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The question of the existence of a structural glass transition in two dimensions is studied using mode
coupling theory �MCT�. We determine the explicit d dependence of the memory functional of mode coupling
for one-component systems. Applied to two dimensions we solve the MCT equations numerically for mono-
disperse hard disks. A dynamic glass transition is found at a critical packing fraction �c

d=2�0.697 which is
above �c

d=3�0.516 by about 35%. �c
d scales approximately with �rcp

d , the value for random close packing, at
least for d=2, 3. Quantities characterizing the local, cooperative “cage motion” do not differ much for d=2 and
d=3, and we, e.g., find the Lindemann criterion for the localization length at the glass transition. The final
relaxation obeys the superposition principle, collapsing remarkably well onto a Kohlrausch law. The d=2 MCT
results are in qualitative agreement with existing results from Monte Carlo and molecular dynamics simula-
tions. The mean-squared displacements measured experimentally for a quasi-two-dimensional binary system of
dipolar hard spheres can be described satisfactorily by MCT for monodisperse hard disks over four decades in
time provided the experimental control parameter � �which measures the strength of dipolar interactions� and
the packing fraction � are properly related to each other.
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I. INTRODUCTION

The static and dynamic behavior of macroscopic systems
depends sensitively on the spatial dimension d. For example,
one-dimensional systems with short-range interactions do
not exhibit an equilibrium phase transition. In two dimen-
sions there is no long-range order if the ground state exhibits
a spontaneously broken continuous symmetry and Anderson
localization occurs for almost all eigenstates of a disordered
system for d=1 and d=2, but not in d=3, if the disorder is
small. Critical exponents at continuous phase transitions de-
pend on dimensionality. Concerning dynamical features it is
known, for instance, that the velocity autocorrelation func-
tion of a liquid exhibits a long-time tail proportional to t−d/2.
Consequently, the diffusion constant is infinite for d�2.
These few examples demonstrate the high sensitivity of vari-
ous physical properties of the dimension d.

Let us consider a liquid in d=3. If crystallization can be
bypassed, a liquid undergoes a structural glass transition. Al-
though not all features of this transition are completely un-
derstood, recently significant progress has been made con-
cerning its microscopic understanding. Following many
decades of several phenomenological descriptions with less
predictive power, the mode coupling approach introduced in
1984 by Bengtzelius, Götze, and Sjölander �1� has led to a
microscopic theory of the structural glass transition.

This theory, called mode coupling theory �MCT�, has
been discussed theoretically in great detail by Götze and co-
workers �see Ref. �2� for a review�. Its numerous predictions
were largely successfully checked by experiments and simu-
lations �3,4�. The main prediction of MCT is the existence of

a dynamical glass transition at which the dynamics changes
from ergodic to nonergodic behavior. Thermodynamic �equi-
librium� quantities—e.g., the isothermal compressibility and
structural ones like the static structure factor S�q�—do not
become singular at the glass transition singularity of MCT.
Hence, the MCT glass transition is of pure dynamical nature.
It can be smeared-out by additional relaxation channels and
then marks a crossover �2,3�.

A microscopic theory predicting a structural glass transi-
tion with pure thermodynamic origin was derived by Mézard
and Parisi �5�. Their replica theory is a first-principles ap-
proach which yields a so-called Kauzmann temperature TK at
which the configurational entropy vanishes. TK is below Tc,
the MCT glass transition temperature. In low dimensions, TK
may mark a crossover �6�. For a review of both microscopic
theories as well as phenomenological approaches to the
structural glass transition the reader may consult Ref. �7�.

An important question is now, what is the dependence of
the structural glass transition on the spatial dimensionality?
This question has already been asked by several researchers
some time ago. Before we come to a short review of this
work, let us consider monodisperse hard spheres and hard
disks in d=3 and d=2, respectively.

The most dense packing of four hard spheres corresponds
to a regular tetrahedron. However, three-dimensional space
cannot be covered completely by regular tetrahedra, without
overlapping. This kind of geometrical frustration is absent in
two dimensions. The densely packed configuration of three
hard disks corresponds to an equilateral triangle. Since the
two-dimensional plane can be tiled completely without over-
lap by equilateral triangles, there is no frustration. Therefore
one may be tempted to conclude that there is no structural
glass transition in two dimensions. However, the link be-
tween frustration and glass transition has proven subtle. Ex-*Electronic address: rschill@uni-mainz.de
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periments �8� and simulations �9,10� of monodisperse hard
spheres in three dimensions have shown crystallization.
Hence, the existence of geometric frustration is not sufficient
for glass formation. What one needs is bidispersity or poly-
dispersity.

Santen and Krauth have performed a Monte Carlo �MC�
simulation of a two-dimensional system of polydisperse hard
disks. The polydispersity has been quantified by a parameter
�pol. Their results clearly demonstrate �i� the absence of a
thermodynamic glass transition and �ii� the existence of a
dynamic glass transition at a critical packing fraction
�c��pol�. The kinetic glass transition shifted outside the re-
gion of crystallization for �pol��min

pol �10% �11,12�. Further-
more, the diffusivity was found to be consistent with the
MCT result �2,3�

D � ��c − ���, � � �c,

where ��2.4 and �c
sim�0.80. This critical value agrees with

what has been found for a related system by Doliwa and
Heuer �see Fig. 2 in Ref. �13��. The absence of a thermody-
namic glass transition has been strengthened recently by
Donev et al. �14� for a binary hard-disk mixture.

