Lie derivative along the
substrate. Since K is a scalar, we obtain the simple expres-
sion

�K = L�lK = �la�aK� = ���K� . �36�

Together with Eqs. �34� we then obtain the total contact line
variation as

�Hcl = − �
C

ds�1

2
����K� �2 − w

+ �����K�2 −
1

2
��K�2 − K��K�

+ ����K�K� � − �����K����K� ����s� �37a�

=− �
C

ds�1

2
�����K� − ��K� ��2 − w���s� ,

�37b�

where in the last step we used the continuity of curvatures
and their �� derivatives �as discussed in Sec. III A� as well as
the decomposition ��K�2= ���K�2+ ���K�2. The boundary
condition following from this specifies a jump in the perpen-
dicular derivative of the perpendicular curvature:

���K� − K� �� =	2w

��

. �38�

As remarked above, this constitutes the appropriate boundary
condition for a curvature elastic theory including all terms up
to quartic order. Its similarity with Eqs. �24� and �32� is
again very striking, and one might surmise a pattern that
would be followed by even higher-derivative theories. No-
tice, however, that the terms entering the derivation of Eq.
�38� are quite different and that the additional term stemming
from Eq. �35�, which is absent in the simple curvature square
case, is essential.

B. Adhesion to deformable surfaces

Compared to the previous section, there are two key dif-
ferences if the substrate is not rigid. First, the absence of a
known substrate shape along which a certain amount of de-
formation energy is to be paid removes the term involving H�
in the bound variation �11�. Second, for the same reason the
contact line variation is no longer restricted to proceed along
a substrate and will thus be of the more general form

�X = ��l + �nn . �39�

The corresponding tangent vector variation, which occurs if
Hab�0, then leaves a term

n · �eb = n · �b���l + �nn� = − K� bcl
c�� + �b�n. �40�

Note that K� bc plays a different role here than previously. It no
longer describes the curvature of the evidently nonexistent

substrate. Rather, the tangential variation may proceed lo-
cally along a fictitious surface which is tangential to the other
three surfaces that meet at the contact line. Encoding the
higher-order derivative information necessary here, K� bc de-
scribes the curvature of that fictitious surface and K� � is the
component perpendicular to C �see Fig. 2�. This surface is of
course not unique, and thus K� � is arbitrary—just as the two
variations �� and �n themselves are.

1. Three-phase capillary equilibrium

The simplest example of a three-phase line between de-
formable surfaces occurs when three capillary interfaces
meet—for instance, at the three-phase line between three
mutually immiscible fluids 1, 2, and 3, having mutual surface
tensions �12, �23, and �31. In this case no adhesion energy is
involved �or, alternatively, it may be considered as part of the
surface tension�. The contact line variation thus consists of
three identical boundary variations

�Hcl = −� ds�la
12f12a + la

23f23a + la
31f31a��X

=� ds��12l12 + �23l23 + �31l31��X , �41�

from which we immediately find the boundary condition

�12 + �23 + �31 = 0. �42�

This expresses nothing but the force balance between the
three directional line tensions �12=�12l12, etc., and is known
as the Neumann triangle �1�. The vector equation �42� cor-
responds to two scalar equations �since there is no compo-
nent along t�. These are sufficient to determine the three
contact angles between the three phases �because their sum
equals 360°�. Notice that this conversely implies that by
measuring these angles one can only determine the ratios
between the three tensions, not absolute values. How all this
information is conveniently extracted is discussed in detail in
Chap. 8 of Ref. �1�.

K1

K12

K2

K

κ1

κ2

1κ κ2+

n

l

FIG. 2. Illustration of the geometry at the contact line between
two adhering vesicles.
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2. Adhesion of two vesicles

For the case of two adhering vesicles we assume that
vesicle 1 has bending modulus �1 and tension �1, while
vesicle 2 has corresponding values �2 and �2. If the two
bilayers can slide past each other in the region where they
adhere, their joint bending modulus is given by �12=�1+�2,
because the energies required to bend either one just add; the
same applies to the tension: �12=�1+�2. We will for sim-
plicity look at the case where the spontaneous curvature is
zero. The contact line variation now contains one adhesion
term and three free boundary variations. Using the decompo-
sition of �X and �eb as given in Eqs. �39� and �40�, respec-
tively, we find the total energy change to be

