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Force transmission in a packing of pentagonal particles
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We perform a detailed analysis of the contact force network in a dense confined packing of pentagonal
particles simulated by means of the contact dynamics method. The effect of particle shape is evidenced by
comparing the data from pentagon packing and from a packing with identical characteristics, except for the
circular shape of the particles. A counterintuitive finding of this work is that, under steady shearing, the
pentagon packing develops a lower structural anisotropy than the disk packing. We show that this weakness is
compensated by a higher force anisotropy, leading to enhanced shear strength of the pentagon packing. We
revisit “strong” and “weak” force networks in the pentagon packing, but our simulation data also provide
evidence for a large class of “very weak” forces carried mainly by vertex-to-edge contacts. The strong force
chains are mostly composed of edge-to-edge contacts with a marked zigzag aspect and a decreasing exponen-

tial probability distribution as in a disk packing.
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I. INTRODUCTION

Among singular features of granular media, force trans-
mission has received particular interest during the last de-
cade. The contact forces in model granular media, as ob-
served by experiments and numerical simulations, are highly
inhomogeneous and their probability density functions
(PDFs) are wide [1-9]. The granular texture is generically
anisotropic in two respects: (1) the contact normal directions
are not random; (2) the force average as a function of contact
normal direction is not uniform. The corresponding fabric
and force anisotropies in shear are responsible for mechani-
cal strength at the scale of the packing [10-13]. Another
interesting aspect, first analyzed in Ref. [10], is the fact that
the forces organize themselves in two distinct classes which
contribute differently to fabric anisotropy, shear stress, and
dissipation. In particular, the shear stress is fully transmitted
via a “strong” contact network, materialized by force
“chains.” The stability is ensured by the antagonist role of
“weak” contacts which prop strong force chains [10,14].

The force transmission properties have been for the most
part investigated in the case of granular media composed of
isometric (circular or spheric) particles. However, in various
fields of science and engineering, the grains are seldom so
“perfect.” For example, elongated and platy shapes are en-
countered in biomaterials or pharmaceutical applications.
Such shapes have unequal dimensions and induce thus a de-
gree of anisotropy in the bulk behavior in addition to fabric
and force anisotropies [15-18]. On the other hand, granular
geomaterials are often composed of angular particles with
plane faces as polyhedra. While rounded particles enhance
flowability, angular shape is susceptible to enhance the shear
strength, a factor of vital importance to civil-engineering ap-
plications [18-20]. The railway ballast is a well-known case
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where particle shape must be optimized to avoid excessive
differential settlement under vertical loading [21-23]. In
such circumstances, the analysis of force transmission is a
key to improve performance.

The issue is that a general quantitative description of par-
ticle morphology requires various shape parameters. For
regular polygons in two dimensions (2D), for instance, the
only shape parameter is the number of sides (besides the
diameter) whereas for irregular polygons more information is
needed about the positions of the vertices in a reference sys-
tem attached to the particle. In soil mechanics, angularity and
roundedness are among basic parameters used to describe
particle shapes [24]. As far as force transmission is con-
cerned, at least two parameters seem to be most relevant: (1)
shape anisotropy (anisometry), which contributes to the an-
isotropy of stress transmission [15]; (2) facetedness, which
allows for extended (face-to-face, edge-to-face, and edge-to-
edge) contacts between particles leading possibly to the for-
mation of columnar structures within a granular assembly.

In this paper, we consider one of the simplest possible
shapes, namely, regular pentagons. Among regular polygons,
the pentagon has the lowest number of sides, corresponding
to the least roundedness in this category, without the patho-
logical space-filling properties of triangles and squares. We
seek to isolate the effect of edge-to-edge contacts on force
transmission by comparing the data with a packing of circu-
lar particles that, apart from the particle shape, is identical in
all respects (preparation, friction coefficients, particle size
distribution) to the pentagon packing. Both packings are sub-
jected to biaxial compression simulated by means of the con-
tact dynamics method. The presence of edge-to-edge con-
tacts affects both quantitatively and qualitatively the
microstructure and the overall behavior during shear. These
contacts do not transmit torques, but they are able to accom-
modate force lines that are usually unsustainable in packings
of disks.

We first present in Sec. II the numerical procedures and a
brief technical introduction to the detection and treatment of
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edge-to-edge contacts in the framework of the contact dy-
namics method. In Sec. III, we compare stress-strain and
volume-change characteristics. Then, in Secs. IV and V, we
analyze the texture and force transmission features. In Sec.
VI, we focus on the pentagon packing and we analyze the
structure of force networks with vertex-to-edge and edge-to-
edge contacts. The main results are summarized and dis-
cussed in Sec. VIIL

II. NUMERICAL PROCEDURES

The simulations were carried out by means of the contact
dynamics (CD) method [25,26]. The CD method is based on
implicit time integration of the equations of motion and a
nonsmooth formulation of mutual exclusion and dry friction
between particles. This method requires no elastic repulsive
potential and no smoothing of the Coulomb friction law for
the determination of forces. For this reason, the simulations
can be performed with large time steps compared to molecu-
lar dynamics simulations. We used the platform LMGC90,
which is a multipurpose software developed in Montpellier,
capable of modeling a collection of deformable or undeform-
able particles of various shapes [27].

