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Scaling behavior in corrosion and growth of a passive film

F. D. A. Aarfio Reis' and Janusz Staﬁej2

Unstituto de Fisica, Universidade Federal Fluminense, Avenida Litordnea s/n, 24210-340 Niteroi, Rio de Janeiro, Brazil

Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
(Received 12 December 2006; published 24 July 2007)

We study a simple model for metal corrosion controlled by the reaction rate of the metal with an anionic
species and the diffusion of that species in the growing passive film between the solution and the metal. A
crossover from the reaction-controlled to the diffusion-controlled growth regime with different roughening
properties is observed. Scaling arguments provide estimates of the crossover time and film thickness as
functions of the reaction and diffusion rates and the concentration of anionic species in the film-solution
interface, including a nontrivial square-root dependence on that concentration. At short times, the metal-film
interface exhibits Kardar-Parisi-Zhang (KPZ) scaling, which crosses over to a diffusion-limited erosion (La-
placian growth) regime at long times. The roughness of the metal-film interface at long times is obtained as a
function of the rates of reaction and diffusion and of the KPZ growth exponent. The predictions have been
confirmed by simulations of a lattice version of the model in two dimensions. Relations with other erosion and

corrosion models and possible applications are discussed.
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I. INTRODUCTION

When a metallic surface is in contact with an aggressive
solution, a passive layer containing the metal oxide or hy-
droxide is formed immediately after the corrosion of the top-
most layer. The passive film protects the surface from the
attack of the solution. This leads to a slowdown of the cor-
rosion rate. Further corrosion takes place through the diffu-
sion of cations and anions through the passive layer, as illus-
trated in Fig. 1. Ions are produced at the metal/film (MF) and
film/solution (FS) interfaces. They can react in the film,
which consequently grows, and cations can be dissolved at
the FS interface (see, e.g., Refs. [1-4] for a more complete
review of modeling and applications). All these processes are
affected by physicochemical conditions such as temperature,
the electric field in the insulating film, the pH of the solution,
etc. Besides changing the global corrosion rate, these mecha-
nisms must also affect the morphological properties of the
MF and FS interfaces in a nontrivial way.

When one aims at modeling specific corrosion problems,
it is essential to take into account all those possible mecha-
nisms. Studies along these lines usually focus on the growth
velocities of the MF and FS interfaces. On the other hand,
some effort is directed to searching for universal behavior of
a larger number of apparently different systems. If the focus
is interface morphology, previous experience with surface
growth models shows that a small number of key features
(symmetries) are sufficient to determine scaling laws, for in-
stance, those of surface roughness [5,6].

Following this reasoning, the aim of this work is to study
the evolution of the growth rate and of the surface roughness
of the MF interface in a simple model that represents some
mechanisms of Fig. 1 that may be dominant under certain
conditions. First, since it is recognized that the anion trans-
portation is largely responsible for the passive layer growth
on different metals (see, e.g., Ref. [7], and references
therein), we will take into account only the diffusion of this
chemical species through the film. We will also assume that
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there is no bias in this diffusion process. Moreover, we will
consider a simple first-order reaction mechanism when this
species encounters the metallic surface. The short- and long-
time growth rates are predicted through a scaling theory,
while symmetry arguments are used to predict the roughness
scaling. A lattice version of the model is also presented, and
simulation results in two dimensions give support to the the-
oretical predictions.

Although this model adopts a simplified view of corrosion
systems, it contains some features that may be interesting for
experimental investigation. For instance, the long-time diffu-
sive (%) growth of the MF interface displacement is accom-
panied by a nontrivial dependence on the square root of the
anion concentration at the FS interface. The universal surface
roughness scaling, which is in the class of diffusion-limited
erosion (DLE), should also persist in cases of slower passive
layer growth, including those with the usual logarithmic laws
[8—10]. We also obtain a relation between the MF interface
roughness at long times and the rates of corrosion and diffu-
sion, which involves a roughening exponent of the short-time
dynamics. Thus, we believe that this work suggests interest-
ing phenomena to be investigated in real corrosion problems.
From this point of view, the simulation work is also interest-
ing to illustrate the difficulties in observing all the dynamical
aspects of the model in a single experiment.