�Hcl = −� ds�− w −
1

2
��1 + �2��K�

12�2

+
1

2
�1�K�

1 �2 +
1

2
�2�K�

2 �2���

− ����1K�
1 + �2K�

2 − ��1 + �2�K�
12��n

− ��1K�
1 + �2K�

2 − ��1 + �2�K�
12�K� ���

+ ��1K�
1 + �2K�

2 − ��1 + �2�K�
12����n� . �43�

All corresponding K� contributions cancel, since K� is again
continuous across C; the same happens to the tensions. The
four terms belonging to the independent variations ��, �n,
K� ���, and ���n must vanish individually. Notice that the
last two have identical prefactors; in fact, using Eq. �40� as
well as the obvious identities ��= l ·�X and �n=n ·�X, we
can rewrite the total variation �43� in the more transparent
form �24�

�Hcl = −� ds�− w −
1

2
��1 + �2��K�

12�2

+
1

2
�1�K�

1 �2 +
1

2
�2�K�

2 �2�l · �X

− ����1K�
1 + �2K�

2 − ��1 + �2�K�
12�n · �X

− ��1K�
1 + �2K�

2 − ��1 + �2�K�
12�l · �n� . �44�

This identifies clearly the three independent variations which
matter: one tangential and one perpendicular translation, de-
scribed by l ·�X and n ·�X, respectively, and one rotation
around the local contact line, specified by the variation l ·�n.
The corresponding three boundary conditions are then given
by

�1�K�
1 �2 + �2�K�

2 �2 − ��1 + �2��K�
12�2 = 2w , �45a�

����1K�
1 + �2K�

2 − ��1 + �2�K�
12� = 0, �45b�

�1K�
1 + �2K�

2 − ��1 + �2�K�
12 = 0. �45c�

Our identification of the independent variations also permits
an easy interpretation of these three conditions: the first two
equations are an expression of a local stress balance �namely,

of tangential and perpendicular forces�. The third condition
expresses the balance of torques around the contact line, a
suspicion confirmed by the general form of the membrane
torque tensor �9,21,25�.

Contrary to the case of vesicle adhesion to a rigid sub-
strate, Eq. �24�, these conditions also contain one which in-
volves the derivative of curvatures: namely, Eq. �45b�. Its
origin is the perpendicular variation n ·�X, forbidden if the
substrate cannot move, and since this term multiplies the
normal component of the stress tensor, which �as Eq. �13�
informs us� always contains one more derivative than the
tangential one, this brings about the higher-derivative condi-
tion.

Not surprisingly, the boundary conditions �45� look dis-
tinctly different from the contact curvature condition which
holds for the adhesion of a single Helfrich membrane to a
rigid substrate, Eq. �24�. However, it is possible to rewrite
them in such a way that the relation becomes more visible.
The tangential stress balance �45a� and the torque balance
�45c� can be combined to yield the symmetric equations

�1 +
�1

�2
��K�

1 − K�
12�2 =

2w

�1
, �46a�

�1 +
�2

�1
��K�

2 − K�
12�2 =

2w

�2
. �46b�

From Eq. �45c� it follows that one of the K�
i is larger and the

other one smaller than K�
12. Hence, when taking the square

root in Eqs. �46�, exactly one of the two will necessitate a
minus sign.

Let us look at two special cases of these boundary condi-
tions which turn out to be quite instructive. First, if �2→�,
the second vesicle approaches the limit of a rigid substrate.
In this case Eq. �46b� shows that K�

12=K�
2 and Eq. �46a�

reduces to the old contact curvature condition we had just
derived for rigid substrates, Eq. �24�. And the curvature of
this effective substrate is determined from ���K�

2 −K�
12�=0.

This latter condition shows that the “substrate” curvature is
even differentiable across C—or, in other words, the “sub-
strate” shape is a 3 times continuously differentiable func-
tion.

And second, if the two membranes have identical bending
moduli �1=�2=�, a “symmetrized” contact curvature condi-
tion ensues which reads

�K�
1 − K�

12�2 = �K�
2 − K�

12�2 =
w

�
, �47�

which tells us that the �squared� curvature jump 2w /� de-
manded by the rigid substrate version �24� is shared in equal
parts between the two membranes, while the final condition
of perpendicular force balance becomes ���K�

1 +K�
2

−2K�
12�=0. The specialization of Eq. �47� to the adhesion

between two vesicles of equal bending modulus in an axi-
symmetric configuration has previously been derived by Der-
ganc et al. �26�.