There are a few investigations of glass formation in two-
dimensional systems with soft potentials. Lançon and
Chaudhari �15� studied a binary system with modified
Johnson potential. They found that the structural relaxation
time seems to diverge when approaching a critical tempera-
ture. Similar behavior was observed by Ranganathan �16� for
a monodisperse Lennard-Jones systems and by Perera and
Harrowell �17� for a binary mixture of soft disks with a 1/r12

potential. It is surprising that the intermediate self-scattering
function S�s��q , t� of the monodisperse system �16� exhibits
strong stretching, one of the characteristics of glassy dynam-
ics. However, S�s��q , t� does not produce a well-pronounced
plateau �16� under an increase of the density; i.e., the cage
effect does not become strong enough. This is quite different
to the binary system �17�. S�s��q , t� develops a two-step re-
laxation process upon supercooling with a well-pronounced
plateau over four to five decades in time, at lower tempera-
tures. This behavior is qualitatively identical to that found
for, e.g., the Lennard-Jones mixture investigated and ana-
lyzed in the framework of MCT by Kob and Anderson �18�.
The authors of Refs. �11–17� conclude that there is a struc-
tural glass transition in two dimensions. Their conclusion is
supported by recent experiments on colloidal particles with
repulsive dipolar interactions in two dimensions �19�. Since
these simulational and experimental findings strongly re-
semble the MCT predictions obtained for d=3, it is impor-
tant to apply MCT to two-dimensional liquids. MCT has
been applied to the two-dimensional Lorentz model of over-
lapping hard disks �20� and a charged Bose gas with
quenched disorder and logarithmic interactions at zero tem-
perature �21�, but to our best knowledge not to a two-
dimensional liquid-glass problem with self-generated disor-
der. To accomplish this is the main motivation of the present
contribution.

The outline of our paper is as follows. The MCT equa-
tions for arbitrary dimensions and the major predictions of
MCT will be presented in Sec. II. The theory requires as only

input the static structure factor, which is computed in Sec.
III. In Sec. IV we apply MCT to a two-dimensional system
of monodisperse hard disks and will demonstrate that there is
a dynamic glass transition. The dynamic behavior close to
that transition is qualitatively identical to that of monodis-
perse hard spheres in three dimensions. It will also be shown
that the MCT result for the time-dependent mean-squared
displacement describes the experimental result of Ref. �19�
for both species rather satisfactorily over four decades in
time. The final section V contains a short summary and some
conclusions.

II. MODE COUPLING EQUATIONS

In this section we will shortly review the MCT equations
for the collective and tagged particle correlator of density
fluctuations of a one-component liquid and will present the
properties of their solution close to the glass transition sin-
gularity. The only dependence on dimension d comes
through the integrations element �2��−dddk��2��−dkd−1dk
which appears in the memory kernels.

MCT provides equations of motion for the normalized
intermediate scattering function �q�t� and the tagged particle
correlator �q

�s��t�. The mathematical structure of these equa-
tions does not depend on d. For Brownian dynamics which is
appropriate for colloidal systems they read for d arbitrary

�q�̇q�t� + �q�t� + �
0

t

dt�mq�t − t���̇q�t�� = 0, �1�

with the memory kernel mq�t� containing fluctuating stresses
and playing the role of a generalized friction coefficient. It
arises because the density fluctuations captured in �q�t� are
affected by all other modes in the system. In MCT, one as-
sumes that the dominating contributions at long times are
given by density pair fluctuations and approximates �in the
thermodynamic limit�

mq�t� 	 Fq��k�t�� =� ddk

�2��dV�q,k,p��k�t��p�t� . �2�

The vertices express the overlap of fluctuating stresses with
the pair density modes and are uniquely determined by the
equilibrium structure

V�q,k,p� =
n

2

SqSkSp

q4 �q · kck + q · pcp�2	�q − k − p� , �3�

where n is the number of particles per d-dimensional vol-
ume, Sq the static structure factor, and cq the direct correla-
tion function related to Sq by the Ornstein-Zernike equation.
�q is a characteristic microscopic time scale. The reader
should note that the vertices, Eq. �3�, have been approxi-
mated by neglecting static three-point correlations.

The corresponding equations for the tagged-particle cor-
relator and d arbitrary are of the same form

�q
�s��̇q

�s��t� + �q
�s��t� + �

0

t

dt�mq
�s��t − t���̇q

�s��t�� = 0, �4�

with
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mq
�s��t� 	 Fq

�s���k�t�,�k
�s��t�� =� ddk

�2��dV�s��q,k,p��k�t��p
�s��t�

�5�

and

V�s��q,k,p� = nSkq
−4�q · k�2�ck

�s��2	�q − k − p� . �6�

ck
�s�= 

q

�s�*
q� / �nSq� is the tagged-particle direct correlation
function. If the tagged particle is one of the liquid’s particles,
it is ck

�s�=ck.
The static correlation functions Sk, Sp, Sq, ck, and cp and

the correlators �k�t�, �k
�s��t�, �p�t�, and �p

�s��t� depend on
q= �q�, k= �k�, and p= �p� only, due to the isotropy of the
liquid and glass phase. Therefore the d-dimensional integrals
in Eqs. �2� and �5� can be reduced to a twofold integral over
k and p. This will make explicit the d dependence of the
vertices. As a result one obtains, similarly to the case in
d=3 �1�,

Fq��k�t�� = n
�d−1

�4��d

Sq

qd+2�
0

�

dk�
�q−k�

q+k

dp



kpSkSp

�4q2k2 − �q2 + k2 − p2�2��3−d�/2 ��q2 + k2 − p2�ck

+ �q2 − k2 + p2�cp�2�k�t��p�t� �7�

and

Fq
�s���k�t�,�k

�s��t�� = 2n
�d−1

�4��d

1

qd+2�
0

�

dk�
�q−k�

q+k

dp



kpSk

�4q2k2 − �q2 + k2 − p2�2��3−d�/2


��q2 + k2 − p2�ck
�s��2�k�t��p

�s��t� ,

�8�

with

�d =
2�d/2

�
d

2
� , �9�

the well-known result for the surface of a d-dimensional unit
sphere. ��x� is the gamma function. Note that Eq. �9� yields
�with �� 1

2
�=�1/2�

�1 = 2, �10�

which is consistent with the fact that the “one-dimensional
unit sphere” is an interval of length two with a “surface”
consisting of two points.

