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The structure of granular deposits growing by arriving particles is analyzed using three-dimensional on-
lattice Monte Carlo modeling of convective-diffusive particle deposition. The deposit density profile ��h�
depends on the particle dynamics and becomes formed by three different regions: a denser near-wall region at
the deposit bottom in contact with the original plain surface, a middle uniform region with constant mean
density, and an open and lighter active-growth region at the deposit outer surface. Fitting expressions for ��h�
valid in each region are proposed, based on the known features of deposits formed in the two limiting cases:
ballistic deposition and diffusion-limited deposition. Also, a composite expression for ��h� fitting the density
profile throughout the deposit is given. All these expressions are written in terms of a length scale l�Pe�
dependent on the particle Péclet number, which provides the relative importance of the convective motion to
the diffusive transport for the particle.
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I. INTRODUCTION

Nonequilibrium interface growth models have been exten-
sively studied during the last 30 years �1–3�. The need for
controlling the structure of deposits in areas such as material
synthesis from powders or colloidal suspensions �4,5�, par-
ticle filter performance monitoring �6–8�, deposits formed by
combustion generated particles on the surfaces confining the
flue gas stream �9�, or sedimentary rock properties estimation
�10� has motivated some of this fundamental research. Two
of the most studied cases are ballistic deposition �BD� �4�
and diffusion-limited aggregation �DLA� �11� and deposition
�DLD� �12�. In the BD case, the interface is formed by de-
positing identical particles that move following straight-line
trajectories. This would be the case of aerosol particles iner-
tially impinging onto a duct wall �13� or calcite particles
sedimenting to form a limestone rock �10,14�. In the DLD
case, the deposit is formed by attaching particles which ar-
rive following purely Brownian paths. From the point of
view of the growing deposit geometry, these two limiting
growth models lead to prototypes of self-affine fractals
�16,17� and self-similar fractals �12,15�, BD and DLD, re-
spectively. The deposit morphology is thus related to the
particle dynamical behavior near the surface. Therefore, it is
worthwhile to simulate deposits formed by different particle
arrival mechanisms to obtain the bulk deposit properties
�density� and surface features �roughness� as a function of
the parameters that control the particle dynamics. The micro-
structure of these heterogeneous deposits determines the ma-
terial macroscopic properties �18,19� such as strength, per-
meability, effective thermal conductivity, diffusivity for
vapor molecules, reactivity for labile molecules, etc.

The DLD model is valid for particles moving in a stochas-
tic manner due to thermal fluctuations. On the other hand,
the BD model applies to particles moving in a deterministic

way �due to either inertia, sedimentation, or phoretic forces
driving the particles toward the collecting surface�. However,
in general, the particle motion is neither purely stochastic nor
completely deterministic. Rather, the particle motion can be
split into two contributions: a mean velocity V and a Brown-
ian motion with a diffusion coefficient D. The particle mean
velocity can be adjusted by controlling the intensity of the
driving mechanism �gravitational sedimentation, inertia,
thermal gradient, electric field�. Thus, the arrival velocity of
particles to the surfaces confining particle laden gas flows
due to particle inertia can be varied by adjusting the particle
Stokes number �20� by means of changes in the gas flow
field, in the surface orientation with respect to the main-
stream, or in the surface curvature �21,22�. Also, the strength
of particle thermophoresis �drift of particles toward the
cooler regions under the presence of strong temperature gra-
dients� depends on the imposed temperature difference be-
tween the mainstream gas and the surface �23�, and the in-
tensity of particle photophoresis �particle drift in a radiative
field induced by slip due to the inhomogeneous temperatures
induced by the absorption of radiation� can be controlled by
the intensity of the radiative field �24�. Changes in the de-
posit structure �and thus in its physical and chemical proper-
ties� induced by modulating the phoretic force have been
experimentally reported �8,25,26� �although these works
were not intended to obtain a detailed characterization of the
synthesized material deposits and do not provide the data
required to compare with theoretical estimations�. The par-
ticle convective-diffusive motion is characterized by the rela-
tive intensity of the convective �deterministic� contribution
to the diffusive �stochastic� part—that is, by the particle
Péclet number �7,27� Pe=Va /D, where a stands for the char-
acteristic length �the particle diameter here�.