To conclude this section, let us take a final look at stresses
and torques. Their balance has emerged with remarkable di-
rectness as the necessary equilibrium condition for the case
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of adhering vesicles. Why is this so different from the con-
tact curvature condition at a rigid substrate, where a simple
stress balance fails? Looking at Eq. �23a�, we see indeed
stress and torque contributions entering. Or even more gen-
erally, the term involving Habn ·�eb in Eq. �12� is the origin
for the intrinsic torque, since it is sensitive to local rotations
of the surface normal �9,25�. Yet for the case of rigid sub-
strates rotations are entirely “enslaved” to translations, since
the rotation of the tangent vectors must follow the local sub-
strate curvature—see Eq. �16�. Consequently, stresses and
torques enter a single balance condition and cannot be dis-
entangled. How their contributions conspire to create a single
combined equilibrium is probably easiest traced back on the
detour via the two-vesicle case: as we have seen above, tan-
gential stress and torque balance together are responsible for
the symmetrized equations �46�, whose rigid substrate limit
�2→� then yields the entangled balance condition �24�.

V. SUMMARY

We have shown how the boundary conditions pertaining
to the contact line between a fluid surface adhering to a solid
substrate or another deformable surface can be extracted
from a systematic boundary variation in a completely
parametrization-independent way. We would like to close
with a summary of our main results and some remarks.

�i� Integrability of the surface energy density H enforces
continuity of certain geometric variables across the contact
line.

�ii� The highest derivative in H thus dictates which geo-
metric variables may change discontinuously across C in re-
sponse to adhesion. Hence, for the Helfrich Hamiltonian the
tension � does not enter the boundary condition even if it
enters H; likewise, neither tension � nor bending modulus �
enters the boundary condition if also a gradient-curvature-
squared term is present in H.

�iii� Higher-order derivatives in H create boundary terms
in the variation which pick up surface variations that are one
order lower. If the curvature enters H, then a change in slope
is noticed; if a gradient in curvature enters H, then changes
in curvature are noticed. For this reason the capillary Hamil-
tonian is the only one which only picks up translations, such
that the energy minimization can be reinterpreted as a force
balance. In all other cases higher-derivative deformations
�such as torques or even more complicated constructs� con-
tribute to the boundary variation.

�iv� More formally, the presence of a rigid substrate en-
slaves all higher-order variations �such as rotations or curva-
ture changes� to the contact line translation and thus mixes
their corresponding generalized stress contributions �such as

torques� into a single balance equation. Under these condi-
tions a simple stress balance must fail.

�v� The boundary conditions studied in this paper are local
in nature and depend only on the highest-derivative term in
the Hamiltonian. Yet lower-order terms may affect the sur-
face shape in the proximity of the contact line, more pre-
cisely on length scales where these terms dominate the en-
ergy density, as previously pointed out by Seifert and
Lipowsky �18�. For instance, Helfrich membranes under ten-
sion exhibit the characteristic length scale =	� /�, which
signifies the crossover between small-scale bending domina-
tion and the large-scale tension regime. Hence, adhesion of a
vesicle large compared to  may be characterized on scales
larger than  by an effective contact angle determined from
the Young-Dupré equation �1�, even though upon closer in-
spection the membrane really adheres smoothly, obeying the
contact curvature condition �24�. Likewise, a quartic term
such as the one from the Hamiltonian �8� is only expected to
influence the neighborhood of the contact line within a prox-
imity region �=	�� /�.

�vi� Notice that the previous remark demands a subtle
consistency check: for the presented framework to be appli-
cable, the proximity length associated with the highest-order
term dictating the nature of the boundary condition must still
be larger than the length scale characterizing the finite range
of the adhesion potential between the surfaces, which we in
this treatment have from the outset assumed to be zero. In
other words, the notion of a contact interaction would be
inconsistent if it implies shape features on scales smaller
than the actual potential range.

�vii� Generalizations to surfaces hosting additional scalar
or vector fields �such as composition or tilt order� appear
straightforward, since these are readily incorporated into the
present framework �12�.

�viii� To be sure, knowing the boundary conditions does
not mean that one also knows the position of the contact line.
Rather, the latter has to be determined simultaneously with
the surface shape. In general this task is very difficult, but it
is not the subject of the present work.
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