The behavior for q→0 of both functionals can be ob-
tained by a Taylor expansion of �k−q

k+qdp�¯�. Although
straightforward it is rather tedious. Alternatively, one can
start directly from Eqs. �2� and �5�, in order to obtain for q
→0

Fq��k�t�� →
n

2

�d

2�dS0�
0

�

dkkd−1Sk
2�ck

2 +
2

d
kckck�

+
3

d�d + 2�
k2ck�

2���k�t��2 + O�q� �11�

and

Fq
�s���k�t�,�k

�s��t�� → n
�d

d�2��d

1

q2�
0

�

dkkd+1Sk�ck
�s��2


�k�t��k
�s��t� + O�1/q� . �12�

Note that F0��k�t�� exists, whereas Fq
�s���k�t� ,�k

�s��t�� di-
verges like q−2. This divergence is related to the absence of
momentum conservation for the tagged particle.

Taking d=3 in Eqs. �7�, �8�, �11�, and �12�, one arrives at
the well-known representations of the memory kernel for fi-
nite q and q→0 �1,22,23�. Note that Refs. �22,23� already
present the integrals in Eqs. �7� and �8� in discretized form.

With knowledge of the number density, of the static cor-
relators Sq, cq, and cq

�s� as functions of the thermodynamic
variables, and of �q and �q

�s� one can solve Eqs. �1� and �4�
for initial conditions �q�0�=1 and �q

�s��0�=1. There exist
several quantities which characterize the solutions. These
quantities can be found in Refs. �2,22,23�. In order to keep
our presentation self-contained as much as reasonable we
discuss those for which results will be reported in the next
section. We start with the glass transition singularity. At the
glass transition the nonergodicity parameters �NEPs�

fq = lim
t→�

�q�t� �13a�

change discontinuously from zero to a positive nonzero
value, smaller or equal to 1. The corresponding quantity

fq
�s� = lim

t→�
�q

�s��t� �13b�

can change discontinuously at the same point or in a continu-
ous fashion at higher densities or lower temperatures. Both
NEPs fulfill the nonlinear algebraic equations �2�

fq

1 − fq
= Fq�fk�,

fq
�s�

1 − fq
�s� = Fq

�s��fk, fk
�s�� . �14�

fq
c and fq

�s�c are the NEP at the critical point—e.g., at n=nc.
Since we will apply MCT to d-dimensional hard spheres
with diameter 2R, we use in the following the packing frac-
tion �=n�d−1�R�d /d. Above, but close to �=�c—i.e., for
0��	��−�c� /�c�1—it is

fq = fq
c + hq���/�1 − �� + ��K̄q + ��/�1 − �� , �15�

with the critical amplitude

hq = �1 − fq
c�2eq

c , �16�

the separation parameter

���� = C� + O��2� , �17�

and the so-called exponent parameter �, which obeys
0���1. The second term on the right-hand side of Eq. �15�
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is the leading asymptotic result for fq, and K̄q+� yields the

next-to-leading order correction. C, �, eq
c, and K̄q+� follow

from Fq�fk� and its derivatives with respect to fk at �c. Par-
ticularly, eq

c is the right eigenvector eq belonging to the larg-
est eigenvalue Emax��� of the stability matrix ��Fq�fk� /�fk�
at the critical point. Emax��� is not degenerate since the sta-
bility matrix is non-negative and irreducible. At the critical
point the maximum eigenvalue becomes 1; i.e., �c can be
determined from the condition Emax��c�=1.

At the critical point �q�t� decays to the plateau value fq
c,

0� fq
c �1. Its time dependence is given by

�q
c�t� = fq

c + hq�t/t0�−a�1 + �Kq + ��a���t/t0�−a�, t � t0.

�18�

Kq �not to be confused with K̄q� and ��x� are again deter-
mined by Fq�fk� and its derivatives at �=�c. They are a
measure of the next-to-leading order contribution with re-
spect to the leading asymptotic result

�q
c�t� = fq

c + hq�t/t0�−a, t � t0, �19�

the critical law. This critical decay occurs on a time scale t
much larger than a typical microscopic time t0. The exponent
a is determined by �, only.

For ��0 two �-dependent, divergent time scales exist:

t� = t0���−1/2a, � � � 0, �20a�

and

t�� = t0����−�, � � 0, �20b�

with �= 1
2a + 1

2b and t0�= t0 /B1/b, where B is a constant. The
so-called von Schweidler exponent b follows from � only.
�q�t� exhibits a two-step relaxation. The relaxation for
t / t��1 to the critical plateau value fq

c follows from Eq. �18�
by replacing �t / t0� through �t / t��, and the decay from that
plateau to zero is initiated by the von Schweidler law for
t�� t� t��:

�q�t� = fq
c − hq�t/t���b�1 − �Kq + ��− b���t/t���b� . �21�

Kq+��−b� determines again the next-to-leading-order contri-
bution.

For ��0 there is a single relaxation process only. �q�t�
relaxes for t / t��1 like for ��0, and finally the plateau
value fq is reached by an exponentially long time decay.

For ��0, the final or �-relaxation process describes the
decay of the correlators from the plateau fq

c down to zero.
Asymptotically close to the transition, the functional form of
the � process is given by a master function �̃q�t̃� of the
rescaled time t̃= t / t�� via

�q�t� = �̃q�t̃� + ��̃q
�2��t̃� + O��2� for � → 0 − . �22�

The master function �̃q obeys an equation similar to Eq. �1�
with vertices evaluated right at the critical point, �=0. Thus
it does not depend on separation � and control parameters,
and Eq. �22� expresses the often observed “�time-
temperature� superposition principle” �2,3�. The von Sch-
weidler series, Eq. �21�, gives the short-time behavior of �̃q

for t̃→0, and the corresponding result for the correction is
�̃q

�2��t̃→0�→hqB1Ct̃−b, with C from Eq. �17� and B1 a
known constant.