A. Contact dynamics

The particles are rigid polygons exerting normal and shear
forces, f,, and f;, respectively, on each other. We attribute a
positive sign to compressive normal forces. The relative nor-
mal velocity u, between two particles in contact is counted
positive when they move away from each other. Then, the
condition of geometrical contact between two particles is
expressed by the following mutually exclusive alternatives:

f,=0 and u,=0,

f,=0 and wu,>0. (1)

In the same way, the Coulomb friction law involves three
mutually exclusive conditions:

ftz_”“fn and ut>0’
_Iu’fnsftslu“fn and M[=O,
fi=ufy and u, <0, (2)

where u, is the sliding velocity at the contact and w is the
friction coefficient. The unknown variables are particle ve-
locities and contact forces. These are calculated at each time
step by taking into account the conservation of momenta, the
constraints expressed by Egs. (1) and (2), and the dissipation
of kinetic energy during inelastic collisions between particles
[28]. We use an iterative research algorithm based on a non-
linear Gauss-Seidel scheme. The uniqueness is not guaran-
teed for perfectly rigid particles in absolute terms. However,
by initializing each step of calculation with the forces calcu-
lated in the preceding step, the set of admissible solutions
shrinks to fluctuations which are basically below the numeri-
cal solution. Let us note that in molecular dynamics simula-
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FIG. 1. (Color online) Representation of simple (vertex-to-edge)
and double (edge-to-edge) contacts between two pentagons.

tions, this “force history” is encoded by construction in the
particle positions.

The research algorithm is applied to a set of potential
contacts, identified or updated in each step. The contact de-
tection between two bodies consists in looking for the over-
laps of the portions of space they occupy. The treatment of
the mechanical interaction requires additionally the identifi-
cation of a common tangent plane (a line in 2D). Of course,
contact may take place through a larger contact zone than a
single point. Several algorithms exist for overlap determina-
tion between convex polygons [21,27]. In 2D simulations of
the present paper, the detection of contact between two con-
vex polygonal bodies was implemented through the so-called
“shadow overlap method” devised by Moreau [21,27], with
reliability and robustness tested in several years of previous
applications to various states of granular materials
[18,29,30].

In detection of contacts between two polygons, two situ-
ations arise:

(1) If a single corner is found crossing an edge of the
partner polygon, the direction of this edge is viewed as the
tangent direction. By orthogonally projecting the intruding
vertex onto the edge, one determines the penetration depth,
while the nominal contact point is chosen at the center of this
distance. Below, we will refer to this vertex-to-edge contact
as “simple” contact.

(2) In case of double intrusion, one of the two tangent
planes is selected. The impenetrability between two particles
at such an edge-to-edge contact is ensured by applying the
contact laws (1) and (2) to only two points of the contact
segment (Fig. 1). For this reason, we refer below to edge-to-
edge contacts as “double” contacts. In practice, two forces
are calculated at each double contact, but only their resultant
and application point are material. In this respect, the choice
of the two points representing a double contact does not
affect the dynamics of the system.

B. Numerical samples

We generated two numerical samples. The first sample,
denoted S1, is composed of 14400 regular pentagons of
three different diameters: 50% of diameter 2.5 cm, 34% of
diameter 3.75 cm, and 16% of diameter 5 cm. The second
sample, denoted S2, is composed of 10 000 disks with the
same polydispersity. Both samples were prepared according
to the same protocol. A dense packing was first constructed

011301-2



FORCE TRANSMISSION IN A PACKING OF PENTAGONAL...

FIG. 2. (Color online) Snapshots of a portion of the samples S2
(a) and S1 (b) composed of circular and pentagonal particles,
respectively.

by means of a layer-by-layer deposition model based on
simple geometrical rules [31,32]. The particles are deposited
sequentially on a substrate. Each new particle is placed at the
lowest possible position at the free surface as a function of
its diameter. This procedure leads to a random close packing
in which each particle is supported by two underlying par-
ticles and supports one or two other particles.

The samples prepared according the above procedure
were then compressed isotropically under a constant stress
0,=10* Pa applied onto the right and top walls. The gravity
was set to zero in order to avoid force gradients in the
samples. The coefficient of friction was set to 0.4 between
grains and to 0 with the walls. At equilibrium, both numeri-
cal samples were in isotropic stress state. The solid fraction
was ¢,=0.80 for S1 and ¢,=0.82 for S2. The aspect ratio
was h/l=2, where h and [ are the height and width of the
sample, respectively. Figure 2 displays snapshots of the two
packings at the end of isotropic compaction.