In general, deposits formed by particles arriving to an
initially flat wall become structured in three levels: a denser
near-wall �NW� region, a uniform region with constant mean
density, and an open and lighter active-growth �AG� region
�7�. The NW region comes from the early deposition stages
of the particle attaching on the initial clean surface which is
not shadowed by any formed deposit structure, rendering a
high-density layer. The uniform region corresponds to the
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steady growth of the deposit with constant mean density.
Both the NW region and the uniform region are frozen re-
gions because no new particles arrive there. The AG region
is the topmost layer of the deposit where particles are still
becoming attached. Here, the density is smaller and vanishes
with increasing height.

Studies of aggregates being formed by particles �28–30�
have shown that the change from diffusive to deterministic
particle motion induces a crossover from a fractal structure
to a compact aggregate. Large aggregates are fractals up to a
length scale of the order of D /V; that is, they can be consid-
ered as pseudohomogeneous bodies with fractal structure on
the small scale. For particle deposits this crossover also ex-
ists �31� and determines the average deposit density in the
uniform region. Characterizing the density as the solid frac-
tion, the mean density in this uniform region is well de-
scribed by the expression

�̄�Pe� = ���1 + Pe0/Pe�−D, �1�

where D�0.52, �� is the ballistic deposit average density
����0.302 for on-lattice simulations with “cubic particles,”
as reported in this work, which is higher than ���0.18
found for off-lattice simulations with spherical particles�, and
Pe0 is the crossover Péclet number �Pe0=4.8 for on-lattice
simulations�. This expression suggests a local fractal struc-
ture up to a length scale �31�

l�Pe� = �1 + Pe0/Pe�a . �2�

This result is in agreement with the value of the exponent
D=3−DDLA, where DDLA=2.48 is the fractal dimension of a
DLA fractal in three-dimensional �3D� simulations �15�.

A recent result by Ferreira et al. �30� provides some fur-
ther insight into this fractal-compact crossover for aggre-
gates. These authors suggest an asymptotic numerical fitting
expression for l�Pe�, somewhat different from ours, but com-
patible with it in the realm of 2D simulations �except for the
orientation dependence induced by the anisotropic diffusion
taken in �30��. The box-counting density expression in �30�
corresponds to that of a fat fractal. This result is compatible
with the existence of an average density �1� and the box-
counting results presented in �31�.

In the limit of ballistic deposition, the interface will be-
long to the Kardar-Parisi-Zhang �KPZ� universality class
�17�. Although some recent results disagree with this classi-
fication �32,33�, we will identify BD as belonging to the
KPZ universality, because KPZ is the continuous dynamical
growth model which leads to values of the dynamical expo-
nents closest to BD. For the deposit interface, a crossover
from a KPZ-like self-affine interface �16,17� to a DLA-like
self-similar interface �12� is expected when the Pe number
decreases and tends to zero. When an appropriate definition
of the interface is taken �31� �weighting the active site
heights with their attachment probabilities�, the interface is
shown to become KPZ-like after an initial transient �corre-
sponding to the early stages of DLA trees growth�. The in-
terface weighting leads to a dynamical definition of the in-
terface, which can also be linked to the density profile
evolution, as will be used below.

The aim of this work is to obtain the laws for the density
profile in the granular material in terms of the �grain� particle
Péclet number. These laws capture the previously cited scal-
ing features and show the different deposit structures as the
particle dynamics changes from a convective motion �high
Péclet number� to a diffusive transport regime �low Péclet
number�.

II. MODELS AND METHODS

Deposits are formed by convective-diffusive arrival of
particles. The particle motion is simulated by the 3D on-
lattice Monte Carlo algorithm already introduced elsewhere
�31� �adapted from �7,27��. The space is divided into cubic
cells of side a, the characteristic lattice length as well as the
particle diameter. Each cubic cell can have three labels:
empty, occupied, or active. Active cells are those that can
become occupied by a new arriving particle. The attachment
of a new particle changes the cell label from active to occu-
pied and also activates the neighbor empty cells. Initially, the
cells at the bottom of the simulation domain �representing
the deposition wall� are labeled active, and empty otherwise.
In the 3D simulation domain, horizontal periodic boundary
conditions are assumed, with a spatial periodicity equal to
the lateral extension of the domain.