Similar leading-order and next-to-leading-order contribu-
tions can be derived for the tagged-particle correlator
�q

�s��t� and, e.g., the mean-squared displacement
	r2�t�= 
�r�t�−r�0��2� �23�. Since

	r2�t� = lim
q→0

2d

q2 �1 − �q
�s��t�� , �23�

the long-wave limit of Eq. �4� yields after integration with
respect to t,

	r2�t� + D0
�s��

0

t

dt�m̃0
�s��t − t��	r2�t�� = 2dD0

�s�t , �24�

where the memory kernel m̃0
�s��t� follows from Eqs. �5� and

�12�:

m̃0
�s��t� 	 lim

q→0
q2Fq

�s���k�t�,�k
�s��t��

= n
�d−1

d�2��d�
0

�

dkkd+1Sk�ck
�s��2�k�t��k

�s��t� . �25�

Furthermore, we have used

�q
�s� = 1/�D0

�s�q2� , �26�

with D0
�s� the short-time diffusion constant of the tagged par-

ticle. Equations. �13b� and �23� imply that the long-time limit
of 	r2�t�,

lim
t→�

	r2�t� = 2drs
2, �27�

is related to the tagged particle’s localization length rs given
by

rs
2 = lim

q→0

1 − fq
�s�

q2 . �28�

In the liquid phase where fq
�s�=0, Eq. �27� gives rs=�—i.e.,

the particle is delocalized—while rs becomes finite at the
glass transition.

Besides the correlators �q�t� and �q
�s��t� one can also

study the corresponding susceptibilities �q��� and �q
�s����,

respectively. Similar asymptotic laws and next-to-leading-
order corrections exist for them �22,23�. Independent of
whether the correlators or their susceptibilities are consid-
ered, the dependence on d of the leading- and next-to-
leading-order terms enters only via the d dependence of Fq

�Eq. �7�� and Fq
�s� �Eq. �8��.

III. STATIC STRUCTURE

In this section we consider the calculation of accurate
equilibrium structural correlation functions for the hard disk
system. Within MCT, all information regarding the interpar-
ticle interactions is contained in the static structure factor
which enters the memory function vertices, Eqs. �3� and �6�;
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the interaction potential does not enter explicitly in the MCT
equations. Experience with MCT calculations in three-
dimensional systems has shown that the location of the glass
transition somewhat depends on the details of the input struc-
ture factor, particularly the height of the main peak. Different
approximate theories for the static structure lead to varying
values for, e.g., the critical packing fraction �c

�d=3� �24�. We
have therefore considered a number of approximation
schemes for the two- dimensional static structure factor in
order to obtain the best possible values for the description of
the ideal glass transition. The quality of the various approxi-
mation schemes is assessed by comparison with computer
simulation data. �Monte Carlo simulations of 6
104 par-
ticles, as well as event-driven molecular dynamics simula-
tions of 1089 particles, were performed, both in the NVT
ensemble �26�.�

Integral equation theories based on the Ornstein-Zernike
�OZ� equation provide a powerful method to calculate the
pair correlation functions for a given interaction potential
�25�. The OZ equation is given by

h�r� = c�r� + n� ddr�c�r��h�r − r�� , �29�

where h�r�	g�r�−1. This expression must be supplemented
by an additional �generally approximate� closure relation be-
tween c�r� and h�r�. For hard spheres in d dimensions the
most widely used closure is the Percus-Yevick�PY� relation
g�r�1�=0, c�r�1�=0. In odd dimensions the resulting in-
tegral equation can be solved analytically for the direct cor-
relation function c�r�. In even dimensions there exists no
analytic solution and a full numerical solution is required
�27�. Efforts have been made to approximate the numerical
PY data by analytic forms �28,29� but in all cases these fail
to reproduce accurately the detailed structure of the numeri-
cal solution at high densities. The formally exact closure to
the OZ equation for systems with pairwise interactions is
given by

h�r� = − 1 + exp�− �u�r� + h�r� − c�r� + B�r�� , �30�

where u�r� is the pair potential and B�r� is the bridge func-
tion, an intractable function representing the sum of the most
highly connected diagrams in the virial expansion. Setting
B�r�=0 recovers the familiar hypernetted-chain approxima-
tion.

The modified-hypernetted-chain �MHNC� approximation
is to take B�r� from the PY theory solved at some effective
density n*, different from the true system density n, and to
treat this as a variational parameter to ensure thermodynamic
consistency between the virial and compressibility routes to
the pressure. A detailed description of the MHNC equation
can be found in �30�. The steps taken in solving the MHNC
equation are the following: �i� numerically solve the PY
equation at density n*, �ii� use Eq. �30� to find B�r�
	BPY�r ;n*�, �iii� solve Eqs. �29� and �30� with this bridge
function, �iv� calculate the pressure from the virial and com-
pressibility equations, and �v� adjust n* until the two pres-
sures are equal. In three dimensions it is generally recog-
nized that the MHNC approximation provides a highly

accurate description of the pair correlations for the hard-
sphere fluid, significantly improving upon the PY theory. We
find that the same is true in the case of two-dimensional hard
disks. At low densities the MHNC Sq lies very close to the
PY result. As the density increases discrepancies begin to
arise, particularly in the region of the main peak, with the
MHNC in closer agreement with simulation. Both the
MHNC and PY theories are significantly more accurate than
the analytical Baus-Colot expression �28�. Figure 1 shows a
comparison between the MHNC Sq and the simulation re-
sults. The level of agreement is very satisfactory, and the
MHNC shows clear improvement over the other theories in-
vestigated. The only notable deviation from the simulation
results is the height and width of the second �third� peak,
which is overestimated �underestimated� by the MHNC
theory. It is known that upon approaching the crystallization
phase boundary �located at �F=0.69 for hard disks� a shoul-
der develops on the second peak of the structure factor, a
feature which has been interpreted as an indicator of ap-
proaching crystallization �31�. The development of the shoul-
der also suppresses the height of the second peak to some
extent and leads to a small shift in the location of the third
peak. The MHNC theory, like the PY and all other standard
integral equation theories, does not contain information
about crystallization and thus predicts fluidlike structure at,
and beyond, the freezing transition. While this property leads
to some discrepancy with simulation results at high density,
it makes such theories ideal for calculating the fluidlike
structure factors required as input to the MCT, where we
assume crystallization to have been suppressed. We can thus
proceed with confidence using MHNC structure factors as
input to the MCT.