From the theoretical point of view, this model is interest-
ing from the perspective of application of competitive sur-
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FIG. 1. Scheme of the main processes during corrosion with a
passive film growth.
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FIG. 2. Scheme of our model, with A representing the anions
and M representing the metal.

face growth dynamics, a subject that has attracted some in-
terest in recent years [11-16]. It also advances over a
previous model which showed a similar crossover [17,18],
because here we consider less restrictive assumptions based
on current interpretation of corrosion phenomena. Indeed, in
the following we will make clear the different interpretation
of that model.

The rest of this work is organized as follows. In Sec. II,
we define the model and discuss the scaling behavior of the
growth rate of the MF interface. In Sec. III, we discuss the
crossover in interface roughness scaling. In Sec. IV, we
present a two-dimensional lattice model and results of simu-
lations which give additional support to the previous theoret-
ical analysis. In Sec. V we present our conclusions.

II. THE CORROSION MODEL AND SCALING OF PASSIVE
FILM GROWTH

Following Ref. [7], we assume the existence of anionic
species which are produced in electrochemical water decom-
position at the interface with a solution (Fig. 1). They can
immediately react with the metal surface or enter and diffuse
through the already formed passive layer until reaching the
metal surface and subsequently reacting with it. The diffu-
sion coefficient for the anions is D and the reaction rate with
the metal is k,. We also assume that the concentration of
these anions at the metal-solution interface, p, is constant
during the passive layer growth. It properly represents the
balance of electrochemical equilibria at the solid interface
with the solution. The products of the reaction of anions with
the metal form a passive layer at the same position as the
consumed material, thus moving the MF interface to the
metal side. An atomistic picture of the process is shown in
Fig. 2.

The above model is very simple when compared to re-
lated ones discussed in the literature, which account for other
important mechanisms, such as the presence of an electric
field inside the passive film and energy barriers for metal
corrosion [7-10]. Thus, although now we proceed to present
its solution, we will address the question of its reliability at
the end of this section.

The model corresponds to a diffusion problem with a
moving boundary, which is the MF interface. However, it is
possible to find the short- and long-time behavior of this
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system using a scaling approach, with the advantage of pro-
viding a clear picture of these regimes and the crossover
between them. The starting point of this analysis is to ob-
serve that there are two relevant characteristic times in this
process: a time for the surface reaction of the metal (disso-
lution), 74~ 1/(pk,), and a diffusion time 7y~ h*/D,
where h is the height of the passive film (distance between
the MF and FS interfaces).

At short times the process is reaction limited, since the
global corrosion rate is determined by the rate of reaction
without significant limitations due to the slow diffusion of
the reactants (the anions). In other words, 7, is negligible
when compared to 7, Thus, the MF interface moves with
velocity

v, = paky, (1)

where a is a characteristic length. The average height of the
interface linearly increases in time ¢ as

h = pakt ()

(for simplicity, the analysis of this section assumes that the
MF interface roughness is negligible, thus no effect of fluc-
tuations of this average height will be taken into account).

At long times, the passive layer is large and the process
becomes diffusion limited since the anions need a long time
to reach the metal. In this regime it is reasonable to assume
that the whole passive layer has an average concentration of
anions of order p (although the exact value is certainly
smaller than p). These anions reach the MF surface after a
time 7, leading to an increase ph in the height of the pas-
sive film. Thus, the MF interface moves with velocity

_dh h/ (3)
Up= d ¢ 1% Tdif’
which can be integrated to give a diffusive growth of the
passive layer as

h= \ﬁ 4)

A crossover between these regimes takes place at a char-
acteristic time where 7, and the time of dissolution of ph/a
layers are of the same order:

D

t.~ 5.
PazkA2

c (5
The same result is obtained by matching the expressions for
the height of the passive layer in the initial and final regimes
[Egs. (2) and (4)]. The height at the crossover time is

D

h.~—. (6)

akA
It is thus reasonable to expect that the average height of the
passive layer obeys a scaling relation in the form

hih.= f(tt,), (7)

where f is a scaling function such that f(x)~x for small x
and f(x) ~x"? for large x.

Although the long-time dependence of the growth rate is
somewhat expected from the model rules, one remarkable
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feature is its increase with the square root of the concentra-
tion, which contrasts with the initial linear dependence. It
follows from the assumption of next-to-equilibrium condi-
tions at the FS interface with no pumping of anions from the
solution to the solid. This assumption sounds reasonable in
corrosion processes in contact with an aggressive environ-
ment (e.g., the atmosphere). We are also not aware of any
previous work showing this square-root law (on concentra-
tion or pressure) in real corrosion processes, but it is cer-
tainly an important point to be experimentally investigated.