The isotropic samples were subjected to vertical compres-
sion by downward displacement of the top wall at a constant
velocity of 1 cm/s for a constant confining stress oj, acting
on the lateral walls. The simulations were run up to a total
cumulative vertical strain of 0.2 with a time step of
5X107™*s. The central processing unit (CPU) time was
7x107* s and 5X 107* s per particle and per time step on a
G5 Apple computer. Since we are interested in quasistatic
behavior, the shear rate should be such that the kinetic en-
ergy supplied by shearing is negligible compared to the static
pressure. This can be formulated in terms of an “inertia pa-
rameter” I [33] defined by
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I=é\/E, (3)
P

where €=y/y is the strain rate, m is the total mass, and p is
the average pressure. The quasistatic limit is characterized by
the condition /<< 1. In our biaxial simulations, / was below
1073

III. STRENGTH AND DILATANCY

In this section, we compare the stress-strain and volume-
change behavior between the packings of polygons (sample
S1) and disks (sample S2). For the calculation of the stress
tensor, we consider the “tensorial moment” M’ of each par-
ticle i defined by [14,34]

Meg=2 fur. )
cel

where [, is the & component of the force exerted on particle
i at the contact c, r% is the B component of the position
vector of the same contact ¢, and the summation is runs over
all contacts ¢ of neighboring particles with the particle i
(noted briefly by ¢ ei). It can be shown that the tensorial
moment of a collection of rigid particles is the sum of the
tensorial moments of individual particles. The stress tensor o
for a packing of volume V is simply given by [14,34]

Uz‘l/z Mi==2, 45, (5)

1
ieV VL'EV

where €€ is the intercenter vector joining the centers of the
two touching particles at the contact c. Remark that the first
summation runs over all particles whereas the second sum-
mation involves all contacts in the volume V, with each con-
tact appearing only once. We extract the mean stress
p=(0,+0,)/2, and the stress deviator g=(o,—0,)/2, where
o, and o, are the principal stresses. The major principal
direction during vertical compression is vertical.

The strain parameters are the cumulative vertical, hori-
zontal, and volumetric strains &, €,, and g, respectively. By
definition, we have

" dn’ Ah
g = —=In{1+—], (6)
ny P ho

where hy is the initial height and Ah=hy—h is the total down-
ward displacement, and

Lar Al
gr=| “-=ml1+=), (7)
l I

where [, is the initial box width and Al=[-[; is the total
change of the box width, and

+ JV v 1 <1+AV> (8)
g,=g|+&= —=In —,
poEIT 2 1% v,

o 0

where V), is the initial volume and AV=V-V, is the cumu-
lative volume change.

Figure 3 shows the normalized shear stress g/p for the
samples S1 and §2 as a function of shear strain g,=¢,—g,.
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FIG. 3. (Color online) Normalized shear stress ¢/p as a function
of cumulative shear strain g, for the samples S1 and S2.

For §2, we observe a classical behavior characterized by a
hardening behavior followed by (slight) softening and a
stress plateau corresponding to the residual state of soil me-
chanics [24]. For S1, we observe no marked stress peak. The
residual stress is higher for polygons (=0.35) than for disks
(=0.28). This means that the polygon packing has a higher
angle of internal friction ¢ defined by

sin = z. 9)
p

Figure 4 displays the cumulative volumetric strain g, for
polygons and disks as a function of &,. Both samples dilate
and tend to isochoric deformation at large strains. It is re-
markable that the polygon packing S1 initially dilates less
than the disk packing S2. This behavior is reversed at larger
strains with a crossover occurring after the peak state. Notice
that the solid fraction is initially lower in S1 (0.80) than in S2
(0.82). This is because it is more difficult to obtain a compact
packing with polygonal shapes by isotropic compression as a
result of enhanced steric effects compared to disks. In other
words, angular particles can form larger pores compared to
rounded particles. The volumetric deformation can also be
expressed in terms of the so-called “dilatancy angle” i de-

fined by [35]

sin = .3 (10)
€q
The cumulative angle of dilatancy, i.e., during shear up to the
residual state, is only slightly higher for the polygon packing
than the disk packing.

0.02

W™ 0.01

FIG. 4. (Color online) Cumulative volumetric strain &, as a
function of cumulative shear strain g, for the samples S1 and S2.
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FIG. 5. (Color online) Stress-dilatancy relation between dila-
tancy angle ¢ and internal angle of friction ¢ for the samples S1
and S2.

The plot of ¢ as a function of ¢, i.e., the so-called stress-
dilatancy diagram, is shown in Fig. 5 for polygons and disks
[35]. Remarkably, both plots are parallel to the line =4
with an offset ¢

o =q@y+ i (11)

The offset ¢ is the friction angle at zero dilatancy. We have
¢p=0.12 for disks and ¢,=0.3 for polygons. This observa-
tion is in agreement with the arguments of Taylor [35,36]
based on energy balance and recently revisited also in the
case of cohesive granular media [37]. The higher level of ¢
for the polygon packing reflects the organization of the mi-
crostructure and the features of force transmission for each
particle shape. This point is considered in more detail in the
following section.

IV. GRANULAR TEXTURE

The granular texture, i.e., the organization of the particles
and their contacts in space, is basically controlled by steric
exclusions between the particles and force balance condi-
tions [38]. The texture can be described in terms of various
statistical descriptors pertaining to the force-bearing network
of particles. At the lowest order, the compactness of the
structure can be described in terms of both the solid fraction
p and the coordination number z. The connectivity of the
network can further be characterized by the fraction P(c) of
particles having exactly ¢ contact neighbors. These are scalar
parameters or functions. At higher orders, the anisotropy of
the texture is described by different “fabric tensors.” We con-
sider here these geometrical descriptors in order to identify
the signature of particle shape.