IV. RESULTS

In this section we will apply MCT to a two-dimensional
�2D� system of monodisperse hard disks with diameter 2R.
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FIG. 1. Comparison between theoretical MHNC structure fac-
tors and simulation for hard disks at packing fractions �=0.5�+�,
0.628 ���, and 0.68 ���; q is given in units of 1 / �2R�, the inverse
diameter. Inset �a� concentrates on the vicinity of the main peak and
gives additional comparison with Baus-Colot and PY theories for
packing fraction �=0.628. Inset �b� demonstrates how the MHNC
theory correctly captures the asymptotic behavior for large q values
for packing fraction �=0.628.
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We will solve the MCT equations �1�, �4�, and �24� and will
present results for those quantities discussed in the last sec-
tion. As input we will use the static structure factors Sq ob-
tained from the MHNC approach. This result is presented in
Fig. 2 for three different packing fractions close to the glass
transition and compared with the corresponding Percus-
Yevick result for hard spheres in d=3. For instance, for
�=�c

d=2 and �=�c
d=3—i.e., for �=0—the peaks are more

pronounced in d=2. In particular the main peak is more nar-
row and higher for d=2 than for d=3. The direct correlation
function cq follows from the Ornstein-Zernike equation. Be-
cause we choose the tagged particle as one of the liquid
particles, we have cq

�s�=cq.
For the friction coefficients in Eqs. �1� and �4� we take

�q=Sq / �D0
�s�q2� and �q

�s�=1/ �D0
�s�q2� �cf. Eq. �28��, and

choose as our unit of time ��BD�=D0
�s� / �10�2R�2�; in the fol-

lowing all times will be given as rescaled ones, t /��BD�. For
the numerical solution of MCT equation one has to discretize
q. A compromise between a fine grid and computation time is
required, as the computations scale with number of grid
points, M3. We choose a grid with M =250 grid points and a
high-q cutoff of 50/ �2R�. A higher cutoff has only a very
small effect on the critical packing fraction ��10−4�. The
effect of the number of grid points is more sensitive due to
the form of the Jacobian of the transformation to bipolar
coordinates. In this paper the integration is substituted by a
rule that can be called a modified trapezoid rule. The value of
the function to be integrated is not taken in the middle of the
interval �nh , �n+1�h� but at �n+0.303�h. By using this rule
one gets the best discrete description of the Jacobian and
hence it is used here. The difference in � between M =500
and M =250 is then �10−3, leading to a system close enough
to continuum. Then the solution of Eqs. �1�, �4�, and �24�
will be performed by use of a decimation technique �32�.

The search for the glass transition singularity can be done
either by an iterative solution of the nonlinear equations �14�
or by calculation of Emax���. In this paper a simple bracket-
ing algorithm is used starting from two points where point A

yields a finite NEP for q near the peak position and point B
has fq=0. The next point C is taken in the middle of the
interval. If it yields finite fq the next point is taken between A
and, C; if fq=0 the other interval �C ,B� is taken. This pro-
cedure is continued until the critical packing fraction �c is
determined to a precision of 10−10. As a result we have found

�c
d=2 � 0.696810890�317� ,

which is above the value for d=3 �22�:

�c
d=3 � 0.51591213�1� .

�The denoted accuracy will be required to reliably compute �
in the following.� Similar to the three-dimensional system,
the collective part and self-part of the density fluctuations
become nonergodic at the same critical packing fraction
�c

d=2. The corresponding critical nonergodicity parameters
are shown in Fig. 3.

While almost no difference between incoherent NEPs for
d=2 and d=3 can be observed, more pronounced maxima
appear in the coherent NEP at higher wave vectors for the
lower dimension. Regions of rather abrupt q dependences in
fq should be observable experimentally. Two length scales
appear to be involved in fq. While the average particle dis-
tance, connected to the main peak in Sq, somewhat differs
from d=3 to d=2, the localization length, which dominates
the incoherent NEP, is insensitive to dimensionality. The
change of fq when stepping down in dimension thus cannot
simply be scaled away.

An important observation in the numerical solution of Eq.
�14� concerns the convergence of the required integrals. We
find here, and for all other integrations performed, that con-
vergence at small and large wave vectors holds. No critical
anomalies arise connected with the growth of a static corre-
lation length �33�. We interpret this as indication that the
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FIG. 2. �Color online� Comparison of 2D MHNC structure fac-
tors �black/dark� to 3D PY �magenta/light�. The packing fractions
correspond to �=0 �solid lines�, �=−10−4/3 �dotted lines�, and �=
+10−4/3 �dashed lines�. The critical packing fractions are 0.697 for
2D and 0.516 for 3D.
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FIG. 3. Nonergodicity parameter of coherent �2D diamond, 3D
dashed line� and incoherent �2D circles, 3D solid line� correlators at
critical packing fraction �c

2D=0.697 and �c
3D=0.516. The q values

for q�1 are not included since they can not be determined accu-
rately for numerical reasons. The q=0 results are from the analytic
expansions, Eqs. �11� and �12�, and are included as triangles.
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MCT glass transition in d=2 describes a local phenomenon
not affected by long-range correlations, which might sensi-
tively depend on dimensionality.

