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For large energy barrier systems the lattice vibrations can play an important role in the diffusion of a guest
component inside channeled structures. Here, quantum corrections to the guest diffusion are studied within a
semiclassical framework in which the guest behaves classically and the lattice quantum mechanically. The
permeability is expressed in terms of correlation functions that are calculated using path integrals. Forward-
backward path integrals for propagators are combined, and, using the Martin-Siggia-Rose formalism �Phys.
Rev. A. 8, 423 �1973��, are transformed into a set of generalized Langevin equations that reduce to the classical
equation of motion at high temperatures. The random initial conditions to these equations are specified by the
density matrix from which an approximate expression for the quantum mechanical potential of mean force is
derived. The quantum potential of mean force and activation energy obtained for the guest inside the lattice is
slightly higher than the one for the fully classical system, and the diffusion of the guest in the quantum lattice
is slower compared to its fully classical counterpart. The macroscopic intrinsic permeability of �-quartz
towards neon is reported, Pqtm� �300 K�=9.91�108 s / �mkg� within the semiclassical approximation and is
lower than Pclass� �300 K�=1.26�109 s / �mkg� obtained in the classical case at 300 K for the same potential
model.

DOI: 10.1103/PhysRevE.76.011124 PACS number�s�: 05.60.�k, 66.30.�h, 05.30.�d

I. INTRODUCTION

In two recent papers �1,2�, hereafter referred to as papers
I and II, we studied the intracrystalline diffusion of a guest
inside selected zeolites. There, we used the formalism ini-
tially developed by Ronis and Vertenstein �3� to calculate the
permeability through a channeled crystalline interface of fi-
nite thickness separating two bulk regions that contain the
guest component at different chemical potentials. The advan-
tage of using this formalism is that it is fully microscopic in
the sense that the permeability is obtained from the integra-
tion of a space-dependent Onsager diffusion coefficient
which, in turn, is calculated from simulations of specific
guest time-correlation functions. In papers I and II, we com-
pared our method with transition state theory �TST�, which is
often used to describe the diffusion in these types of systems
�4–6� and where it is assumed that the guest diffusion fol-
lows one or more reaction coordinates. Within our formal-
ism, we were able to test the underlying assumptions of tran-
sition state theory which where shown to be inappropriate for
more open channels.

A major part of our work in papers I and II was to under-
stand the role that lattice vibrations play in the diffusion
process. Many earlier studies of diffusion in channeled struc-
tures used standard molecular dynamics �MD� with a frozen
lattice �7–9� to simulate the motion of the guest. Following
these studies, the motion of the crystal atoms was included
by simulating the vibrational motion of a relatively small
number of lattice atoms �4–6,10�. The role of the lattice vi-
brations on the guest diffusion had been studied, before us,
by Kopelevich and Chang �11� and by Suffritti and co-
workers �12–14�. In Ref. �11�, only the motion of the guest
was simulated from a generalized Langevin equation �GLE�
where the energy exchange with the lattice was described by
dissipative �memory� and random terms which were approxi-

mated phenomenologically using a simple one parameter
model for the memory function.

In papers I and II we used a model similar to that of Ref.
�11�. In our formalism, the motion of the guest and selected
target atoms �the only ones that interact directly with the
guest� was explicitly simulated using a set of GLE’s. The
energy exchange with the infinite bath �the part of the crystal
that does not interact directly with the guest� was included
by the dissipative and random force terms that typically arise
in GLE and that are related by generalized Einstein-Nyquist
relations or the second fluctuation-dissipation theorem �see,
e.g., Ref. �15��. The periodicity of the lattice and the approxi-
mation that the crystal is harmonic allowed us to compute
the memory function exactly. This memory function was
then fitted to a general simple function that allowed us to
include the memory and noise terms in the equations of mo-
tion for the target atoms. As shown in papers I and II, the
success of our procedure is that the approximate memory
function we use is exact for long and short times and hence,
it accurately reproduces the full crystal vibrational density of
states. Within this framework the role of the lattice vibrations
on the diffusion process was studied. In paper I, the guest
�xenon� was diffusing in a crystalline zeolite that has wide
channels �Theta-1�. There, we found that lattice vibrations
did not affect the motion of the guest insofar as the perme-
ability is concerned. On the other hand, in paper II, we ex-
plored the diffusion of argon in �-quartz, a crystal with very
narrow channels. For this system, we found that the flexibil-
ity and lattice vibrational motion played a significant role in
the guest dynamics, most importantly, on the free energy
landscape.

For systems such as the one studied in paper II, where
lattice vibrations play a significant role in the diffusion, an-
other question naturally arises, namely, should we treat the
problem, or at least parts of it, quantum mechanically? After
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all, it is well known that most vibrational modes in typical
crystals are not thermally excited at room temperature. Spe-
cifically, �*��� /kBT is the dimensionless parameter that
characterizes how quantum mechanical a vibrational mode
with frequency � at temperature T is. The vibration is clas-
sical when �*�1 and quantum mechanical when �*�1. At
room temperature, �*=1 when �=0.393�1014 s−1. A typi-
cal vibrational density of states is shown in Fig. 1, and shows
that roughly 75% of the vibrational modes are in the quan-
tum regime at 300 K.

In this paper, we will use an entirely different formalism
based on path integrals to approximately include the quan-
tum mechanical nature of the lattice. The goal is to calculate
the quantum corrections to the potential of mean force of the
guest in the presence of the quantum lattice, to obtain the
quantum corrections to the space-dependent Onsager diffu-
sion coefficient and, ultimately, to see what kind of correc-
tion arises at the macroscopic level, i.e., on the permeability.

The paper is divided as follows, in Sec. II we show how
the permeability is expressed in terms of Kubo averages and
we recall what types of correlations have to be calculated in
order to obtain the space-dependent Onsager diffusion coef-
ficient. In Sec. III we describe the path integral approach that
allows us to obtain the required correlations semiclassically.
In particular, a closed form expression for the density matrix
is obtained and we show how forward-backward path inte-
grals approximately define a set of second order differential
equations that can be turned in a stochastic initial value prob-
lem. We explicitly show how, in the classical limit, these
equations reduce to the classical generalized Langevin equa-
tions of motions obtained in papers I and II. In Sec. IV, we
show how to implement the formalism developed in Sec. III.
More precisely, we describe how the potential of mean force
is obtained from our expression for the density matrix and
explain how the new �nonclassical� terms are calculated nu-
merically using the theory of defects, Brillouin zone sums
and contour integrations. We then describe how these tech-
niques can be further used to simulate the nonclassical terms
in the generalized Langevin equations.

In Sec. V, we apply our theory to the study of neon in
�-quartz. We first show that our formalism is exact in the

absence of the guest, and then report the main results of this
paper; specifically, quantum corrections slightly increase the
potential of mean force of the guest inside the crystal, the
difference increasing with reduced temperature. In addition,
we show that the lattice effectively vibrates more �the veloc-
ity correlations have larger amplitudes� when quantum me-
chanics is included and, for this system, this results in a
slower diffusion for the guest and a permeability which is
about 25% smaller compared to the classical one. Section VI
contains a discussion and concluding remarks.

II. THE TIME-CORRELATION FUNCTION FORM
OF THE PERMEABILITY

As was discussed in papers I and II �and references
therein�, the permeability intrinsic to the material is given by

1

P�
=

1

�
�

−d

d

dz
1

D�z�
, �2.1�

where ��1/kBT, 2d is the width of the interface separating
the two bulk regions containing the guest and

D�z� �
1

A
�

0

�

dt� dr� dr���Jz
†�r,t�Jz

†�r��	 , �2.2�

is a space-dependent Onsager diffusion coefficient. In this
last expression, r and r� are spatial coordinates, t is the time,
and A is the area of the crystalline interface. In addition,
Jz

†�r��exp�i�1−P�Lt��1−P�Jz�r� is the z component of the
dissipative part of the guest diffusion current, where P is a
projection operator �see below� and L is the Liouville opera-
tor. The integral over r�, i.e., �x ,y�, is a consequence of the
fact that the average current through the interface was chosen
to lie along the z axis.

In papers I and II, �Jz
†�r , t�Jz

†�r��	 in Eq. �2.2� is a simple
correlation function that, modulo effects associated with the
daggers, can be easily evaluated from classical molecular
dynamics simulations. Quantum mechanically, the expres-
sion for D�z� is slightly modified from Eq. �2.2�: the current

fields J† become operators Ĵ† �henceforth, we use “Ô” to
denote a quantum mechanical operator� and the classical cor-
relations are replaced by Kubo averages �16� defined as

�Â�t�B̂	K � �
0

1

d� Tr�Â�t�e−��ĤB̂e��Ĥ	̂� , �2.3�

where Ĥ is the Hamiltonian operator, Tr is a quantum me-

chanical trace, and 	̂�e−�Ĥ /Q is the density matrix, with the

partition function, Q�Tr�e−�Ĥ�. For a recent review where
Kubo averages are used to study quantum liquids, see Ref.
�17�.