To ensure an isotropic diffusivity, each Monte Carlo time
step consists of two stages: a deterministic stage where the
particle moves vertically one cell toward the wall and a ran-
dom stage formed by several random walk jumps �from the
current cell to any of the six neighbor cells� with a Péclet-
number-dependent probability �see Ref. �31� for details�.
This election allows the simulation of any value of the Péclet
number with isotropic diffusion. The motion of a particle
ends when it arrives to an active cell; there, the particle at-
taches to the active cell and causes the deposit growth.

An alternative way to simulate this type of motion, usu-
ally found in the literature, is by means of a biased Brownian
motion �30,34�—that is, a change in the diffusion probabili-
ties dependent on the direction of the motion. However, as
was demonstrated in �31�, this model, restricted to a lattice,
does not reproduce the average properties of a convective-
diffusive motion and causes an unrealistic anisotropic diffu-
sion.

In the simulated deposits, the density profile ��h� is mea-
sured as a solid fraction �fraction of occupied cells at a given
height h�. We locate the initially clean deposition wall at h
=0 and the first particle level at height h=a. The maximum
deposit height hmax, the upper limit of the AG region, is the
height of the topmost active site of the deposit. Pe values
ranged from 0.01 �mainly diffusive particle motion� to 1000
�mainly ballistic particle trajectories�. Deposits were grown
in a lattice with L=400a as base side length and up to h
=800a in height. All the results are averages over 10 differ-
ent simulations for each Pe.

III. RESULTS AND DISCUSSION

The structure of the uniform region was already charac-
terized by a constant mean density, Eq. �1� �31�. In the fol-
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lowing, we will focus on the NW region and on the AG
region density profiles.

A. Near-wall region

Figure 1�a� depicts the averaged density profiles for sev-
eral values of the particle Péclet number. The log-log scale
emphasizes the denser NW regions. These plots suggests a
power-law behavior near the wall �as is the DLD case �12��.
Figure 1�b� shows the fitting of the NW density profiles
�NW�h ,Pe�, given by

�NW�h,Pe� = �̄�Pe��NW�h,Pe� , �3�

where

�NW�h,Pe� � � h

h + A�l�Pe�/a�D1
�−D

and l�Pe� is the crossover length in Eq. �2�, A�0.41a, D1

�0.88, and D=0.52 �as in Eq. �1��.
An important property of the deposit is the characteristic

length l�Pe� given by Eq. �2�. As was explained before, it
plays the role of a decorrelation length for the local fractal
behavior. However, Eq. �3� suggests that it is also a relevant
quantity in the whole frozen region. Equation �3� should ren-
der a generalization of the self-similar density profile of a
fractal diffusion limited deposit in the limit Pe→0 �purely
diffusive particles� given by �1�

�DLD�h� 	 hDDLA−3.

Indeed, this expression is in good agreement with the limit
Pe→0 of Eq. �3�.

The data fitting of the NW region �3� is not very good for
Pe�1. In this limit, the NW region is too thin because the
uniform region density is achieved after just a few particle
heights. For example, for Pe=10, a straightforward calcula-
tion shows that only some ten particle levels are reliable for
fitting. Also the deposition of the first particles arriving to a

clean surface is purely random, because there are not enough
deposited particles to interact with �35�. This hardly occurs
for Pe�1, because the large volume explored by a random
walker before deposition improves early particle-deposit in-
teraction.

B. Active-growth region

On the other hand, Fig. 2�a� shows the AG region density
profiles for several Péclet numbers. Referring the deposit
heights to hmax, the log-log plot in Fig. 2�b� suggests a power
law behavior �AG�h ,Pe� within that region:

�AG�h,Pe� � �hmax − h��. �4�

The time evolution of the AG region is expected to be
always ruled by the dynamical scaling of a KPZ interface.
Thus, for a given Péclet number, the arrival heights should
be distributed inside the interface width following the KPZ
scaling—that is, as 	t� �where � is the dynamic scaling
exponent� �31�. However, looking the interface as a front
advancing with constant velocity, this scaling can also be

written as 	h̄�, where h̄ is the deposit mean height. Indeed,
as is shown in Fig. 2�b�, the scaling of the depth to h� col-
lapses the time evolution of the AG region profile onto a
single curve:

�AG�h,Pe� � 
 �hmax − h�/a
�h/a�� ��

, �5�

where � depends on Pe in a nontrivial way, but remains
almost constant during the whole deposit growth history.
hmax increases linearly with time, providing a Pe-dependent
deposit growth velocity. Equation �5� applies even during the
early deposition stages, when there is no uniform region yet
�see Fig. 2�b� for Pe=0.05�.