All wave-vector-dependent structure functions describing
the glassy structure and its relaxation �“cage effect”� are
summarized in Fig. 4. The critical nonergodicity parameter
fq

c and the critical amplitude hq are depicted in Fig. 4�b� and

the next-to-leading-order amplitudes Kq and K̄q �cf. Eqs.
�15�, �18�, and �21�� and in Fig. 4�c�. The q dependence of
the shown quantities follows generally the one of Sq. Only hq
exhibits the opposite variation around the main structure fac-
tor peak. Figure 4�a� specifies three typical wave numbers for
which results will be discussed below. Comparison with the
d=3 result �Fig. 2 in Ref. �22�� reveals a qualitatively similar
q dependence of fq

c, hq, Kq and Kq. Like for Sq, the q varia-
tion of all quantities is more pronounced in d=2 than in
d=3.

As mentioned in Sec. II, the separation parameter ����
can be calculated from Fq�fk� and its derivatives at �c. The
result is given in the inset of Fig. 5. The linear term in Eq.
�17� describes ���� for −0.030���0.025 with an accuracy
better than 10%. This range is similar to that for the corre-
sponding result for d=3 �22� and provides an estimate for the
range of validity of the asymptotic expansions. The quality
of the leading-order result and the next-to-leading-order con-

tribution for fq �cf. Eq. �15�� is demonstrated in Fig. 5 for the
three q values q1, q2, and q3 �Fig. 4�a��. It is interesting, that
for q2 the leading asymptote describes fq��� best and for an
unexpectedly wide range. This arises because of a cancella-
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FIG. 4. �a� Structure factor Sq as function of wave vector q for
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tion of higher-order correction terms. For q1 and q3 the next-
to-leading order has to be taken into account already for
rather small �, as expected from the ���� curve. The overall
behavior also is quite similar to d=3 �cf. Fig. 3 of Ref. �22��.

Now we turn to dynamical features. Figure 6 presents the
normalized correlators �i�t�	�qi

�t� for i=1,2. The two-step
relaxation process for ��0 becomes obvious for both corr-
elators. Since fq2

c � fq1

c �cf. Figs. 4�a� and 4�b�� the plateau
heights for �2�t� are below those for �1�t�. Again, the t and
� dependence �the latter is not shown� is in qualitative agree-
ment with the corresponding results in d=3 �cf. Figs. 4 and 6
of Ref. �22��. In the following, we will apply the asymptotic
expansions from Sec. II to the correlators in order to charac-
terize the long-time dynamics in more detail.

Following Ref. �22� we have calculated typical time
scales �q

±��� �0� and �q����0� characterizing the first and
second relaxation steps. In the fluid, �−�q� marks the crossing
of the plateau, �q��−�q��= fq

c, and the �-relaxation time is
defined by �q��q��= fq

c /e. In the glass, �+�q� captures the ap-
proach to the long-time plateau, �q��q

+�− fq
c =1.001�fq− fq

c�.
Results are shown in Fig. 7 for q=q1. The divergence of
these relaxation times at �=0 is described by the asymptotic

laws, Eqs. �20a� and �20b�. Since �c
d=2 has been determined,

one can calculate the exponent parameter �. As a result we
find �d=2�0.7167 which implies ad=2�0.320, bd=2�0.613,
and �d=2�2.38. These values are close to �d=3�0.735,
ad=3�0.312, bd=3�0.583, and �d=3�2.46 �22�. Using in
Eqs. �20a� and �20b� ad=2 and �d=2 leads to the asymptotes
�solid lines� in Fig. 7.

The microscopic time scale t0 entering the critical power
law, Eq. �18�, can be deduced by plotting ��q�t�− fq

c�ta versus
log t for ��0 and ��0 �see Fig. 8�. The value at which a
constant plateau is best reached by both curves is 0.114
=hqt0

a. With hq1
�0.337 and ad=2 we get t0=0.034. The qual-

ity of the leading-order result �Eq. �19�� and its next-to-
leading-order correction �second and third terms in the curly
bracket of Eq. �18�� of the critical law is checked in Fig. 9. A
similar check for the von Schweidler law �Eq. �21�� is done
in Fig. 10. Like for fq

c, the leading order has a large range of
validity for q=q2. Note that both time scales of the structural
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relaxation are given by the matching time t0 determined in
Fig. 8, and by the separation parameter �. Thus, there
remains no adjustable parameter in the test of the von
Schweidler law in Fig. 10.

The critical law and the von Schweidler law are the short-
and long-time expansions of the so-called �-master function
g±�t̂= t / t�� for ��0, respectively. g±�t̂� describes the first

scaling-law regime. The t and � dependence of �̂q�t�
= ��q�t�− fq

c� / �hqC� on the time scale t� is given by g±�t̂� for
�� � →0, independent of on q �2�. For the two-dimensional
system this property is demonstrated in Fig. 11. We clearly
observe that the curves for q1, q2, and q3 collapse onto a
master function with increasing n—i.e., for �→0. Because
of the connection between the q dependences of the correc-
tion amplitudes in Eqs. �18� and �21�, an ordering scheme
exists for the functions �̂q�t� in Fig. 11. Their vertical order
before and after crossing the plateau needs to coincide; this is
obeyed in Fig. 11.

The second scaling-law regime �for ��0� is defined by
the rescaled time t̃= t / t�� , where t�� often is called the
�-relaxation time and denoted by �. For t̃=O�1�, the t and �

dependence of �q is given by the �-master function �̃q�t̃�
�2�. The validity of this second scaling law �Eq. �22�� is

presented in Fig. 12. Approaching �=0 from below a col-
lapse onto a q dependent master function �̃q occurs.

For the test of the superposition principle, the
�-relaxation time was computed using the power law, Eq.
�20b�, and t0 from Fig. 8. At q1, the �-relaxation time obvi-
ously deviates early from the asymptotic power law, since
there are intersections of the rescaled correlators. Neverthe-
less, the range of validity of the �-scaling law in Fig. 12 far
exceeds the one of the �-scaling law tested in Fig. 11. This
originates from the dependence of the leading corrections on
the separation parameter �. While the corrections to the �
process are smaller by a factor �� only, the relative correc-
tions to the �-superposition principle start out in order �. For
example, at q2, the � master function �̃q2

�t̃� describes 68% of
the decay of the final relaxation better than on a 5% error
level at the separation �=−0.01 �see the circle in Fig. 12�,
while in Fig. 11 for the test of the �-scaling law smaller � are
required.