The quantum or classical mechanical expressions for D�z�
are not particularly useful in the above form without a pre-
scription that takes care of the effects that the projection
operators �i.e., the daggers� have on the current operators and
on their time dependence. For the classical case, Vertenstein
and Ronis �3,18� obtained a relation, expressed in terms of
standard correlation functions, that approximately accounts

FIG. 1. The exact density of states �full line� for �-quartz is
compared with the one obtained from our approximate form for the
memory function �dashed line�, cf. Eq. �4.35�.
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for the projection operators. They used a projection operator
formalism �19,20� with the projection operator

PA � �AN	 * �NN	−1 * N , �2.4�

where the N is the fluctuation in number density of the guest
component and an asterisk denotes any spatial integrations.
Note that �NN	−1 is not an algebraic inverse of the �NN	
correlation function, rather it is the solution to

dr1�N�r�N�r1�	�N�r1�N�r��	−1=
�r−r��. With this in hand,
they showed, assuming infinite dilution for the guest in the
crystal, that D�z� could be accurately approximated by

D�z� =

n��
0

�

dt �vG,z�t�vG,z	z�t=0�=ze
−�W�z�

1 + �
0

�

dt ��F�z�t��vG,z	z�t=0�=z

, �2.5�

where n� is the number density in the bulk, vG,z is the z
component of the guest velocity, W�z� and F�z� are, respec-
tively, the plane average potential of mean force and the
mean force. Specifically,

e−�W�z� �
1

A
� dr�e−�W�r�, �2.6�

where r is the guest position, W�r� is the usual potential of
mean force, and F�z��−�W�z� /�z. All correlations in Eq.
�2.5� are evaluated conditional to the z component of the
guest position being initially equal to z �and is indicated by
the subscripts on the averages�. Finally, note that this deriva-
tion uses the fact that �N�r�N�r��	=n�
�r−r��e−�W�r� and
further assumes that D�z� /e−�W�z� is approximately constant
near the barrier top �this approximation is exact for Smolu-
chowski diffusion processes �21��.

For our problem, an appropriate choice of projection op-
erator is defined by Eq. �2.4� after the correlations have been
replaced by Kubo averages and the variables A and N by
operators, see Ref. �22�. By repeating the steps that led to Eq.
�2.5�, see Refs. �3,18�, it is easy to show that

�Ĵ�r,t�Ĵ�r��	K = �Ĵ†�r,t�Ĵ†�r��	K − �
0

t

d�� dr1

�� dr2�Ĵ†�r,��Ĵ†�r1�	K
�

�r1

���N̂�r1�N̂�r2�	K
−1��N̂�r2,t − ��Ĵ�r��	K.

�2.7�

Note that unlike the classical case, here, at infinite guest

dilution, �N̂�r1�N̂�r2�	K� �N̂�r1�N̂�r2�	=n�r1�
�r1−r2�.
Hence, a solution for the irreversible current correlations

�Ĵ†�r , t�Ĵ†�r��	K requires that the various Kubo average cor-
relations that appear in Eq. �2.7� be computed and the inte-
gral equation solved. The next section shows how any of
these Kubo averages can be obtained within a semi-classical
picture that relies on the fact that the guest dynamics is slow
compared to the vibrations. In particular, for the types of

averages that appear in Eq. �2.7�, D�z� is obtained from an
expression identical to Eq. �2.5�, but with a corrected poten-
tial of mean force and a new set of dynamical equations,
used to calculate the desired correlations; these take into ac-
count the effect of the quantum degrees of freedom �i.e., the
crystal vibrations�.

In what follows, we will work with the anticommutator
correlations defined as

��Â�t�,B̂�	 � Tr��Â�t�B̂ + B̂Â�t��	̂� . �2.8�

This anticommutator correlations can then be used to obtain
the Kubo transform using the standard relation �16�

�Â�t�B̂	K = �
−�

�

dt���t − t��
1

2
��Â�t��,B̂�	 , �2.9�

where ��t� is most easily represented spectrally as

��t� �
1

2

�

−�

�

d� ei�t tanh����/2�
���/2

. �2.10�

III. EVALUATION OF ANTICOMMUTATOR
CORRELATION FUNCTIONS USING PATH INTEGRALS

As in papers I and II, we assume that the guest component
is anharmonically coupled to a limited number of atoms in
the crystal, which we call target atoms. These target atoms
are allowed to further interact with themselves and with any
other atoms of the macroscopic crystal that do not interact
with the guest directly, the so-called bath atoms �note that
this last assumption can be relaxed to allow harmonic inter-
actions between guest and bath�. The interaction between
any two crystal atoms is assumed to be harmonic. This
model is described by the following Hamiltonian:

Ĥ �
p̂g

2

2mg
+

1

2
P̂t

TMtt
−1P̂t +

1

2
P̂b

TMbb
−1P̂b + V�r̂g,R̂t� +

1

2
R̂t

TKttR̂t

+ R̂t
TKtbR̂b +

1

2
R̂b

TKbbR̂b, �3.1�

where p̂g and r̂g are the guest momentum and position op-

erators, P̂t,b and R̂t,b are vectors of the target/bath momentum
and position operators, K with subscript tt, tb, and bb de-
notes a block of the force constant matrix, and the super-
script T indicates a matrix transpose.

We now turn to the evaluation of the anti-commutator
correlation function. This correlation function can be for-
mally written in the coordinate representation as

1

2
��Â�t�,B̂�	 =

1

2
� dR1� dR2� dR3�K−�R1,R2;t�

�Â�R2�K+�R2,R3;t�B̂�R3� + B̂�R1�

�K−�R1,R2;t�Â�R2�K+�R2,R3;t��
	�R3,R1�

Q

�3.2�

for diagonal Â and B̂ operators in coordinate space, where
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Ri��rg
T ,Rt

T ,Rb
T�i

T, for i=1,2 ,3, and where, using bra-ket no-
tation

K±�R1,R2;t� � �R1
e�iĤt/�
R2	 , �3.3�

	�R1,R2� � �R1
e−�Ĥ
R2	 , �3.4�

and

Q �� dR 	�R,R� �3.5�

is the partition function. Note that the operator B̂�R1� in the
second term of the right-hand side of Eq. �3.2� only acts on
K−�R1 ,R2 ; t� and not on 	�R3 ,R1�.

A. The density matrix

We first focus on the density matrix, 	�R1 ,R2�. It can be
written in terms of path integrals as �23�

	�R1,R2� =� D�R����e−�1/��A, �3.6�

where the Euclidean action is given by

A � �
0

��

d��mgṙg
2

2
+

Ṙt
TMttṘt

2
+

Ṙb
TMbbṘb

2
+ V�rg,Rt�

+
1

2
Rt

TKttRt + Rt
TKtbRb +

1

2
Rb

TKbbRb� , �3.7�

where the time argument was omitted for all position vari-
ables and where ṙg����drg /d�, etc. All paths are con-
strained to start at R1 and end at R2. We will now use, for the
first but not the last time, the fact that the guest is slow at
room temperature and higher and we will argue, as in Ref.
�23�, that the position of the guest barely changes in the
complex time interval, ��. Effectively, for this path integral,
we treat the guest as a free particle evolving in a constant
potential. Therefore, we set rg=rg

�0� �to be specified later� in
the last equation and, as in papers I and II, we Taylor expand

V�rg
�0� ,Rt� with respect to the crystal coordinates around Rt

=Rt
�0��rg

�0��, a point at which there is no net force on the
crystal atoms; i.e., where

KeffRt
�0� = −

�V�rg
�0�,Rt

�0��

�Rt
�3.8�

and Rb
�0�=−Kbb

−1KbtRt
�0�, where Keff�Ktt−KtbKbb

−1Kbt. It is easy
to show that the best choice of rg

�0� is the midpoint �r1,g

+r2,g� /2, in that it makes the first corrections in � for the
guest vanish. As in papers I and II, the terms in the Taylor
expansion for V�rg

�0� ,Rt� above second order are neglected.
Within these approximations, the only path integrals that

have to be evaluated are a simple free propagator for the
guest and standard harmonic potential path integrals for the
crystal �see, e.g., Refs. �23,24��. The manipulations are stan-
dard and the final expression for the density matrix is