A. Connectivity

The connectivity of the particles by force-bearing contacts
is described at the lowest order by the average number z of
contact neighbors per particle. The particles with no force-
bearing contact are thus removed from the statistics. The
fractions of no force-bearing contacts for S1 and S2 are 15%
and 5%, respectively. The larger number of such contacts in
S1 compared to S2 reflects enhanced arching effect in a
packing of polygons.

Note also that each double (edge-to-edge) contact for the
polygons is counted once although double contacts are
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FIG. 6. (Color online) The coordination number z (a) and the
fraction y of persistent contacts (b) as a function of cumulative
shear strain g, for the samples S1 and S2.

treated as two point contacts belonging to the contact seg-
ment (see Sec. II). Figure 6(a) displays the evolution of z for
the pentagon packing (S1) and the disk packing (S2) as a
function of ,. The coordination number evolves to a steady-
state value in both samples that is higher for S2 (=3.85) than
for S1 (=3.75). The difference is, however, much less im-
portant than in the initial configuration (=3.95 for S2 com-
pared to =3.20 for S1) prepared by means of isotropic com-
paction.

It is also interesting to compare the two samples in terms
of “contact lifetimes.” Let us consider a reference configura-
tion, e.g., the initial state of each sample. We follow the
history of each contact listed in this state. In particular, we
define 7y as the fraction of persistent contacts of the initial
list. During deformation, y declines from 1 to O as an in-
creasing number of initial contacts are lost due to particle
rearrangements. Figure 6(b) shows y as a function of ¢, for
S1 and S2. We see that, following a rapid initial falloff, y
decreases slowly in both samples, but the rate of contact loss
is globally higher for polygons than disks. We remark that
even at £,=0.4, the contact list is renewed by only 50%.

The connectivity P(c) of the particles is plotted in Fig. 7
for S1 and S2 at ,=0.3. Interestingly, the two plots are
nearly identical with a peak for c=4. In both samples, the
fraction of particles with five contacts is larger than that with
three contacts. This shows that the connectivity does not re-
flect the difference in texture between the two packings al-
though a qualitative difference exists as we shall see below
by considering fabric anisotropy and force transmission.

B. Fabric anisotropy

The shear strength of dry granular materials is generally
attributed to the buildup of an anisotropic structure during
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FIG. 7. (Color online) Connectivity diagram for the samples S1
and S2 expressing the fraction P(c) of particles with exactly ¢ con-
tacts in the residual state.

shear due to friction between the particles and as a result of
steric effects depending on particle shape [39-41]. Several
methods have been used to quantify the fabric (structural)
anisotropy of granular materials [13,42,43]. A common ap-
proach is to consider the probability distribution P(n) of the
contact normals n which are generically nonuniform. In two
dimensions, the unit vector n is described by a single angle
6, the orientation of the contact normal. The probability den-
sity function Py(6) of contact normals provides a detailed
statistical information about the fabric. It is 7 periodic in the
absence of an intrinsic polarity for n.

Most structural information is generally condensed in the
second moment of P, called fabric tensor [42]:

(" 1
Fop= ;L n(O)ng(O)Py(0)do = IVE ngng,  (12)

cceV

where a and S design the components in a reference frame
and N, is the total number of contacts in the control volume
V. By definition, tr(F)=1. The anisotropy of the contact net-
work is given the difference between the principal values F
and F,. We define the fabric anisotropy a by

a=2(F, - F,). (13)

For fix coordinates, with the x axis pointing along ', we
define also a “signed anisotropy” a’ by

a' =2(F, - Fy)cos 2(6;— '), (14)

where 6 is the major principal direction of the fabric tensor.
For 0'=60r, we have a’=a. The signed anisotropy corre-
sponds to the second term of the Fourier expansion of P ,(6)
and it is useful whenever the direction of anisotropy is not
constant.

Figure 8 displays a polar representation of P,(6) for the
samples S1 and S2 at £,=0.3. We observe a nearly isotropic
distribution for the pentagon packing in spite of shearing
whereas the disk packing is markedly anisotropic. This is a
surprising observation in view of the higher shear strength of
the pentagon packing (Fig. 3). It is also counterintuitive as
one expects that double contacts should allow a polygon
packing to build more easily an anisotropic structure.

The evolution of a’ is shown in Fig. 9 as a function of g,
for S1 and S2. The privileged direction of the contacts, cor-
responding to 6, is vertical in both packings. In both cases,
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FIG. 8. Polar representation of the probability density function
P, of the contact normal directions 6 for the samples S1 and S2 in
the residual state.

a’ increases from O (as a result of the initial isotropic com-

pression) to its largest value in the residual state. The aniso-
tropy stays quite weak in the pentagon packing whereas the
disk packing is marked by a much larger anisotropy, increas-
ing to =0.3 and then relaxing to a slightly lower value in the
residual state. As we shall see below, the low anisotropy of
the pentagon packing results from a particular organization
of the force network in correlation with the orientations of
simple and double contacts in the packing (Sec. VI). We will
also show that the large shear strength of the pentagon pack-
ing is a consequence of a strong force anisotropy in this
packing (see next section).