The shape of the �-relaxation process—viz, its master
functions �̃q�t̃�—often is described by a Kohlrausch law

�̃q�t̃� � Aq exp�− 
 t̃

�̃q
��q� , �31�

where a possible dependence of the parameters on wave vec-
tor q is taken into account. The von Schweidler expansion of
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the � process, Eq. �21�, immediately shows that the �̃q�t̃�
exhibit stretching—viz., do not decay via simple exponential
relaxation, but result from a broad distribution of relaxation
times. Numerical solutions of the MCT equations in d=3
have shown that, e.g., for hard spheres, the Kohlrausch law
provides a good overall fit to the master functions for all
wave vectors albeit with noticeable deviations at short res-
caled times and with q-dependent parameters �34�. Interest-
ingly least-squares fits of Eq. �31� to the �final part of the�
�-master functions for t̃�10−3.86 yield remarkably close
agreement of the d=2 curves with Kohlrausch laws. This is
shown for two wave vectors in Fig. 12 and can be learned
from the fit parameters presented in Fig. 13. The amplitude
Aq of the Kohlrausch law closely follows the critical NEP,
which gives the �true� amplitude of the � process, and the
Kohlrausch stretching exponent �q varies little with wave
vectors and is quite close to its large-q limit given by the von
Schweidler exponent b. Within MCT, the Kohlrausch law
can be derived as limiting law when an increasing number of

correlators—i.e., correlators with a large range of q values—
contribute to the memory kernels �35�. This arises for large
wave vectors: then �q=b holds, and the Kohlrausch-
relaxation time depends on wave vector as �̃q�q−1/b. In the
opposite limit, when only one correlator contributes to the
memory function, the schematic F2 model is obtained, where
the � process is exponential �2�. The latter description obvi-
ously best applies to the relaxation of the correlator �̃q1

�t̃� at
the position q1 of the primary peak in the structure factor. It
corresponds to the motion of particles connected to their av-
erage separation, which in MCT is predominantly coupled
back to itself. Guided by these two limits, we speculate that
the Kohlrausch law provides rather good fits to the � process
in d=2 because the spread of Kohlrausch exponents between
b=0.61��q�1 is smaller in d=2 than it is in d=3.

Finally, we have calculated the mean-squared displace-
ment �r2�t�=	r2�t� / �2d�, weighted with 1/ �2d�. Figure 14
presents the results obtained from the solution of Eq. �24�
for d=2 and d=3 �23�. For the liquid phase the increase
of � leads to the formation of a plateau which has its
origin in the cage effect, independent of d=2 or d=3. The
dynamical behavior for t small is governed by the
short-time diffusion constant D0

�s� and that for t→� by
D�����t������−1���c−���, the long-time diffusivity. At
�c—i.e., for �=0—a transition occurs where the cage has an
infinite life time such that D���=0 for ���c. Consequently
the particle becomes localized with finite localization length
rs �cf. Eq. �27��. It is interesting that rs

d=2�0.077�2R� and
rs

d=3�0.075�2R� are almost the same, as can be seen from
Fig. 14 �as well as from Fig. 3�.

V. COMPARISON WITH EXPERIMENT

Although our results were obtained for monodisperse hard
disks, we have made a comparison of the mean-squared dis-
placement �MSD� 	r2�t� with corresponding experimental re-
sults of the binary system studied in Ref. �19�.

The experimental system consists of a two-dimensional
binary mixture of superparamagnetic polystyrene particles
doped with Fe2O3 clusters, confined by gravity to a water-air
interface. This is realized by a free-hanging flat water droplet
in a top-sealed glass cylinder. Aggregation of the particles is
prevented by addition of sodium dodecyl sulfate. The system
can be considered truly as two dimensional because the
gravitational lengths are small compared to the particle di-
ameters �2Rsmall=2.8 �m, 2Rbig=4.7 �m�. An inclination
control ensures the horizontal stability by ±1�rad and the
flatness of the interface can be controlled in a range less than
1 �m relative to 6 mm sample diameter �36�. We control the
interaction by an external magnetic field that induces mag-
netic moments in each particle. The magnetic dipole interac-
tion dominates the pair potential. The sample is observed by
video microscopy with a charge-coupled-device �CCD� cam-
era. Within an area of 1 mm2 the trajectories of 2100 big and
900 small particles are recorded for several days. It is pos-
sible to observe the dynamics of the system from fluid to
glassy dependent on the applied magnetic field. Local and
statistical information can be obtained on all relevant length
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c �thick dashed�. The Kohlrausch exponent �q �diamonds� con-
verges to the von Schweidler exponent b=0.613 �thick line� for
high q values. The times �̃q are shown by a dotted line.
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and time scales. A more detailed description of an earlier
variant of this system can be found in �19�.

The control parameter varied in the experimental system
is the interaction parameter, or inverse temperature, �. Inter-
action parameters larger than �m=60 are used, the value at
which the corresponding monodisperse experimental system
forms a crystal. Because we aim for a qualitative test of our
MCT results only, like the existence of finite localization
length at the transition, we concentrate on the �-insensitive
parts of the MSDs. Thus, we arbitrarily choose ��0 for the
experimental curve at the highest � available, �=592. The
result of this comparison is shown in Fig. 15.