	�R1,R2� = �� mg

2
��2�3

det���D�
2
�

��1/2

exp�− �V�rg
�0�,Rt

�0��

−
mgyg

2

2��2 − �
�Rt

�0��TKeffRt
�0�

2

−
�R1,c − Rc

�0��T��D��R1,c − Rc
�0��

2�

−
�R2,c − Rc

�0��T��D��R2,c − Rc
�0��

2�

+
�R1,c − Rc

�0��T��D��R2,c − Rc
�0��

�
� , �3.9�

where Rc��Rt
T ,Rb

T�T, yg�r2,g−r1,g,

��D� � M1/2�K̃ + D̃�1/2coth����K̃ + D̃�1/2�M1/2,

�3.10�

��D� � M1/2�K̃ + D̃�1/2csch����K̃ + D̃�1/2�M1/2,

�3.11�

and K is a matrix defined in the crystal subspace containing
the harmonic force constants. The ��D� and ��D� are ma-
trices defined in the full crystal subspace and are functions of
the curvature matrix

D � � �2V�rg
�0�,Rt�

�Rt � Rt
�

Rt=Rt
�0�

, �3.12�

which, by assumption, is nonzero only in the target subspace
and which depends on the guest position. Finally, henceforth,
a tilde over any matrix indicates that it has been mass scaled,

e.g., K̃�Mc
−1/2KMc

−1/2, where M�diag�mg ,Mt ,Mb�.
A guest potential of mean force can be defined, as in

papers I and II, in terms of the diagonal part of the reduced
density matrix as

e−�W�rg� �
	R�rg�

Qharmonic
� mg

2
��2�−3/2

, �3.13�

where

	R�rg� � � dRc	�R,R� , �3.14�

and where Qharmonic is the partition function of the crystal
decoupled from the guest. This definition makes W�rg� zero
when the guest is far from the crystal. Using this definition,
we find that

W�rg� = V�rg,Rt
�0�� +

1

2
�Rt

�0��TKeffRt
�0� + �W�rg� ,

�3.15�

where all the temperature dependent terms are in

�W�rg� �
kBT

2
ln�det����D� − ��D����D�−1�

det����0� − ��0����0�−1� � .

�3.16�
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The first two terms on the right-hand side of Eq. �3.15�
appear in the classical potential of mean force obtained in
papers I and II. The temperature dependence of the potential
of mean force is different here than what we had in papers I
and II �where an expansion in powers of temperature results�
and arises because of the quantum nature of the crystal vi-
brations �for a numerical comparison, see Sec. V A�. In the
high temperature limit all the vibrational modes are excited,
and Eq. �3.15� is easily shown to reduce to the classical
expression

Wclass�rg� = V�rg,Rt
�0�� +

1

2
�Rt

�0��TKeffRt
�0�

+
kBT

2
ln�det�1 + Keff

−1D�� . �3.17�

In the derivation of Eq. �3.9� the guest was assumed to
behave like a free-particle in the time interval ��. Other
techniques that approximately include quantum mechanical
effects in the calculations of partition functions and density
matrices have been developed, and, in principle, could have
been used above. Of these, the variational approach of Feyn-
man and Kleinert �25,26� and its extensions �see, e.g., Refs.
�26–28�� is very accurate, but is only useful for nonsingular
potentials. Ermakov, Butayev, and Spiridonov �29� suggested
an approximate expression, exact for harmonic potentials,
which gives the right high-temperature �classical� limit and
which can be applied to any potential. This method was im-
proved by Mak and Andersen �30�, Cao and Berne �31�, and
by Chao and Andersen �32�. We give the details of an appli-
cation of these methods to our problem in the Appendix and
show in Sec. V that similar results are obtained, at least for
experimentally relevant temperatures. �The experiments that
measure the diffusion of gases through crystals are rarely
performed at or below room temperature.�

As a final comment, note that many authors, in their cal-
culations of the density matrix, assume that, at time t=0, the
system �here, guest and target� and the bath are decoupled
�33,34�. Here, this approximation is clearly inappropriate.
The guest has two effects on the crystal degrees of freedom.
First, it modifies the force constant matrix in the tt block, but
also shifts the oscillator centers, even in the bath. This last
effect would be absent if the bath was decoupled.

B. Forward-backward path integrals and connection
with MSR

Next, we obtain a similar semiclassical approximation for
the real-time propagators K±�R1 ,R2 ; t�. Each of these propa-
gators is written as

K±�R1,R2;t� =� D�R±����e±�i/��S±, �3.18�

where K± is the forward �backward� propagator defined in
terms of the action

S± � �
0

t

d� �1

2
mgṙg,±

2 +
1

2
Ṙc,±

T MccṘc,± − V�rg,±,Rt,±�

−
1

2
Rc,±

T KRc,±� , �3.19�

where, for the + �−� propagator, all paths start �end� at R2

and end �start� at R1. We then have to consider these path
integrals in terms of a semiclassical picture consistent with
our treatment of the density matrix in the previous section.
The formalism that we will use to evaluate these propagators
is inspired from the work of Schmid et al. �35,36� and of
Kleinert and Shabanov �33� who obtained quantum Langevin
equations for simpler systems.

Here, rather than considering the two propagators
individually, we will work with the combination

K−�R1 ,R2 ; t�Â�R2�K+�R2 ,R3 ; t� appearing in Eq. �3.2�. We

first realize that the operator Â�R2� only acts on the end point
of the positive time propagator. With this in mind, we will

replace R2 in the argument of Â and K+ by Z and, after

the operator Â�Z� has acted on the combination
K−�R1 ,R2 ; t�K+�Z ,R3 ; t�, we will set Z back to R2. This
combination of forward-backward path integrals is rewritten
in terms of sums and differences of the forward and back-
ward path variables

K−�R1,R2;t�K+�Z,R3;t�

=� D�X����D�Y����exp� i

�
�

0

t

d� �mgẋg · ẏg

+ Ẋc
TMccẎc − V�xg +

yg

2
,Xc +

Yc

2
�

+ V�xg −
yg

2
,Xc −

Yc

2
� − Xc

TKccYc�� , �3.20�

where X��R++R−� /2 and Y�R+−R−. Note that the
boundary condition for Y�t�=Z−R2 becomes equal to zero
when Z is set back to R2.

We use the same approximations as above and Taylor ex-
pand the potential in the action in Y. All the even terms in Y
cancel and we keep only the linear ones, neglecting terms of
order O�Y3�. Again, for the guest, this is justified because,
for the temperatures considered, the paths are localized
around the classical trajectory which, as will be shown be-
low, is given by the classical equations of motion for xg���
and Xc���. For the crystal variables, the expansion is again
approximately valid since, for any forward or backward path,
the crystal position will not deviate strongly from their mean
because of the strength of the harmonic part of the potential.
After this expansion is carried out, the argument in the ex-
ponential becomes linear in Y. This results in a path integral
which closely resembles that which is obtained in the
Martin-Siggia-Rose �MSR� formalism �37,38� that represents
stochastic processes as path integrals. This suggest that we
should be able to revert the MSR formalism and simulate the
path integrals from a set of stochastic differential equations.
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We now show that this transformation can indeed be car-
ried for our system. This derivation follows that of Jensen’s
�38� derivation of MSR in reverse. We start by writing the

path integrals in their discretized form and make use of the
approximations described in the preceding paragraph. This
gives,

K−�R1,R2;t�K+�Z,R3;t� � lim
N→�

�� mg

2
��
�3�N+1�

det� Mc

2
��
�N+1� �

j=1

N

dX jdY jexp� i�

�
�
m=0

N �mg�xg,m+1 − xg,m� · �yg,m+1 − yg,m�
�2

+
�Xc,m+1 − Xc,m�TMcc�Yc,m+1 − Yc,m�

�2 + Fg�xg,m,Xt,m� · yg,m + Ft�xg,m,Xt,m�TYt,m − Xc,m
T KccYc,m��� ,

�3.21�

where �� t /N, the j=0 and j=N+1 subscripts represent the
boundary conditions on the paths at �=0 and �= t, respec-
tively, and where the forces are defined by

Fg�xg,m,Xt,m� � −
�V�xg,m,Xt,m�

�xg,m
�3.22�

and

Ft�xg,m,Xt,m� � −
�V�xg,m,Xt,m�

�Xt,m
�3.23�

as usual.
Clearly, the fact that we have dropped all cubic terms and

higher in Y��� allows us to perform all the yg,j and Yc,j

integrals for j=1¯N, which gives a product of delta func-
tions that can be trivially manipulated to give

K−�R1,R2;t�K+�Z,R3;t� � lim
N→�

�� mg

2
��
�3

det� Mc

2
��
� � �

j=1

N

dX j �
m=1

N �
�xg,m+1 − 2xg,m + xg,m−1 −
�2

mg
Fg�xg,m,Xt,m��
�Xc,m+1

− 2Xc,m + Xc,m−1 −
�2

Mcc
�Ft�xg,m,Xt,m� − KccXc,m���exp�− i�mg/����xg,1 − xg,0� · yg,0 + i�mg/���

��xg,N+1 − xg,N� · yg,N+1 − i�Xc,1 − Xc,0�T�Mcc/���Yc,0 + i�Xc,N+1 − Xc,N�T�Mcc/���Yc,N+1�� . �3.24�

In order to proceed, note that after the operator Â�Z� acts
on K−�R1 ,R2 ; t�K+�Z ,R3 ; t� and after Z is set back to R2, we
obtain a function, A(xg�t� ,vg�t�) that multiplies
K−�R1 ,R2 ; t�K+�R2 ,R3 ; t�, where xg�t� and vg�t� are, respec-
tively, the guest final position and velocity �the final velocity
is defined by vg�t���xg,N+1−xg,N� /�� �39�. We will show ex-

amples of this function for specific choices of the operator Â
in the following section.