The characteristic length scale in the AG region �for Pe

�0� is the interface width w	 t�	 h̄�. The exponent � in �5�
depends on Pe varying monotonically from ��1.5 �for Pe
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FIG. 1. Log-log density profiles �with hmax=300a� normalized to the uniform region density �̄�Pe�: �a� versus the deposit height and �b�
collapsed according to Eq. �3�.
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=0.01� to ��4 �for Pe=1000�. In the DLD limit, according
to simple scaling arguments, a value �=DDLA−1 is expected,
validating our numerical value of � in the low-Péclet-number
limit. In the opposite limit �Pe→��, a value ��4 is ob-
tained for purely BD simulations, although to the best of our
knowledge this particular value is not supported by any the-
oretical argument. The fitting of the AG region �5� is worse
in the limit of Pe	0.1 and for long times. This is due to the
interface saturation caused by the imposed �finite� horizontal
periodicity of the simulation lattice, an effect already dis-
cussed �31�, in terms of the deposit characteristic length l
relative to the simulation box size L. Saturation makes no

longer valid the dynamical roughening law w	 h̄�. The fail-
ure to collapse the Pe
1 simulations to one single curve, as
shown in Fig. 2�b�, seems to be due to the small scale used in
the abscissa region �the distance between the curves is less
than one unit in the horizontal axis� and probably also due to
the small sample size employed in this study.

As in the case of Eq. �3�, Eq. �5� can be extended to match
with the uniform region density far from hmax. This can be
accomplished by defining

�AG�h,Pe� = �̄�Pe��AG�h,Pe� , �6�

where

�AG�h,Pe� �
�0
 �hmax − h�/a

�h/a�� ��

��p
2 + �0

2
 �hmax − h�/a
�h/a�� �2�

.

The coefficient �p�1 corresponds to the particle density,
whereas �0 depends on Pe and varies in the range from 5
�10−4 �for Pe=1000� to 5�10−2 �for Pe=0.01�. Figure 3
shows the good fitting of the density profile to this expres-
sion in the upper part of the deposit. The fitting is good even
for Pe=0.05 and for deposit heights as high as 400a. Above
that height, the saturation effects begin to be important be-

cause the fractal trees and the lattice lateral size become of
the same length scale.

Equations �3� and �6� suggest a composite fitting formula
for the density profile throughout the deposit in the form

��h,Pe� = �̄�Pe��NW�h,Pe��AG�h,Pe� , �7�

which includes in a single expression the behavior in each
deposit region. This is an appealing simple expression that
shows a good behavior even in those cases where the sec-
tional expressions �3� and �5� fail �for instance, in the ab-
sence of an uniform region, pointed out by arrows in Fig. 3�.

IV. CONCLUSIONS

Equation �7� summarizes the results in the three distin-
guishable deposit layers, providing a single fitting formula
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for the granular deposit formed by the convective-diffusive
arrival of particles. This result may be useful to control the
density of a heterogeneous material synthesized from pow-
ders by adjusting the intensity of the driving force that
pushes the particles toward the deposit �for instance, control-
ling the particle inertia by adjusting the surface orientation or
curvature �21,22�, thermophoresis by adjusting the tempera-
ture difference between the deposit and the mainstream �23�,
or photophoresis by imposing a radiative field �24��. Also,
from the experimentally measurable density profiles, Eq. �7�
can be used to measure the effectivity �or intensity� of the
mechanism which drives the particle mean motion.

Previous results focused on the average bulk structure
�mean density or, equivalently, mean deposit height� and on
the asymptotic values of the interface properties �mainly
width and, in general, roughening universality class� �31�.
This work complements �31�, giving the density profile for
an arbitrary time �up to the interface saturation in our simu-
lations� and for arbitrary heights. Both the near-wall region
�Eq. �3�� and the active-growth region �Eq. �5�� are well fit-
ted to a convective-diffusive model that shows the crossover

from a diffusion-limited behavior to a compact-ballistic re-
gime.

The proposed fitting formula �7� matches the density pro-
file of the near-wall and active-growth regions through the
uniform region. The functional form depends on some coef-
ficients that vary nontrivially with the Péclet number. Equa-
tion �7� brings together some basic features of ballistic and
diffusion-limited deposits, but further analyses are needed to
explain the values of these coefficients.
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