In the fit a global length and time scale was obtained by
fitting the �=592 data. The length and time scales found at
this � are then used in fits to data for lower �. Quite good
matching to the data is achieved as shown in Fig. 15 for the
example of �=474. Hence the scaling factors for time and
length scales can be taken as constants and independent of
parameter �. With the scales set, the only fitting parameter

left is �, which is adjusted by eye. We find the fits obtained
remarkably good, considering the simplification to map the
binary experimental system onto monodisperse hard disks.
From the fitted length scale of the single particle MSD of the
majority particles �viz., the big ones� a reasonable value for
the effective particle size follows. The position of the pri-
mary peak in the hard-disk structure factor closely agrees
with the position of the experimentally obtained �partial�
structure factor of the big particles; see the upper inset of
Fig. 15. We thus conclude that MCT correctly captures the
ratio of localization length to average particle distance.

VI. SUMMARY AND CONCLUSIONS

In a first step we have determined the explicit dependence
of the MCT functions Fq��k� and Fq

�s���k ,�k
�s�� on the spatial

dimensionality d. This has also been done in the hydrody-
namic limit q→0, which generalizes the well-known result
for d=3 �1,22,23� to arbitrary dimensions.

The major motivation of the present contribution has been
the investigation of the existence of a dynamic glass transi-
tion in two-dimensional systems. As model system we have
chosen monodisperse hard disks which might be a reason-
able approximation for a system of polydisperse hard disks,
at least on a qualitative level. Taking the static input quantity
Sq from a modified, hypernetted chain approximation we
have found that an ergodic-nonergodic transition occurs at a
critical packing fraction �c

d=2�0.697. At this critical density,
both the fluctuations of the collective and self-density simul-
taneously freeze into a glassy state, as for d=3. That �c

d=2 is
about 35% above �c

d=3 might be not surprising, since the
packing fraction �triang

d=2 =� /�12�0.9069 of the triangular lat-
tice is also larger than �hcp

d=3, the value for the hexagonal
close-packed lattice, by about 20%. The difference between
�c

d=2 and �c
d=3 becomes even more obvious when scaling is

done with the random close packing values �rcp
d=2�0.84 and

�rcp
d=3�0.64 �37�. ��c /�rcp�d=2�0.83 and ��c /�rcp�d=3�0.81

deviate by not more than 5%. Consequently, �rcp
d might be a

reasonable scale for �c
d. So far MCT applied to d=2 provides

an explanation for the dynamic glass transition observed in
Refs. �11–13�. Since MCT overestimates the glass transition,
it is not a surprise that �c

sim�0.80 is above �c
d=2�0.697,

quite similar to d=3 �3�.
For all the investigated quantities and properties con-

nected to the local “cage motion” on an intermediate time
window, like the critical nonergodicity parameter, critical
amplitudes, the exponent parameter, the amplitudes Kq and

K̄q of the next-to-leading order corrections, etc., we have
found a weak dependence on dimensionality only, comparing
d=2 and d=3. The largest change between d=2 and d=3
occurs for the coherent NEP at higher wave vectors. For the
two-dimensional case, the q dependence is more abrupt. Oth-
erwise, the similarity also holds for the localization length rs
which differs by less than 3%. Accordingly, the Lindemann
criterion applied to the melting of the glass phase is almost d
independent, at least for d=2 and d=3. We consider this an
intriguing finding, considering the role of dimensionality in
how hydrodynamic back flow affects diffusion �38� and the
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FIG. 15. Comparison of experimental data �dotted line� from
�36� with theoretical curves �solid�. Since the experimental system
is a binary mixture three MSD curves are measured. Curve b is
measured considering only big particles, s only small particles and
b+s takes all particles into account without discerning big or small.
The top panel is at �=592, �=−10−3, the bottom one at �=474,
�=−10−2. The data at �=592 can in the given region also be fitted
by a critical curve and could thus correspond to a state in the glass.
At �=592, the unit of time is fitted as �BD=1/470 s, and the unit of
length is fitted as �420,700,500� �m2 for the big �curve b�, the
small �curve s�, and all particles �curve b+s�. This leads to a short
time diffusion coefficient D0�0.9e−13 m2/s and an effective diam-
eter of 2Reff

big�20.5 �m for the big particles. The lower inset shows
the fitted separation parameter � versus �. The upper inset shows a
comparison of the �partial� structure factor of the big particles at
�=592 with the one of the hard disk system at �=0; fortuitously,
deviations only appear at larger q.
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dependence of thermodynamic glass transitions on dimen-
sion �5,6�. Moreover, the Lindemann criterion does not apply
to freezing into ordered states in d=2, as has been observed
also in the experimental system studied here �39�. For longer
times, we found the “�time-temperature-�superposition prin-
ciple” of the � process; the correlators collapse onto a non-
exponential master function. Interestingly, we observed for
hard disks that the functional form of the � relaxation closely
resembles a Kohlrausch law. This holds better in d=2 than
for hard spheres in d=3. While the prediction of a superpo-
sition principle for the final decay is guaranteed by the gen-
eral structure of the MCT equations, the shape of the relax-
ation process provides information on the local particle
rearrangements. Apparently, in the lower dimension the
memory kernels arise from a large number of contributions
so that the Kohlrausch law as a limiting law of large numbers
provides a better approximation to the cooperative motion
during the � decay in d=2 than in d=3. There is another
conclusion we can draw from our results. On a qualitative
level, we have found consistency with the observations made
in Refs. �15–17�. Particularly, the stretching found for the
monodisperse Lennard-Jones system �16� and the binary
mixture of soft disks �17� as well as the two-step relaxation

process �17� can be described by MCT in two dimensions.
Of course, more quantitative comparisons are necessary.

MCT should also be worked out for binary hard disks with-
out and with pair interactions. This will allow to compare
MCT results with the experimental ones �19� in detail. A first
attempt has been done concerning the mean-squared dis-
placement. A more or less satisfactory agreement has been
found over about four decades in time �see Fig. 15�. Whether
the systematic discrepancies between the theoretical and the
experimental result can be attributed to the different two
model systems—i.e., on one side the monodisperse hard
disks and on the other the binary hard disks with dipolar
repulsion at rather low densities—is one of the open ques-
tions we intend to study in the future.
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