We now use the fact that the final position phase vector,
R2= �xg,N+1

T ,Xt,N+1
T ,Xb,N+1

T �T is integrated over all possible R2
in the anticommutator expression �see Eq. �3.2�� to realize
that, in the N→� limit, the product of delta functions com-
bined with the integrations over X2, X3 , . . . ,XN forces XN+1
=X�t�=R2 to be the solution of the initial value problem

mg
d2xg

dt2 = Fg�xg,Xt� , �3.25a�

Mtt
d2Xt

dt2 = Ft�xg,Xt� − KttXt − KtbXb, �3.25b�

and

Mbb
d2Xb

dt2 = − KbbXb − KbtXt, �3.25c�

with initial position X�0�=X0= �R1+R3� /2 and velocities

Ẋ�0�=V�0�= �X1−X0� /� �recall that the integrals over X1

were not performed yet�. The remaining integrations in the
anticommutator expression �3.2� are over R1, R3, and X1. A
simple change of variables allows us to reexpress the anti-
commutator as
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1

2
��Â�t�,B̂�	 =

1

2
� mg

2
�
�3

det� Mcc

2
�
� � dX�0�dV�0�dY�e−i�mg/��vg�0�·yg−iVc�0�T�Mcc/��YcApath„xg�t�,vg�t�…B̂�xg�0� +

yg

2
�

+ B̂�xg�0� −
yg

2
�e−i�mg/��vg�0�·yg−iVc�0�T�Mcc/��YcApath„xg�t�,vg�t�…�	�X�0� +

Y

2
,X�0� −

Y

2
�

Q
, �3.26�

where Y�R3−R1. In this last equation, Apath(xg�t� ,vg�t�) is

the function defined by the operator Â which is evaluated in
terms of the guest and target final position and velocities
which are obtained by solving Eqs. �3.25a�, �3.25b�, and
�3.25c� with the proper initial conditions �these initial condi-
tions are then averaged over with a weight that is prescribed
by the density matrix�.

Note that Eqs. �3.25a�, �3.25b�, and �3.25c� are com-
pletely deterministic and are identical, modulo the weight on
the initial conditions, with the classical equations of motion

found in papers I and II. Also, when Â and B̂ are set to one,
the Y integrations in Eq. �3.26� simply give the Wigner dis-
tribution �40� form of the density matrix.

As was shown earlier by Deutch and Silbey �15�, these
equations can be transformed to a reduced set of generalized

Langevin equations �GLE� after the bath degrees of freedom
are projected out. Here, this is done by noting that the equa-
tion of motion for the bath, Eq. �3.25c�, is easily solved in
terms of the bath initial conditions and in terms of a Green’s
function that couples to the target degrees of freedom. Then,
using the fact that the correlations we want to compute de-
pend explicitly only on the guest degrees of freedom and
using Eq. �3.9� for the density matrix, we can perform all
remaining bath integrals as well as the target Yt integrals.
Following these two operations, Eq. �3.26� is rewritten in
terms of a reduced density matrix and the differential equa-
tions that are used to calculate Apath(xg�t� ,vg�t�) reduce to a
smaller set of stochastic coupled equations where the target
dynamics are governed by a GLE. The anticommutator cor-
relation then becomes

1

2
��Â�t�,B̂�	 =

1

2
� mg

2
�
�3� dxg�0�dvg�0�dygdXt�0�dVt�0��e−i�mg/��vg�0�·ygApath„xg�t�,vg�t�…B̂�xg�0� +

yg

2
�

+ B̂�xg�0� −
yg

2
�e−i�mg/��vg�0�·ygApath„xg�t�,vg�t�…�	g�„xg�0�,yg…	t
g„Xt�0�,Vt�0�;xg�0�… , �3.27�

where

	g�„xg�0�,yg… �
det� ��D�

„��D� − ��D�…�exp�− �V„xg�0�,Rt
�0�
… −

mgyg
2

2��2 −
�

2
�Rt

�0��TKeffRt
�0��

� dxg�0�det� ��D�
„��D� − ��D�…�exp�− �V„xg�0�,Rt

�0�
… −

�

2
�Rt

�0��TKeffRt
�0�� , �3.28�

with Rt
�0� obtained from Eq. �3.8� for xg�0�=rg

�0�, and

	t
g„Xt�0�,Vt�0�;xg�0�… � �det� 1


2�Gtt�D� − Gtb�D�
1

Gbb�D�
Gbt�D���Htt�D� − Htb�D�

1

Hbb�D�
Hbt�D����1/2

�exp�− �Xt�0� − Rt
�0��T�Gtt�D� − Gtb�D�

1

Gbb�D�
Gbt�D���Xt�0� − Rt

�0��

− Vt�0�T�Htt�D� − Htb�D�
1

Hbb�D�
Hbt�D��Vt�0�� , �3.29�

where the subscripts on these matrices indicate the appropri-
ate t /b , t /b blocks, and where we have introduced two new
matrices

G�D� � �−1���D� − ��D�� �3.30a�

and
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H�D� � �−1M� 1

��D� + ��D��M . �3.30b�

In Eq. �3.27�, the xg�0� dependence of
	t
g�Xt�0� ,Vt�0� ;xg�0�� comes from the matrices G�D� and
H�D� as well as from Rt

�0�. We have separated the density
matrix into two parts in order to highlight the fact that
	t
g�Xt�0� ,Vt�0� ;xg�0�� can be used as a �conditional� distri-
bution function for the initial target positions and velocities
�see Eq. �3.29�� that is easily shown to reduce to the classical
equilibrium distribution function for high temperatures. It is

easy to show that, when Â and B̂ are both unit operators, the
anticommutator, �3.27� is, as expected, also unity.

The reduced set of differential equations that has to be
solved in order to obtain Apath(xg�t� ,vg�t�) is expressed as a
set of generalized Langevin equations, i.e.,

mg
d2xg

dt2 = Fg�xg,Xt� �3.31�

and

Mtt
d2Xt

dt2 = Ft�xg,Xt� − KeffXt − �
0

�

ds Mtt
1/2K̃tb

�
cos�K̃bb

1/2�� − s��

K̃bb

K̃btMtt
1/2Ẋt�s� + �†��� ,

�3.32�

where

�†��� � − Mtt
1/2K̃tbcos�K̃bb

1/2��� 1

K̃bb

K̃bt −
1

G̃bb�D�
G̃bt�D��

�Mtt
1/2�Xt�0� − Xt

�0�� + Mtt
1/2K̃tb

sin�K̃bb
1/2��

K̃bb
1/2

1

H̃bb�D�

�H̃bt�D�Mtt
1/2Vt�0� + F†��� , �3.33�

and where F†��� is a Gaussian random force with zero mean
and covariance

�F†���F†����T	 =
Mtt

1/2K̃tb

2 �cos�K̃bb
1/2��

1

G̃bb�D�
cos�K̃bb

1/2���

+
sin�K̃bb

1/2��

K̃bb
1/2

1

H̃bb�D�

sin�K̃bb
1/2���

K̃bb
1/2 �K̃btMtt

1/2.

�3.34�

These expressions are very similar to the ones in I and II �on
average, they are, of course, identical to the classical equa-
tions of motion�; the differences are in the terms denoted by
�†���. The ones containing the factors �Xt�0�−Rt

�0�� and
Vt�0� are completely absent in the classical case. Indeed, a

careful analysis of the G�D� and H�D� matrices shows that
these terms vanish in the high temperature limit. Although
these new terms look strange at first glance because the dy-
namics of the target seems to “remember” the initial posi-
tions and velocities through them, we show in Ref. �41� that,
when the formalism is used to calculate target-target correla-
tions in the absence of the guest, the resulting correlations
are “exact.” Furthermore, these two new terms can be con-
sidered, such as F†���, as colored Gaussian noise since the
target initial positions and velocities are randomly sampled
from 	t
g(Xt�0� ,Vt�0� ;xg�0�), although they are obviously
correlated to the initial positions and velocities.