The /> law (also known in the literature as the parabolic
law) for growth of a passive film has been observed in some
real systems, such as iron oxidation in dry air or in oxygen at
high temperatures [19-21]. It was also found in more recent
works on iron and iron nitride oxidation, but in this case the
rate-limiting process was diffusion of iron cations [22,23].

Models including other physically important mechanisms
[7] usually lead to logarithmic laws, which imply that the
global corrosion rates decrease in time as 1/¢ or 1/¢>. This is
usually a consequence of further energy barriers for the dif-
fusion of the ions inside that layer or of its dissolution, which
may eventually lead to a steady state where the thickness is
constant. Anyway, the overall corrosion is usually much
slower than the present ¢!/2 law. There are also cases in which
the passive layer grows linearly in time during a large time
region, such as in a recent work on tungsten corrosion in
stationary conditions [24]. This represents a much faster cor-
rosion than in our model.

Concerning the crossover from a linear to a diffusive
growth law, it was recently observed in a numerical model of
dry metal oxidation which aims at describing corrosion of
nuclear waste systems [25]. That model provides a set of
equations for the diffusion of cationic and anionic vacancies
inside the oxide and for the evolution of the metal/oxide and
the oxide/solution interfaces [25,26]. Comparison with our
model mechanisms suggests that the conclusion of a univer-
sal crossover is also valid in that model, but further numeri-
cal work would certainly be interesting to confirm this pro-
posal.

It is also interesting to discuss the differences between the
present results and those of a recently studied corrosion
model with porous passive layer formation and relaxation
after oxide or hydroxide formation [17,18]. That model was
not related to the generally accepted mechanisms illustrated
in Fig. 1, and it was defined in a lattice, in contrast with the
present one. It assumed that the volume excess of reaction
products could suppress the access of the solution to the
metal surface, but the access was restored by a diffusion
mechanism. The MF interface growth depended on one par-
ticular rule of the model, as shown in Ref. [17]. For instance,
if a single site was blocked after a corrosion event (¢=1 in
the notation of Ref. [17]), then the global corrosion rate was
always constant, i.e., no crossover to a diffusive law was
observed. On the other hand, diffusive growth was obtained
in the case of two blocked sites (¢p=2). This differs from the
present model, in which the crossover is universal, in the
sense that it occurs for any set of model parameters. Conse-
quently, although the scaling approach used to explain the
previous model’s behavior with ¢=2 is similar to the above
one [18], the models involve very different physicochemical
mechanisms.
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III. SCALING OF SURFACE ROUGHNESS

The noise induced by random collisions of the anions
with the metal surface and by their diffusion leads to rough-
ening of the MF interface. This does not invalidate the pre-
vious scaling approach, because this interface is expected to
be flat at very large length scales (roughness exponent
smaller than 1) [5,6]. On the other hand, understanding the
expected roughness scaling may be useful for comparisons
with morphological data from real systems. Moreover, the
presence of the passive film suggests the possibility of a
crossover in the roughness scaling, as observed in other sys-
tems, such as the deposition model with a diffusive layer of
Ref. [27]. Indeed, the short- and long-time regimes of our
model show different roughness scaling, which is equivalent
to previously studied (and apparently not related) etching
models.

At short times, all points of the MF interface are equally
subject to corrosion due to the rapid diffusion of the anions,
the reactions being just limited by the dissolution rate k,.
This condition is equivalent to those of a lattice etching
model proposed by Reverberi and Scalas (RS) [28], in which
all sites in contact with the solution have equal probability to
be removed at each time step. The scaling properties of that
model are equivalent to those of the Eden model [29,30], in
which all neighbor sites of the growing cluster have equal
probability to become part of the cluster at each time step.
Indeed, except for the behavior of isolated islands (which do
not affect roughness scaling), the RS model is the inverse of
the Eden model [28].