V. FORCE TRANSMISSION

In this section, we analyze the anisotropy and inhomoge-
neity of force networks in the packings of pentagons and
disks. This leads us to consider the contributions of force and
texture anisotropies to average shear stresses.

A. Force anisotropy

The angular distribution of contact forces in a granular
packing can be represented by the average force (f)(n) as a
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FIG. 9. (Color online) Evolution of the anisotropy a’ with cu-
mulative shear strain g, for the samples S1 and S2.
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function of the contact normal direction n. We distinguish
the average normal force (f,) from the average tangential
force (f,) formally defined by [13]

(f(6) =

n°

N, (a)LES(G)

(f(0) = 0 (15)

N, (0)L68(0

where f;, and f; are the normal and tangential forces, respec-
tively, acting at the contact ¢ (according to a sign convention
attributing positive values to the normal forces), S(6) is the
set of contacts with direction 6e[0-A6/2,0+A6/2] for
angle increments A6, and N,.(6) is the number of contacts in
S(0).

By definition, the two functions (f,,) and (f,) are 7 peri-
odic. After sufficiently long monotonous shearing, these
functions can be approximated by their Fourier expansions
truncated beyond the second term [13,41],

<fn>(6) = <f>{1 +a, cos 2(0_ Hn)}
(0 =(fHa,sin2(0- 6,), (16)

where (f) is the average force, a, and a, represent the
anisotropies of the normal and tangential forces, respectively,
and 6, and 6, are their privileged directions.

In Fig. 10, the functions (f,)(#) and (f,)(6) are displayed
in polar coordinates at £,=0.3. The pentagon and disk pack-
ings show pronounced force anisotropy with a stronger an-
isotropy in the case of pentagons both for normal and tan-
gential forces. These plots can be fitted by harmonic
functions, Eq. (16), in order to estimate the force anisotro-
pies a, and a,. However, it is more convenient to estimate the
anisotropies through the following “force tensors”:

:Jﬂ-<fn>(0)nanﬁd03
0

HY, = f () O)nangdo. (17)

It is easy to see that tr(H")=tr(H"”)=(f), and by identifica-
tion with Eq. (16) we have

H(ln) _ Hgn)

a, = H(ln) + H;n) s
H(lr) _ H(zt)
a,=2—"—, 18
" THY +HY (18)

where the subscripts 1 and 2 refer to the principal values of
the tensors.

Figure 11 shows the evolution of a, and a, with g, in
samples S1 and S2. We see that, in contrast to fabric
anisotropies (Fig. 9), the force anisotropies in pentagon
packing remain always above those in the disk packing. This
means that the aptitude of the pentagon packing to develop
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FIG. 10. (Color online) Polar representation of the angle-
averaged normal (a) and tangential (b) forces (f,,)(6) and (f,)(6) for
the samples S1 and S2 in the residual state.

large force anisotropy and strong force chains is not solely
dependent on the global fabric anisotropy of the system. In
Sec. VI, we will show that the force anisotropy of the pen-
tagon packing stems from the high anisotropy of the subnet-
work of double contacts and strong activation of friction
forces. Indeed, due to the geometry of the pentagons, i.e., the
absence of parallel sides, the strong force chains are mostly
of zigzag shape, as observed in Fig. 13(b), and the stability
of such structures requires strong activation of tangential
forces. This explains, in turn, the large value of a, for penta-
gons, very close to a,, whereas in the disk packing a, is
nearly half of a,.

The anisotropies a, a,,, and g, are interesting descriptors of
granular microstructure and force transmission as they un-
derlie the shear stress. Indeed, it can be shown that the gen-
eral expression of the stress tensor, Eq. (5), leads to the fol-
lowing simple relation [13,41]:

1
%2 5(a+an+a,), (19)

where the cross products a,a and a,a between the anisotro-
pies have been neglected compared to the anisotropies, and it
has been assumed that the stress tensor is coaxial with the
fabric tensor Eq. (12) and the force tensors Egs. (17). Figure
12 shows that Eq. (19) holds quite well both for pentagons
and disks.

A remarkable consequence of Eq. (19) is to reveal the
distinct origins of shear stress in pentagon and disk packings.
The fabric anisotropy provides a major contribution to shear
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FIG. 11. (Color online) Evolution of force anisotropies a,, (a)
and ¢, (b) as a function of cumulative shear strain &, in samples S1
and S2.

stress in the disk packing (Fig. 9), whereas the force
anisotropies are more important for shear stress in the pen-
tagon packing (Fig. 11). In this way, in spite of the weak
fabric anisotropy a, the larger force anisotropies a, and a,
allow the pentagon packing to reach higher levels of g/p
compared to the disk packing.