The random force term in Eq. �3.32�, F†���, also appears
in the classical GLE in papers I and II, albeit with different
correlations, see Eq. �3.34�. Note that the source of the noise
solely arises from the sampling of the bath initial conditions,
which is determined by G�D� and H�D�. It is also easy to
show that these correlations identically reproduce the classi-
cal generalized Einstein-Nyquist relation in the high-
temperature limit; specifically, in the classical limit, the ran-
dom force correlations are proportional to the memory
function

lim
T→�

�F†���TF†����	 = kBTMtt
1/2K̃tb

cos�K̃bb
1/2�� − ����

K̃bb

K̃btMtt
1/2.

�3.35�

Hence, while classically the generalized Einstein-Nyquist re-
lation predicts that the noise vanishes at absolute zero, Eq.
�3.34� shows that the noise remains finite at very low tem-
perature; this is expected because of zero-point motion.

To summarize, the differential equations, Eq. �3.32�, con-
tain quantum generalizations to the classical equations of
motion obtained in papers I and II and reduce to them in the
high-temperature limit. It is probably too strong to interpret
them as equations of motion �e.g., they cannot be used to
predict the evolution of a wave packet, even in the harmonic
case�, they are simply differential equations that approxi-
mately lead to the correct correlation functions, but that are
nonetheless exact for purely harmonic systems.

We conclude this subsection with some remarks on the
approximations we made in the above derivation and com-
pare with earlier work. For example, instead of our approxi-
mations on the combination of the forward and the backward
propagator, one could have obtained each propagator within
the semiclassical WKB approximation �24� in the coherent
state-representation �42�. This approach was taken by Makri
et al. �43–46� in the semiclassical evaluation of correlation
functions for nonharmonic quantum systems. In short, both
this approach and ours are exact for harmonic systems, but in
the latter, a classical simulation of the forward trajectories is
followed by another simulation for the backward propaga-
tors. In both cases, for nonharmonic systems, terms of order
O�Y3� are neglected in the evaluation of the propagator. The
reason we choose our approach is that it requires half the
simulation effort �we simulate the forward and backward
path integrals at the same time�. Also, our stochastic bound-
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ary value problem directly reduces to the classical Langevin
equation for high temperatures.

C. The permeability revisited

We conclude this section by explicitly showing how the
path integral formalism developed above can be used to ob-
tain the anticommutator correlations needed to calculate the
space-dependent Onsager diffusion coefficient D�z� and

through it, the permeability. The required correlations are
just the Kubo averages that appear in Eq. �2.7�, and these can
be expressed in terms of anti-commutator correlations using
Eq. �2.9�.

We start with the density-density correlations,
��N̂�rg , t� , N̂�rg��� /2	. As in papers I and II, we work in the

infinite dilution regime and take N̂�rg , t�=
(rg− r̂g�t�). Be-
cause this operator simply multiplies the other factors in Eq.
�3.27�, we trivially obtain

1

2
��N̂�rg,t�,N̂�rg���	 =

1

2
� mg

2
�
�3� dxg�0�dvg�0�dygdXt�0�dVt�0�
„rg − xg�t�…�
�rg� − xg�0� −

yg

2
� + 
�rg� − xg�0� +

yg

2
��

�e−i�mg/��vg�0�·yg	g�„xg�0�,yg…	t
g„Xt�0�,Vt�0�;xg�0�… . �3.36�

The sum of the two delta functions is then Taylor expanded in yg. It is easy to show that, when the yg integrations are
performed, the Taylor expansion in yg becomes an expansion in �. To be consistent with our density matrix approximation, see
Eq. �3.9�, we only keep the leading term in the expansion, and Eq. �3.36� becomes

��N̂�rg,t�,N̂�rg���
2

� =� dxg�0�dvg�0�dXt�0�dVt�0��
„rg − xg�t�…
„rg� − xg�0�…	g„xg�0�,vg�0�…	t
g„Xt�0�,Vt�0�;xg�0�…� ,

�3.37�

where

	g„xg�0�,vg�0�… �
��mg

2

�3/2

det� ��D�
„��D� − ��D�…�exp�− ��1

2
mgvg�0�2 + V„xg�0�,Rt

�0�
… +

1

2
�Rt

�0��TKeffRt
�0���

� dxg�0�det� ��D�
„��D� − ��D�…�exp�− ��V„xg�0�,Rt

�0�
… +

1

2
�Rt

�0��TKeffRt
�0��� , �3.38�

which is very similar to the classical distribution function
modulo the ��D� and ��D� matrices which contain the
quantum mechanical effects of the lattice vibrations. Note
that Eq. �3.38� is essentially Eq. �3.28�, but with the yg trans-
formed to the initial velocity distribution. In Eq. �3.37�, xg�t�
is obtained by integrating Eq. �3.32� with the noise and ini-
tial target parameters sampled from Eqs. �3.34� and �3.29�,
respectively. The initial position of the guest is fixed at rg�
and its initial velocity sampled from Eq. �3.38�.

As seen from Eq. �2.7�, the required correlation

��N̂�rg , t� , N̂�rg��� /2	, must be evaluated for t=0. In this case,
xg�t�=rg� and

1

2
��N̂�rg�,N̂�rg���	 = 
�rg − rg�� � dvg�0�	g„rg,vg�0�…

= 
�rg − rg��nbulke
−�W�rg�, �3.39�

where W�rg� is the potential of mean force as defined in Eq.
�3.15�. Note that the 
 function is completely expected and
the approximate nature of the result is in W�rg�, see Eq.

�3.9�. While the full time dependence of ��N̂�rg , t� , N̂�rg���	
must be known in order to compute the Kubo average ac-

cording to Eq. �2.9�, we will show below that, at room tem-
perature, the Kubo average and the anticommutator of guest
operators are almost indistinguishable, and thus, the equal
time Kubo average is also given by the right-hand side of Eq.
�3.39�.

The remaining two anticommutator correlations that ap-
pear in Eq. �2.7� can be obtained by applying the same ap-
proximations that led to Eq. �3.39�. The details are given in
Ref. �41�; here, we simply state the final results, namely,

1

2
��Ĵ�rg,t�, Ĵ�rg���	 =� dxg�0�dvg�0�dXt�0�dVt�0�

�
„rg − xg�t�…
„rg� − xg�0�…vg�t�vg�0�

� 	g„xg�0�,vg�0�…	t
g„Xt�0�,Vt�0�;xg�0�…

�3.40�

and
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1

2
��N̂�rg,t�, Ĵ�rg���	

=� dxg�0�dvg�0�dXt�0�dVt�0�

�
„rg − xg�t�…
„rg� − xg�0�…vg�0�

�	g„xg�0�,vg�0�…	t
g„Xt�0�,Vt�0�;xg�0�… .

�3.41�

The functional forms of these expressions are again identical
to their classical counterparts, although here too, the dynam-
ics, the noise distribution and the initial condition distribu-
tion are different from what is obtained classically.

Finally, since the expressions that we obtained for the
three necessary anti-commutator correlations have the same
properties as the classical correlations, the steps that led to
the approximate expression for D�z�, see Eq. �2.5�, are
equally valid. More precisely, the functional forms of our

semiclassical 1
2 ��Ĵ�rg , t� , Ĵ�rg���	,

1
2 ��N̂�rg , t� , Ĵ�rg���	, and

1
2 ��N̂�rg , t� , N̂�rg���	 greatly simplifies Eq. �2.7� and, if we
again assume D�z�e�W�z� to be approximately constant close
to the barrier tops �implying that the motion is a Smolu-
chowki diffusion process in that region�, the classical deriva-
tion for D�z� goes through unchanged �for more details, see
Ref. �3��. Again, the correlations that appear in Eq. �2.7� are
Kubo averages and here we have worked with the anticom-
mutator. In order to be consistent, we should apply the trans-
formation �2.9� to the anticommutators before solving Eq.
�2.7�. On the other hand, because the guest dynamics is slow,
we expect the Kubo average and the anticommutator to be
approximately equal, as is shown numerically in Sec. V.

IV. COMPUTATIONAL DETAILS

In this section we show how the formalism developed
above can be implemented numerically; specifically, we con-
sider two issues: First, the potential of mean force is defined
in terms of large matrices that are functions of the harmonic
force matrix in the presence of the guest, i.e., ��D� and
��D� in Eq. �3.15�. Here, the effect of the guest is not as
simple as in papers I and II because quantum mechanically
the guest modifies the bath-bath blocks of these matrices. We
will show how we can overcome this problem by using the
theory of vibrational defects �47� and some well-chosen con-
tour integrations. Second, we need an efficient procedure to
simulate the new random terms that appear in the differential
equations, i.e., �†��� in Eq. �3.32�. We will show that these
new terms are easily simulated by implementing a Brillouin
zone summation during the simulation process and by using

our approximation, which was tested in papers I and II, for
the memory function.