The surfaces of Eden aggregates and of RS-etched solids
are known to evolve according to the Kardar-Parisi-Zhang
(KPZ) equation [31]

oh N -
E =vV2h + E(Vh)2 + n(x,1), (8)

where £ is the height at the position X in a d-dimensional
substrate at time #, v and \ are constants, and 7 is a Gaussian
noise. Thus we expect that the roughness of the MF interface
of our model also has KPZ scaling at short times. In the
realistic case of d=2 (three-dimensional solid), the global
roughness of the interface increases as £~ t#, with §~0.23
[32] and the time ¢ typically measured as a number of (grown
or eroded) monolayers. The local roughness averaged over
windows of size r scales as w~ (r/a)?, with a=0.39[32]. In
Sec. IV, we will present simulation results of a square lattice
version of our model (d=1 interface), where exponent esti-
mates must be compared with S=1/3 and a=1/2 [5,6,31].

However, while RS etching shows KPZ scaling at long
times, this is not the case for our corrosion model. Here, the
restrictions for the access of the anions to the metal lead to
different effective corrosion rates at different points of the
rough MF interface. In this regime, the surface peaks are
more probably eroded by a small anion concentration than
the surface valleys. This slows the roughening process when
compared to initial KPZ erosion.

This long-time regime is equivalent to the diffusion-
limited erosion model [33]. DLE is a lattice model in which
eroding particles are randomly left at points very distant
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from the solid surface; they are allowed to diffuse and, when
they reach the surface, they are annihilated together with an
atom of the solid. This is exactly our case when the passive
film is large, since there is a rarefied anion gas near the MF
surface.

In the continuous limit, the DLE interface is driven by the
gradient of a Laplacian field [34]. The field ¢ satisfies V2¢
=0 for z<<h, vanishes for z>h, and is continuous at the
interface (z=h). The normal interface velocity is proportional
to the normal field gradient, so that [34]

_=—D((9_¢V¢'Vh> ; )
oz z=h

where D is the diffusion coefficient. In the original DLE
model, / linearly increases in time, but this leads only to a
trivial transformation #— \r for the present diffusive case
[Eq. (4)]. A recent discussion of various models of transport-
limited dissolution can be found in Ref. [35].

In three dimensions, the global interface roughness of
DLE saturates as both t— o and L— . The correlations in
the interface height have a power-law decay corresponding
to a negative roughness exponent a=-1/2. This means a
very flat interface even at small length scales. In two dimen-
sions (d=1 interface), the squared global roughness increases
logarithmically as &, .~ B In(4h), where B is a constant
associated with the noise. Thus, even in this case, the inter-
face at long times has a very slowly increasing roughness
whose order of magnitude is determined mainly by the KPZ
evolution at short times. This feature will also be confirmed
in the lattice model of Sec. IV.

The crossover between the different roughening regimes
(KPZ and DLE) is also expected to take place at the cross-
over time 7. [Eq. (5)]. Since the height of the interface is h,
at the crossover [Eq. (6)], we expect that the crossover
roughness will be of order

D \B

&~ (hJa)P ~ <—> ; (10)
ClkA

where S is the KPZ exponent. The roughness of the MF

interface is expected to obey a scaling relation involving the

crossover time 7, and this crossover roughness:

&&= glilt,), (11)

where g is a scaling function.

Equation (10) gives the order of magnitude of the satura-
tion roughness in the three-dimensional DLE regime, and
also a rough estimate of the roughness in a large time win-
dow in two dimensions (due to the slow logarithmic growth).
These results may also be interesting for experimental inves-
tigations on corrosion processes with growth of passive lay-
ers, although the direct determination of some quantities,
such as the ratio D/k,, is certainly difficult. However, it is
remarkable that simple scaling arguments and the model
symmetries are able to predict a relation between the inter-
face roughness and the rates of reaction and diffusion.

Dissolution models with similar mechanisms were also
considered by Kim and Yoon [36] and by Reverberi et al.
[37]. In the cases where the movement of the eroding par-
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FIG. 3. (a) Initial configuration of the lattice model. (b) Ex-
amples of possible movements of a particle A to a neighboring site
and the subsequent configurations.

ticles was biased toward the surface, an Edwards-Wilkinson
[EW; Eq. (8) with A\=0] [38] growth was observed at long
times. On the other hand, DLE scaling was found in no-bias
conditions [36], which suggests the existence of a DLE-EW
crossover in the weak bias case. The KPZ-DLE crossover
was also observed in the model of Refs. [17,18], but again
we stress that different mechanisms were responsible for that
behavior. For instance, the long-time DLE behavior in that
case is observed only for the parameter ¢=2.