B. Force distributions

The strong inhomogeneity of contact forces is a well-
known feature of granular media. It has been investigated
mostly for spherical or cylindrical particles both by experi-
ments and numerical simulations [1,3-9]. The probability
density function (PDF) of normal forces is characterized by
two features which seem to be specific to granular media: (1)

0.4
0.3
0.2

7 -- q/p, S2

‘ o0 0.5 (ata +a), S1
O 1o 0 0.5 (ata +a), S2 i

i

0 ‘ : ‘
5 01 0.2 03 0.4

FIG. 12. (Color online) Evolution of the normalized shear stress
q/p for the samples S1 and S2 with g, together with the corre-
sponding predictions from its expression as a function of fabric and
force anisotropies, Eq. (19).
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FIG. 13. (Color online) Snapshots of normal forces in samples
S2 (a) and S1 (b). Line thickness is proportional to the normal
force.

The PDF is roughly a decreasing exponential function for
forces above the mean, (2) in the range of weak forces below
the mean, the PDF does not decline to zero with the force.
The relative scatter of data reported by different authors for
weak forces shows the sensitivity of the PDF in this range to
the details of the microstructure. But, the common observa-
tion that there is a large number of contacts transmitting very
weak forces, is a straightforward signature of the arching
effect. From this point of view, one expects that angular par-
ticle shape will influence mainly the distribution of weak
forces by enhancing the arching effect.

Figure 13 displays maps of normal forces in a portion of
each of the samples S1 and S2 at a large cumulative strain.
We observe the strong anisotropy of normal forces in the
pentagon packing compared to the disk packing (as dis-
cussed in Sec. V) as well as the zigzag form of the strong
force chains. The normal force PDFs are shown in Fig. 14 in
log-linear and log-log scales at large strains. The forces are
normalized by the mean normal force (f,) in each sample. In
both samples, the number of strong forces (above the mean
(f,) falls off exponentially,

P(f,) = e/ in ST,

P(f,) < e /W% in 82, (20)

with a;=0.74 and @, =1.4. The smaller value of @ means
that the distribution is wider for pentagons compared to
disks. The distribution is nearly uniform in the whole range
of weak forces (f,, <{(f,) in S2. In the pentagon packing S1,
we observe a uniform distribution only in the range
0.1{f,) <f,<{(f,)- Nearly 30% of forces are in this range.
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FIG. 14. (Color online) Probability density functions of normal
forces in samples S1 and S2 in log-linear (a) and log-log scales (b).

The number of “very weak” forces in S1 in the range
f.<0.1(f,) increases faster than a power law as f, tends to
zero. A fraction =30% of contacts belong to this range. The
presence of numerous “very weak” forces in the pentagon
packing is a clear signature of enhanced arching effect that
can be characterized, as we shall see below, by the respective
roles of simple and double contacts with respect to force
transmission.

C. Bimodal character of stress transmission

The genuine organization of contact forces in granular
media, involving strong force chains propped by weak
forces, was first analyzed by Radjai ef al. by means of con-
tact dynamics simulations for packings of circular and
spherical particles [10]. This analysis proceeds by consider-
ing the subset of contacts which carry a force below a cutoff
force ¢ normalized by the mean force. This subset is referred
to as the “¢ network.” The variation of a quantity evaluated
for the “£ network™ as & is varied from O to the maximal
force in the system, provides its correlation with the contact
force. Here, we apply this same approach to S1 and S2
samples for the stress ratio g(&)/p, defined as stress deviator
q(&) (normalized by the total pressure p of the sample) in the
& network, and for a(¢), defined as the fabric anisotropy in
the & network.

The plot of g(£)/p is shown in Fig. 15 for S1 and S2 in
the residual state. In both samples, the stress deviator is
nearly zero for ¢<<1, i.e., for the normal forces below the
average force. This means that the shear stress is almost
totally sustained by the “strong” contact network £>1 for
the pentagon packing as well as for the disk packing. Figure
16 shows the fabric anisotropy a’(§) as a function of ¢ in the
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FIG. 15. (Color online) Partial shear stress ¢(£)/p as a function
of force cutoff ¢ (normalized by the mean force) for the samples S1
and S2 in the residual state.

samples S1 and S2. By definition, a positive value of a’
corresponds to the principal stress direction whereas a nega-
tive value corresponds to the orthogonal direction. We see
that the direction of anisotropy is orthogonal to the principal
stress direction (a’ <0) for weak forces (small &). This “or-
thogonal” anisotropy of the weak forces is more important in
the pentagon packing compared to the disk packing, and, as
shown in the inset to Fig. 16, it is mainly due to “very weak”
forces. When ¢ is increased beyond (f,), a’ becomes less
negative and finally changes sign, showing that the strong
contacts are preferentially parallel to the principal axis.
These strong contacts are less than 40% of all contacts, but
their positive contribution to a’ overcompensates the nega-
tive contribution weak contacts. For large &, the partial an-
isotropy approaches the fabric anisotropy of the whole sys-
tem.