A. Potential of mean force

Here, we show how the new terms in the potential of
mean force, i.e., �W�rg�, see Eq. �3.16�, can be calculated.
These terms are most easily written in terms of the vibra-
tional normal modes of the crystal

�W�rg� = kBT�
j=1

3N

„f�� j�� − f�� j�… , �4.1�

with

f��� �
���

2
+ ln�1 − e−���� , �4.2�

and where � j� is the jth normal mode frequency of the lattice
in the presence of the frozen guest �i.e., where D is added to
K, see Eqs. �3.10� and �3.11��, � j is the jth normal frequency
of the pure lattice �D=0�, and N is the number of atoms in
the crystal.

We can reexpress Eq. �4.1� as a contour integral as

��W�rg� = �
j=1

3N
1

i

�

C1
d� �f���� 1

�2 − � j�
2 −

1

�2 − � j
2� ,

�4.3�

where C1 is a counter clockwise contour that includes all
positive poles of the integrand and that excludes the logarith-
mic branch cut that lies on the negative real axis. From here,
it is easy to show that �W�rg� can be written in terms of the
vibrational Green’s function of the crystal

��W�rg� =
1

i

�

C1
d� �f���Tr�G��,D� − G��,0�� ,

�4.4�

where Tr is a trace and where the Green’s function matrices
are defined by

G��,D� �
1

�2 − K̃ − D̃
�4.5�

�G�� ,0� is the original Green’s function of the pure crystal�.
The advantage of writing �W�rg� in terms of the Green’s
function is that we can use the theory of defects, as we did in
paper I, to compute the trace using matrices that are defined
in the target subspace only. Specifically, as was shown in
paper I, G�� ,D� can be calculated in terms of the perfect
lattice Green’s function G�� ,0� as

G��,D� = � „1 − Gtt��,0�D̃…

−1Gtt��,0� „1 − Gtt��,0�D̃…

−1Gtb��,0�

Gbt��,0�D̃„1 − Gtt��,0�D̃…

−1Gtt��,0� + Gbt��,0� Gbt��,0�D̃„1 − Gtt��,0�D̃…

−1Gtb��,0� + Gbb��,0�
� . �4.6�
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What we really need in order to compute �W�rg� is the trace
of the difference between G�� ,D� and G�� ,0�, and using the
last equation and the invariance of the trace under cyclic
permutations, we finally obtain

��W�rg� =
1

i

�

C1
d� �f���Tr�„G2��,0�…tt

�D̃„1 − Gtt��,0�D̃…

−1� , �4.7�

where

„G2��,0�…tt = „Gtt��,0�Gtt��,0� + Gtb��,0�Gbt��,0�…

�4.8�

is the tt block of G�� ,0�2. We show the contour, C1, that is
used to calculate �W�rg� in Fig. 2. Note that the maximum
of Re��� along the contour �� in Fig. 2� must be larger than
the largest frequency in the crystal vibrational density of
states.

The knowledge of the Green’s function allows us to com-
pute more than the potential of mean force. In fact, in order
to perform the simulations described above, we also need the
G�D� and H�D� matrices that characterize the distribution of
target initial positions and velocities, cf. Eq. �3.29�. These
matrices satisfy

Gtt�D� − Gtb�D�
1

Gbb�D�
Gbt�D� = �Ltt�D��−1 �4.9a�

and

Htt�D� − Htb�D�
1

Hbb�D�
Hbt�D� = �Ttt�D��−1, �4.9b�

and where the two new matrices are defined in the full space
as follows:

L�D� � G�D�−1 and T�D� � H�D�−1. �4.10�

We can also reexpress these matrices in terms of the Green’s
function and contour integrals; the derivation is very similar
to what was done for �W�rg� and we simply state the final
results for the mass-scaled matrices, namely,

�G̃tt�D� − G̃tb�D�
1

G̃bb�D�
G̃bt�D��−1

=
2

�K̃eff

+
�

2
i
�

C2
d� coth����

2
�Gtt��,D�

�4.11�

and

�H̃tt�D� − H̃tb�D�
1

H̃bb�D�
H̃bt�D��−1

=
�

2
i
�

C2
d� �2coth����

2
�Gtt��,D� , �4.12�

where the counterclockwise contour C2 shown in Fig. 2,
now encloses both positive and negative poles of G�� ,D�.
This can be done because both G̃�D� and H̃�D� are even
functions of �. Note that in Eq. �4.11�, the residue at �=0
�coming from the hyperbolic cotangent�, does not represent
any vibrational modes in the crystal and is explicitly can-
celed by the first term on the right-hand side of Eq. �4.11�.
Finally, note that the value of the imaginary part of � along
the horizontal parts of the contour, � in Fig. 2, must satisfy
��
 / ����. This guarantees that the poles of coth���� /2�
that lie on the imaginary axis are excluded from the contour.
In practical terms, � should not be too small because small �
means that the contour passes near the poles on the real axis
thereby causing numerical integration problems.

The formalism we just described relies on knowing the
Green’s function of the perfect crystal in the target space.
This was obtained from standard Brillouin zone sums that we
briefly review in the next section, but that are extensively
described elsewhere �e.g., see Refs. �48,49��.

B. Noise terms

We now consider the noise terms, �†�t�, in Eq. �3.32�.
Recall that �†�t�, not only includes F†�t�, but also the two
other nonclassical terms that depend on the initial target po-
sitions and velocities. A closer look at Eqs. �3.33� and �3.34�
shows that these terms depend on the guest degrees of free-
dom through the matrices H�D� and G�D�, and through Rt

�0�.
Even if this guest dependence is responsible for the tempera-
ture dependence of the potential of mean force, its effect on
H�D� and G�D� is quite small �this was checked by evaluat-
ing the guest dependent matrices using the Green’s function
combined with a contour integration as described in the pre-
vious section�. Hence, here we will neglect the guest depen-
dence of H�D� and G�D� and evaluate the noise terms as if
the lattice was perfect. This will allow us to again use Bril-
louin zone sum techniques.

We start with the �F†���TF†����	 correlations, cf. Eq.
�3.34�, and perform a double Laplace transform to obtain

Re (ω)

Im (ω)

(Λ,ε)
C2 C1

FIG. 2. The two contours C1 and C2 described in the text, are
illustrated in the complex � plane. Here, the absolute value of the
real part of � is bounded by � and the absolute value of the imagi-
nary part is bounded by �.
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M−1/2�F†�s�TF†�s��	M−1/2 �
1

2
K̃tb

1

s2 + K̃bb
� ss�

G̃bb

+
1

H̃bb
�

�
1

s�2 + K̃bb

K̃bt, �4.13�

where s and s� are the Laplace transform variables and
where, for the remainder of this section, we omit the D ar-
gument on matrices that are evaluated at D=0. This last
relation becomes an equality when Gbb and Hbb are replaced
by Gbb�D� and Hbb�D�. This result is not particularly useful
because it expresses the noise correlations in terms of matri-
ces in the bath space. Simple matrix manipulations allow us
to reexpress this result in terms of matrices in the target
space only, i.e.,

M−1/2�F†�s�TF†�s��	M−1/2 �
1

G̃tt�s�
���̄�s��̄�s��T	

+ ��̄�s��̄�s��T	�
1

G̃tt�s�
,

�4.14�

where we have defined two new sets of uncorrelated Gauss-
ian noise vectors of length 3Ntarget �Ntarget is the number of

atoms in the target space�, �̄�s� and �̄�s�, which have zero
mean and variances

��̄�s��̄�s��T	 �
ss�

2 ��G̃�s�L̃G̃�s���tt − �G̃�s�L̃�tt
1

L̃tt

�G̃�s��L̃�tt�
�4.15�

and

��̄�s��̄�s��T	 �
1

2��G̃�s�T̃G̃�s���tt − �G̃�s�T̃�tt
1

T̃tt

�G̃�s��T̃�tt� ,

�4.16�

where the Green’s function

G̃�s� �
1

s2 + K̃
�4.17�

is the frequency analytic continuation of Eq. �4.5� for the
pure lattice, and where L and T matrices where defined
above by Eq. �4.10� with D=0.

The advantage of defining �̄�s� and �̄�s� in terms of pure
lattice matrices is that their respective correlations can be
expressed exactly in terms of Brillouin zone sums. For
example,

��̄�s��̄�s��T	 =
1

2N�
k,j

ss�L�� j�k��
„s2 + � j�k�2

…„s�2 + � j�k�2
…

ut�k, j�ut�k, j�† +
1

2N2�
k,j

�
k�,j�

� ss�L�� j�k��L�� j��k���

„s2 + � j�k�2
…„s�2 + � j��k��2

…

�ut�k, j�ut�k, j�† 1

L̃tt

ut�k�, j��ut�k�, j��†� , �4.18�

where

L̃tt =
1

N�
k,j

L�� j�k��ut�k, j�ut�k, j�†, �4.19�

N is the number of wave numbers used in the discrete sum,
L�� j�k��=� coth���� j /2� /� j �as can be obtained combining
Eqs. �4.10�, �3.30a�, �3.30b�, �3.10�, and �3.11�� and where
the sum over j goes from 1 to 3NUC, where NUC is the num-
ber of atoms in the primitive unit cell. In order to have the
correct number of vibrational modes, in an exact calculation,
N should be equal to Nc /NUC where Nc is the total number of
atoms in the crystal. In practice, N is much smaller.