IV. LATTICE MODEL AND NUMERICAL RESULTS

Now we consider a square lattice model with the main
mechanisms of our corrosion model. The lattice sites may
have three different states: M (metal), S (solution), or P (pas-
sive). Each state represents the dominant chemical species
inside a mesoscopic region. Any P site and the § sites at the
bottom layer (to be defined below) may be occupied by an A
particle, which represents a diffusing anion.

In the beginning of the process, all sites above a certain
row of the lattice are labeled S, all sites below that row are
labeled M, and the sites at that row (z=0) are labeled P (a
very thin passive layer). The row z=0 is permanently occu-
pied by a fraction p of A particles; thus one A particle is
added or removed from it at each time this row loses or gains
another A particle by diffusion. The lattice at =0 is illus-
trated in Fig. 3(a).

At each time step of this system evolution, each A particle
executes D random steps to nearest-neighbor sites. No move-
ment to an § site is accepted. If the target is a P site, then the
movement is allowed only if there is no A particle there.
Otherwise, the movement is rejected. If the target site is an
M site then the reaction A+M — P occurs with probability p,
i.e., the M site is turned into a P site. Otherwise (probability
1 —p), the movement is rejected. It represents the reaction of
the anion with a metal ion and the formation of the oxide or
hydroxide. Thus p is proportional to k4. These processes are
illustrated in Fig. 3(b).

We simulated this model using several values of p and p
and with D=1: p=1073—-1, p=1/64—1/4. The lateral size of
the lattice was L=512 in most cases, but the possibility of
finite-size effects was also checked in simulations in L
=1024. The height & of the passive layer (position of the MF
interface) is the average absolute position of the lowest P
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FIG. 4. (Color online) Scaled height of the passive layer as a
function of scaled time for the lattice model with D=1 and p
=1/16, p=1 (squares, right side); p=1/16, p=0.1 (crosses); p
=1/16, p=0.01 (triangles); p=1/16, p=0.001 (squares, left side);
p=1/32, p=0.1 (asterisks); p=1/8, p=0.1 (hexagons). The dashed
lines with slopes 1/2 (right side) and 1 (left side) indicate the short-
time and long-time behavior.

particle at each column of the lattice. Average results were
taken typically from 100-1000 realizations.

The scaling analysis of Sec. II suggests that t,~ 1/(pp?)
and h,~1/p [Egs. (5) and (6)]. The scaling relation (7) is
tested by plotting ph (~h/h,) versus pp’t (~t/t,) in Fig. 4,
where data for different values of p and p are shown. In all
cases, only data for an average height % larger than 10 mono-
layers were presented. Figure 4 confirms the predicted scal-
ing of the height of the passive layer, and clearly shows a
linear time increase for r<<t., crossing over to a diffusive
growth for r>t,.

The roughness scaling suggested in Eq. (11) is tested in
the plot of Fig. 5, where we show log;, &p” versus log;, ppt
for three different values of p and using the KPZ exponent in
d=1, B=1/3[5,31]. Good data collapse is also obtained with
other values of 3, in the range 0.31 =< 8=<0.35. This may be
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FIG. 5. (Color online) Scaled roughness of the passive layer as
a function of scaled time for the lattice model with D=1, p=1/16,
and p=0.001 (triangles), 0.01 (squares), 0.1 (crosses). Results for
L=1024, p=0.01, and the same values of D and p (solid line) illus-
trate the absence of significant finite-size effects. The exponent
=1/3 of the KPZ model in 1+1 dimensions was used here.
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FIG. 6. (Color online) (a) Short-time scaling of the surface
roughness of the lattice model with p=1/16, p=0.001, and D=1.
The solid line is a linear fit with slope 0.34. (b) Long-time scaling
of the squared surface roughness of the lattice model with p
=1/16, p=0.1, and D=1. The solid line is a linear fit.

viewed as evidence of the predicted KPZ scaling for short-
time behavior of the model. Finite-size effects are negligible,
as illustrated by the data for L=1024; thus small deviations
from data collapse in Fig. 5 are probably related to correc-
tions to the relation (11) in p, p, or £. Anyway, they seem to
be weaker than the finite-size corrections which frequently
make it difficult to estimate exponents of discrete KPZ mod-
els [28,30,32].