These data demonstrate the bimodal character of stress
transmission also in the pentagon packing in spite of a very
different particle geometry. The mean force plays a particular
role in differentiating strong contacts from weak contacts.
However, the force PDFs (Fig. 14) and the anisotropy of
weak forces (Fig. 16) provide also evidence for the existence
of a class of very weak forces, corresponding approximately
to the range f,<0.1{f,), within the weak network. This class
is strongly anisotropic with a privileged direction which is
orthogonal to the major principal stress direction, and the
corresponding force PDF diverges as the force tends to zero.
Figure 17 displays a tricolor map of the contact network
representing very weak, intermediate (0.1¢f,) <f,<{f.)s

0.3

0.2 -~ i

FIG. 16. (Color online) Partial fabric anisotropy a’(£) as a func-
tion of force cutoff ¢ (normalized by the mean force) in the samples
S1 and S2.
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FIG. 17. (Color online) A map of the contact network composed
of very weak (black), intermediate (light gray) and strong (dark
gray) contacts in the pentagon packing.

and strong contacts in the pentagon packing. Large cells of
strong contacts are composed of zigzag chains. The aniso-
tropy of strong contacts is reflected in the elongated shape of
these cells along the major principal stress direction. Both
intermediate and very weak forces prop these cells.

VI. SIMPLE VERSUS DOUBLE CONTACTS

In this section, we focus on the organization of simple and
double contacts in the pentagon packing. The double con-
tacts, i.e., the side-sharing polygons, are generally assumed
to be at the source of the higher strength of polygon pack-
ings. For the texture, we would also like to investigate the
proportions of simple and double contacts and their respec-
tive contributions to the overall anisotropy of the pentagon
packing. It is also important to identify the role of double
contacts in force transmission.

The general expression (5) of the stress tensor o allows us
to perform a unique additive decomposition of the stress into
two parts,

o=0,+ 0y, (21)

where o, is obtained from the expression (5) by restricting
the summation to simple contacts, and o, is the complemen-
tary tensor involving only double contacts. The respective

0.4
0.3
S 0.2}

0.1

FIG. 18. (Color online) Normalized shear stress ¢/p for simple
(s) and double (d) contacts, as well as for all contacts (s+d), as a
function of cumulative shear strain g, in the pentagon packing.
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FIG. 19. (Color online) Proportions k, and k, of simple and
double contacts, and the corresponding relative force averages f;
and f;, as a function of cumulative shear strain &,.
stress deviators ¢, and g, normalized by the mean stress p
are shown in Fig. 18 as a function of strain &,. The strength
q4/ p of double contacts varies from two to three times that of
simple contacts during shear deformation of the pentagon
packing. The proportions k; and k; of simple and double
contacts are shown in Fig. 19 as a function of ¢,. The same
figure displays the relative force averages f,=k\(f,),/{f,) and
fa=kf0al {f), where (f,),and (f,),; are the mean normal
forces of simple and double contacts, respectively. We see
that k; increases with strain but remains below k,. On the
other hand, initially we have f,=f,=0.5, reflecting the iso-
tropic state of the packing prepared by isotropic compaction.
However, f,; increases with shear up to f;=1.5f, in the re-
sidual state. This means that the larger shear stress carried by
double contacts in the residual state is due to the larger mean
normal force of double contacts despite their smaller propor-
tion in the packing.

The growth of the number of double contacts shown in
Fig. 19 represents the gradual consolidation of the sample. In
Fig. 20 we plot the cumulative proportions Ay, ., and Ay,
of simple contacts turning to double and vice versa, respec-
tively. Although transformation between the two contact
types occurs at each step in both directions s—d and d— s,
the consolidation involves on average a net fraction of
simple contacts transforming into double contacts.

The connectivity of the pentagon packing by simple and
double contacts can be represented by the proportion
P(mg,my) of particles with exactly m, simple contacts and m,
double contacts. Figure 21 shows a gray level map of this

0.08
0.06 . e :
’Nﬁ,‘,/w.v PN mag ¥ NV YNercray,,
0041 — sod i
--d-s
0.02 :
| | |
0005 0.1 02 03 0.4
&

FIG. 20. (Color online) Cumulative proportion Ay of simple

contacts turning to double (s—d) and vice versa (d—s).
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FIG. 21. Gray level map of the connectivity function P(m,,m,)
of the pentagon packing in the residual state.

function for the pentagon packing in the residual state. The
row m,=0 corresponds to particles with only simple contacts
(nearly 2% of the total number of particles) whereas the
column m,;=0 represents the particles with only double con-
tacts (nearly 6%). On average, a particle has more simple
contacts than double contacts but the maximum occurs at
mg=my=2.

We now consider the fabric tensor decomposed in a simi-
lar way as the stress tensor, Eq. (21), into two partial tensors,

F=F,+F,, (22)

where F; and F, are defined as F in Eq. (12) by simply
restricting the summation to simple and double contacts, re-
spectively, and by dividing the sum by the total number N, of
contacts. The respective anisotropies a, and a, of simple and
double contacts are displayed in Fig. 22 as a function of &,.
The interesting observation here is that the simple contacts
have a negative anisotropy which, according to Eq. (14),
means that simple contacts are mostly oriented perpendicular
to the major principal fabric direction 6. In other words,
most simple contacts belong to the weak network. In con-
trast, the double contacts have an increasing positive aniso-
tropy which is larger than the mean anisotropy a of the
sample. This is consistent with the fact that the double con-
tacts take over larger forces and they contribute more to the
shear stress than simple contacts.