The � j�k�’s introduced in the last equation are the posi-
tive square roots of the eigenvalues of the discrete Fourier
transform of the dynamical matrix

K̃n,m�k� � �
R

e−ik·RK̃n,m�R� , �4.20�

where K̃n,m�R� is an element of the mass-scaled force con-
stant matrix that couples the nth atom in one unit cell to the
mth in another cell, the cells being separated by a lattice

vector R. The eigenvectors of K̃�k�, e j�k�, define ut�k , j�
according to

�ut�k, j��m = �e j�k��neik·R, �4.21�

where n refers to the atom within the primitive unit cell and
R is the translation vector to the actual mth target atom.
Since these Brillouin zone sums are real, we can replace
ut�k , j�ut�k , j�† by Re(ut�k , j�ut�k , j�†) in all of the above
expressions.

We now postulate the following form for the noise,
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�̄�s� =
1

N�
k,j

s

s2 + � j�k�2Re„ut�k, j�ut�k, j�†
…�̄k,j ,

�4.22�

where �̄k,j is a vector of random variables. In other words,
here, the amplitude of each phonon contribution is randomly
sampled from a distribution that is appropriately chosen such
that Eq. �4.18� is reproduced. It is simple to show that this is
accomplished by choosing

��̄k,j�̄k�,j�
T 	 =

1

2
NL�� j�k��Ak,j
 j,j�
k,k�

−
1

2
L�� j�k��L�� j��k���L̃tt

−1, �4.23�

where Ak,j is a matrix of rank 3Ntarget defined as

Bk,jAk,jBk,j � Bk,j , �4.24�

where Bk,j �Re(ut�k , j�ut�k , j�†) reproduces ��̄�s��̄�s��T	 ex-
actly, see Eq. �4.18�. Note that Eq. �4.24� is not trivially
solved because Bk,j is not invertible. On the other hand, it is
easy to show that it has at least one nonzero eigenvalue.
Therefore Eq. �4.24� is first transformed to a basis where Bk,j
is diagonal, Ak,j is then obtained by solving Eq. �4.24� in the
space of nonzero eigenvalues and finally the solution is
transformed back to the original space.

The above procedure, when implemented numerically, is
memory intensive because it requires the simulation of all

the random numbers, �̄k,j for all k and j. Recall that each of

these �̄k,j’s is a vector of length 3Ntarget. We can reduce the
number of noise variables by considering the scalar �k,j

=ut�k , j�†�̄k,j as the random variable. In general, �k,j are
complex numbers fully determined by the ��k,j�k�,j�

* 	 and
��k,j�k�,j�	 correlations, which are themselves easily obtained
from Eq. �4.23�. Using these complex random numbers, we

can now write �̄�s� as a simple Brillouin zone sum

�̄�s� =
1

N�
k,j

s

s2 + � j�k�2Re„ut�k, j��k,j… �4.25�

or equivalently in the time domain

�̄�t� =
1

N�
k,j

cos„� j�k�t…Re„ut�k, j��k,j… . �4.26�

In practical terms, we simulate all the �k,j complex random

numbers in advance and we can add the noise variable �̄�t� to
the equations of motion at any time of the simulation by
performing the last Brillouin zone sum, cf. Eq. �4.26�.

The same procedure can be applied for �̄�t� and gives

�̄�t� =
1

N�
k,j

sin„� j�k�t…
� j�k�

Re„ut�k, j��k,j… , �4.27�

where the �k,j �ut�k , j�†�̄k,j correlations are obtained, as
above, from ��̄k,j�̄k�,j�

T 	,

��̄k,j�̄k�,j�
T 	 =

1

2
NT„� j�k�…Ak,j
 j,j�
k,k�

−
1

2
T„� j�k�…T„� j��k��…T̃tt

−1 �4.28�

and, where

T̃tt �
1

N�
k,j

T„� j�k�…Re„ut�k, j�ut�k, j�†
… , �4.29�

with T(� j�k�)=�� j coth���� j /2�.
We now have a formalism that fully reproduces the cor-

relations that appear in the square brackets in Eq. �4.14�. We
still have to include the effects of the Green’s function
Gtt�s�−1 that multiplies the random variables, cf. Eq. �4.14�,
but before doing so, we first return to the other random terms
that appear in �†�t�, namely, the ones that depend on Xt�0�
and Vt�0� in Eq. �3.33�. Again, these terms can be rewritten
in terms of matrices in the target space. The matrix manipu-
lations that are performed are quite similar to what we de-
scribed above and, after a Laplace transform, these terms can

be written as Mtt
1/2(G̃tt�s�)−1Z�s�, where

Z�s� � s�„G̃�s�L̃…tt
1

L̃tt

− „G̃�s�K̃−1
…tt

1

�K̃−1�tt
�Mtt

1/2
„Xt�0�

− Rt
�0�
… + �„G̃�s�T̃…tt

1

T̃tt

− G̃tt�s��Mtt
1/2Vt�0� , �4.30�

where

�K̃−1�tt =
1

N�
k,j

1

� j�k�2Re„ut�k, j�ut�k, j�†
… . �4.31�

Clearly Z�s� can be written in terms of Brillouin zone sums

similar to those introduced for ��̄�s��̄�s��T	 and ��̄�s��̄�s��T	.
Here, we report the final expression in the time domain, i.e.,

Z�t� =
1

N�
k,j
�cos„� j�k�t…Re„ut�k, j�ut�k, j�†

…�L„� j�k�…
1

L̃tt

−
1

� j�k�2�K̃−1�tt
�Mtt

1/2
„Xt�0� − Rt

�0�
… +

sin„� j�k�t…
� j�k�

�Re„ut�k, j�ut�k, j�†
…�T„� j�k�…

1

T̃tt

− 1�Mtt
1/2Vt�0�� .

�4.32�

At this point, all the noise terms that appear in �†�t�, see
Eq. �3.32�, are formally written as

�†�s� = Mtt
1/2
„G̃tt�s�…−1

„Z�s� + �̄�s� + �̄�s�…

�Mtt
1/2�s2 + K̃eff + K̃tb

s2

K̃bb�s2 + K̃bb�
K̃bt�Q�s� ,

�4.33�

in Laplace frequency space, where Q�s��Z�s�+ �̄�s�+ �̄�s�
and where we have obtained the target-target part of Gtt�s� in
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terms of the force constant matrix according to Eq. �4.17�.
Since Eq. �3.32� will eventually be numerically simulated in
time, it is convenient to write the noise terms in time; they
can be rewritten as

�†�t� = Mtt
1/2�d2Q�t�

dt2 + K̃effQ�t�

+ �
0

�

d�K̃tb

cos„K̃bb
1/2�t − ��…

K̃bb

K̃btQ̇���� , �4.34�

where Q�0� and Q̇�0� are both zero. In this equation, the
memory term

�K̃tb
cos�K̃bb

1/2�t−���

K̃bb

K̃bt�
is, up to factors of mass, identical to the memory function
appearing in Eq. �3.32� and to that appearing in the classical
Langevin equations used in papers I and II.

As was done in papers I and II, we approximate the
Laplace transform of the memory function as

K̃tb
s

K̃bb�s2 + K̃bb�
K̃bt �

s

Ã + B̃s + C̃s2
, �4.35�

where Ã and C̃ are obtained for the small and large s limit of

the memory function and where B̃ is determined from a lin-
ear least squares fit �see paper I�. In this form, Eq. �4.34� can
be simplified by introducing a new field f�t�

�†�t� = Mtt
1/2�d2Q�t�

dt2 + K̃effQ�t� +
df�t�
dt

� , �4.36�

where f�t� is the solution of the differential equation

C̃
d2f�t�

dt2 + B̃
df�t�

dt
+ Ãf�t� =

dQ�t�
dt

, �4.37�

with the initial conditions f=df /dt=0 at t=0. It is easy to
show, by Laplace transforming, that the two representations
of the noise, i.e., Eqs. �4.36� and �4.34�, are equivalent �to
the extent that our approximation to the memory function
�4.35� is accurate�. Note that the approximation to the
memory function �4.35� is also used for the friction term in
Eq. �3.32�.