Let us stress that the slow increase of & for pp%t>1 in
Fig. 5 does not correspond to roughness saturation due to
finite size of the lattice, as we have verified by changing the
simulation box size. Instead, it is a slow but continuous in-
crease of the roughness.

From Figs. 4 and 5, the short-time regime is represented
by pp?t<<1/10. On the other hand, in order to observe any
sort of roughness scaling, it is necessary that several layers
of the metal have been eroded. This is possible only if the
condition ppt>1 is also satisfied. In order to match the
above conditions simultaneously, we need to analyze very
small values of p and very long times ¢, since p is typically
restricted to values of order 0.1. This is possible with p
=0.001 and p=1/16, so that in Fig. 6(a) we present the time
evolution of the roughness for those parameters, with a linear
fit that gives $=0.34. The fits of different regions of that plot
give 0.30=< £=0.36, which is consistent with the KPZ value
B=1/3. The uncertainty in this estimate is close to those
found in models such as ballistic deposition (see, e.g., Ref.
[39]).

Unfortunately, with larger values of p (e.g., p=0.01), it is
not possible to satisfy the above conditions simultaneously.
On the other hand, for smaller p (e.g., p=0.0001), the simu-
lation times necessary to get accurate results are extremely
large. Thus, further tests of KPZ scaling with the available
data are not possible. However, it is important to recall that
the interpretation of the above numerical results as evidence
of KPZ scaling (instead of another dynamics which may
have a similar value of B) is mainly guided by the symme-
tries of the model. In other words, it is based on the fact that
our model with small p is effectively equivalent to the RS
model (equal corrosion probability for all surface points),
and this model was also shown to be in the KPZ class, simi-
larly to the Eden model [28]. A detailed discussion of the
association of a universality class with a given set of growth
rules is found in Ref. [40].
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The long-time scaling of the roughness is expected for
any set of model parameters. However, accurate simulation
results at sufficiently long times (pp?t>100; see Figs. 4 and
5) can be obtained only for large values of p, which also
restricts the useful range of p. In Fig. 6(b) we show the
long-time roughness for p=0.1 and a linear fit which sug-
gests logarithmic increase of the squared roughness. This is
characteristic of DLE scaling. The alternative possibility of a
power-law increase with a small exponent cannot be com-
pletely ruled out, but again the growth rules can be used to
justify the claim of DLE scaling: at long times the corrosion
is performed by a very rarefied gas of A particles; thus it
effectively corresponds to the conditions of the original DLE
model [33,34].

As explained above, it is difficult to obtain an illustration
of the KPZ-DLE crossover for a single set of model param-
eters, although the system dynamics justify the claim that it
is a universal feature. This suggests that it will also be diffi-
cult to observe that crossover in experiments. Depending on
the real system features, only a clear KPZ regime or only a
clear DLE regime will be easily observed, similarly to our
findings.

V. CONCLUSION

We studied the time evolution of the displacement and of
the surface roughness of the interface between a metallic
surface and a growing passive layer in a model that repre-
sents some of the dominant mechanisms of certain corrosion
processes. Metal is corroded in a first-order reaction with
anionic species created at the solution front, so that their
concentration at this front, p, remains constant. They are then
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transported to the metal surface with the diffusion coefficient
D in the passive layer. The growth rate predicted by scaling
theory crosses over from a linear time increase to a r'/? law.
Besides the expected dependence of those rates on k4 and D,
there is a nontrivial p'”?> dependence at long times. Symmetry
arguments are used to predict the evolution of the roughness
of the metal-film interface, which shows a crossover from
KPZ to DLE scaling. An estimate of the roughness in the
long-time regime is obtained in terms of the rates of the
process and a KPZ exponent. A lattice version of the model
is also presented, and simulation results in two dimensions
give support to the theoretical predictions.

The present model advances over previous ones by as-
suming a set of hypotheses which are consistent with the
currently accepted mechanisms for corrosion and passiva-
tion, and by defining a model from a continuous (mesos-
copic) point of view, and not from a particular lattice real-
ization. Despite the absence of other important mechanisms
in the description of the passive layer growth, an important
feature of this model is to relate the properties on the MF
interface to the decreasing flux of aggressive species toward
that surface. Indeed, this is the fundamental ingredient that
provides preferential corrosion at the interface tips and, from
universality grounds, leads to the DLE dynamics. We expect
that our results will motivate experimental investigations as
well as theoretical works along the same lines, but focusing
on specific applications.
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