The normal force PDFs for simple and double contacts
are shown in Fig. 23. Both contact types are involved in

0.2

= -

ISP
AN R A v Ny ya S s v AN,

- | | |
0'10 0.1 0.2 0.3 0.4

€
q

FIG. 22. (Color online) The anisotropy a’ of simple (s) and
double (d) contacts as a function of cumulative shear strain g41in the
pentagon packing.
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(a)

(b)

FIG. 23. (Color online) Probability density function of normal
forces for simple (s) and double (d) contacts in log-linear (a) and
log-log scales (b).

weak and strong networks and the PDFs have the same func-
tional form. But the contribution of simple contacts is more
important in the range of very weak forces. Once again, as
for anisotropy, the very weak contacts appear to be related to
the particular geometry of the pentagons. At large strains,
about 32% of all contacts belong to the very weak force
network with 25% simple contacts against 7% double con-
tacts. A snapshot of the normal force network is shown in
Fig. 24 where the line thickness is proportional to the normal
force with different colors (or gray levels) for simple and
double contacts. The remarkable feature of this map is the
network of very strong zigzag force chains composed mostly
of double contacts and occasionally mediated by simple con-
tacts.

The proportions kf and k! of strong (S) and weak (W)
simple (s) contacts, respectively, as well as the proportions
k5 and k! of strong and weak double (d) contacts are plotted
in Fig. 25 as a function of g, We see that in the strong
network (f,,>(f)) the proportion ki of double contacts is
nearly the same as the proportion kf of simple contacts in the
initial (isotropic) state, but during shear kf, declines down to
k¥=0.5k in the residual state, in agreement with the impres-
sion left by Fig. 24. We have an inverse situation for the
weak network composed of two times more simple contacts
than double contacts, i.e., krvz Zky in the residual state. It is
also interesting to remark that the fraction of weak contacts,
i.e., k)/+k!Y=0.58 in the residual state is very close to that
(0.62) in the case of the disk packing.

VII. CONCLUSION

The objective of this paper was to isolate the effect of
particle shape on force transmission in granular media by

PHYSICAL REVIEW E 76, 011301 (2007)

FIG. 24. (Color online) A map of the normal force network in
the residual state with simple contacts (s) in blue (black) and double
contacts (d) in red (gray). Line thickness is proportional to the
normal force.

means a detailed comparison between two similar packings
with different particle shapes: pentagons vs disks. We ob-
served enhanced shear strength and force inhomogeneity in
the pentagon packing. But, unexpectedly, the pentagon pack-
ing was found to develop a lower structural (fabric) aniso-
tropy compared to the disk packing under shear. This low
fabric anisotropy, however, does not prevent the pentagon
packing from building up a strong force anisotropy that un-
derlies its enhanced shear strength compared to the disk
packing.

This finding is interesting as it shows unambiguously that
the force anisotropy in a granular material has two distinct
sources: (1) fabric anisotropy, with a maximum value de-
pending on particle shapes; (2) particle shapes. The first
mechanism is crucial for the disk packing so that the force
anisotropy, and the shear stress as a result, vanishes in an
isotropic disk packing (e.g., when the friction coefficient is
set to zero). The second mechanism may be the predominant
source of strength for “faceted” particles that can give rise
edge-to-edge (in 2D) or face-to-face (in 3D) contacts allow-
ing for strong force localization along such contacts in the
packing. Since the fabric anisotropy is low in a pentagon
packing, the role of force anisotropy and thus the local equi-
librium structures or arching are important with respect to its

0.5 T
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FIG. 25. (Color online) Proportions & and k! of strong (S) and
weak (W) simple (s) contacts, respectively, as well as the propor-
tions kf, and k;v of strong and weak double (d) contacts as a function
of cumulative shear strain g, in the pentagon packing.
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overall strength properties. The pentagons analyzed in this
work provide thus the first counterexample of a system
where the role of fabric anisotropy in shear strength is mar-
ginal.

Another shape-related effect was the observation of zig-
zag force chains mostly composed of edge-to-edge contacts
in steady shearing. The vertex-to-edge contacts belong thus
mainly to the weak force network or a class of “very weak”
forces that can be considered as a signature of enhanced
arching or screening effect of forces in the presence of edge-
to-edge chains. These “very weak” forces can also be ob-
served, though to a lesser extent, in a disk packing with high
coefficients of friction [8] or on experimental PDFs of nor-
mal forces acting on the walls of a container [5]. Let us recall
that a “very weak phase” was also evidenced by considering
the correlation between friction mobilization and the aniso-
tropy of granular texture in a disk packing at the stability
limit [14].

PHYSICAL REVIEW E 76, 011301 (2007)

By focusing on pentagon packings, we were able to dem-
onstrate the nontrivial phenomenology resulting from the
specific shape of particles as compared to a disk packing.
Although general features of force transmission (PDFs, bi-
modal character, etc.) seem to be robust, the details of force
transmission (relative importance of force and fabric aniso-
tropy, the role of edge-to-edge contacts, etc.) seem to be
strongly shape dependent. Currently, we work to elucidate
this issue for regular polygons (hexagons and higher number
of sides) as well as polyhedral particles in three dimensions.
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