We close this section by noting that the only approxima-
tions used in the noise term calculation were the use of the
approximate memory function, as in papers I and II it repro-
duces the vibrational density of states semiquantitatively, cf.
Fig. 1, and the neglect of the guest position dependence of
various matrices. This formalism requires the Brillouin zone
sums to be performed while Eq. �3.32� is simulated, and of
course, while including more discrete wave numbers im-
proves the accuracy of the noise terms, it also makes the
numerical calculation more time consuming.

V. RESULTS

We now apply our formalism to neon in �-quartz. Recall
that in papers I and II, we studied, respectively, xenon in the

sodalite Theta-1 and argon in �-quartz. In paper I, our con-
clusions were that the crystal vibrations had very little effects
on the guest motion. In paper II, we found the opposite,
namely, the crystal vibrations and the flexibility of the lattice
played a major role in the diffusion. Part of this was ex-
plained by the fact that the channels in Theta-1 are much
wider than those in �-quartz, and thus, in �-quartz, the guest
is always very close to one or many crystal atoms, with
concomitant enhanced coupling between the guest and crys-
tal dynamics. We therefore chose �-quartz again because we
expect that any vibrational quantum effects on the guest mo-
tion will be larger in systems where the guest-lattice interac-
tion is stronger.

The spatial group of �-quartz is P3121 and the coordi-
nates of the unit cell were obtained from Ref. �50�. The crys-
tal parameters �atoms positions and harmonic force constants
with stretching and bending motion only� are described in
paper II. We used the usual Lennard-Jones interaction poten-
tials

V�rg,Rt� = �
j=1

Ntarget

4� j,g��� j,g

rj,g
�12

− �� j,g

rj,g
�6� , �5.1�

where ri,g is the distance between the guest and the jth target
atom. As was obtained in papers I and II, the potential pa-
rameters are �O,g /kBT=0.1841, �Si,g /kBT=0.0385, �O,j
=1.9584 Å, and �O,j =2.256 Å at 300 K, and probably

FIG. 3. �Color online� The target zone used in all simulations is
shown in the box. Red �light gray� and blue �dark gray� atoms are
oxygen and silicon, respectively. The silicon atom whose correla-
tions are reported in Fig. 8 appears in green �light gray sphere
directly to the right of the labels A and B�. The positions labeled A
and B are associated with the potential of mean force results of Fig.
6 and the guest correlations shown in Fig. 9, respectively. The lo-
cations of some of the binding sites are shown as small white
spheres. In this figure, the z axis is normal to the page.
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give accurate interaction potentials to within a factor of
two. The target zone that has dimensions
�14.7402 Å,12.7653 Å,16.2156 Å�, contains 243 atoms, ex-
actly 27 primitive unit cells, and is large enough such that the
interaction energy between the guest and bath is practically
zero. In this geometry, the crystal is oriented such that the net
flow is parallel to the z axis. The target zone that we used in
all simulations is shown in Fig. 3.

A. Potential of mean force for neon in �-quartz

We first report the results of the potential of mean force
calculation. Recall that the potential of mean force is given
by Eqs. �3.15� and �3.16�. We computed �W�rg� using the
contour C1 defined in Sec. IV A with �=3.56993
�1014 s−1 and �=4.66048�1012 s−1 �here, � is about 30%
larger than the largest vibrational frequency of the crystal�.
The contour integral was performed numerically using

Simpson’s rule with ��=4.66048�1011 s−1. The Green’s
function that was used in the contour integration was precal-
culated with N=153 dispersion points in reciprocal space.

A constant potential of mean force surface at 300 K for a
region well inside the target zone is shown in Fig. 4. Because
of the crystal symmetry, there are three absolute minima in
the potential of mean force each with Wmin=−0.97483kBT at
300 K. We do not show the classical counterpart of Fig. 4
because the differences are too small to be seen given the
resolution of the figure.

Because the net macroscopic flux is taken to be along the
z axis, the theory requires the evaluation of plane-average
potential of mean force W�z� according to Eq. �2.6�. This is
shown in Fig. 5 where it is compared against the fully clas-
sical W�z�. The differences between the classical and semi-
classical W�z� is very small at 300 K.

As we will see below, these differences will grow as the
temperature is lowered, although our approximations, which
treat the guest as a free particle, becomes more problematic.
The fact that, at least at 300 K, the quantum corrections to
the potential of mean force are small already suggest that the
corrections to the permeability will not be dramatic. Remem-
ber that, the permeability is obtained from D�z� whose domi-
nant contribution comes from the potential of mean force
that appears in the exponential. The remaining parts of D�z�,
which are determined from the evaluation of microscopic
correlation functions, will only introduce preexponential cor-
rections.

We now consider the full temperature dependence for the
potential of mean force W�rg� at a point chosen to be close to
that of the minimum energy in the barrier top plane, specifi-
cally at rg= �−0.2305 Å,0.0 Å,0.0 Å�T �the point labeled
“A” in Fig. 3�. The temperature dependence of the potential
of mean force for the classical and quantum case are com-
pared in Fig. 6. The quantum calculation includes zero-point
motion, and this contribution persists even at very low tem-
peratures. Again, we stress that the guest approximations be-

FIG. 4. Potential of mean force energy surface is shown for
neon inside �-quartz. The surface is drawn for W�rg�=3.5kBT at
300 K.

FIG. 5. Plane average potential of mean force is shown for neon
inside �-quartz at 300 K. Our semiclassical approximation is com-
pared against the classical expression.

FIG. 6. The potential of mean force of neon inside �-quartz at
the point �−0.2305 Å,0.0 Å,0.0 Å� is shown as a function of tem-
perature. The two sets of points are obtained from approximations
similar to those in Refs. �30–32�. The points are obtained using
reference frequencies that include curvature corrections at either the
closest local minimum �circles� or global minimum �squares�.
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come ad hoc at sufficiently low temperatures.
In Fig. 6, we also show a few points for which the semi-

classical potential of mean force was obtained from an ap-
proximate method similar to the one developed by Ermakov,
Butayev, and Spiridonov �29� and later improved by Mak
and Andersen �30�, Cao and Berne �31�, and by Chao and
Andersen �32�. The details of the calculation for W�rg�
within this approximation are shown in the Appendix.
Briefly, an approximate form for the density matrix of the
full system is used. This approximate density matrix is de-
termined by a set of reference vibrational frequencies that are
chosen ad hoc, it has the right high temperature limit and it
becomes
exact for completely harmonic systems �provided the
reference frequencies are appropriately chosen�. In Fig. 6,
two sets of data for the potential of mean force are
shown within this approximation for the same point
rg= �−0.2305 Å,0.0 Å,0.0 Å�T. The points shown as circles
are obtained from reference frequencies determined from the
curvature of the potential at a local minimum close to

rgwhile the squares are obtained from reference frequencies
determined from the global minimum of the potential.
Clearly, these approximations are justified because, at low
temperature, the paths are expected to sample regions around
the various minima. Here, the final answer should be an av-
erage of the two data sets. Also note that the curvature at rg
was not used to determine the reference frequencies because,
for some cases, this could result in imaginary reference fre-
quencies.

In Fig. 7, W�rg� is reported for a point close to a global
minimum. As in Fig. 6, the discrete data points are obtained
from the approximation described in the Appendix. Here, the
only choice of approximate harmonic reference potential is
taken at the global minimum. The problem with this approxi-
mation is that it contains many ad hoc steps and there is no
obvious reason why it should do better than ours at very low
temperature. In this paper, we will report the permeability
and calculate the correlations at room temperature 300 K. As
seen in Figs. 6 and 7, at that temperature, the difference
between both methods is small, henceforth, we use the ap-
proximation presented in Sec. III.

B. Guest-free correlations

In Sec. III B, we claimed that the formalism we developed
is exact when there is no guest, and as shown in Ref. �41�,
the exact anticommutator correlations for some target quan-
tities are obtained. Of course, in practical terms, we use the
numerical methods described in Sec. IV to simulate these
correlations, and here, we show how typical anticommutator
correlations are reproduced using our simulation procedure
compared with the “exact” result obtained by standard meth-
ods. Note that the only sources of error here come from our
approximation for the memory function, cf. Eq. �4.35�, from
the numerical methods associated with the integrator, from
the limited number of terms used in the Brillouin zone sum,
and from the statistical error associated with the finite num-
ber of ensemble members used.

We performed our guest-free simulation using a time step
of 2.5�10−16 s with a second order stochastic Runge-Kutta

FIG. 7. The potential of mean force of neon inside �-quartz
close to a global minimum is shown as a function of temperature.
The set of points are obtained from approximations similar to those
in Refs. �30–32�.

FIG. 8. The anticommutator correlations

� �X̂1�t�,X̂1�
2

	 and � �V̂1�t�,V̂1�
2

	 are shown for T
=300 K �left� and T=30 K �right� for the silicon
atom in green �light gray sphere� in Fig. 3. In
each panel, we show the “exact” anticommutator
correlation, our simulated result, and the classical
correlations.
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integrator �51� and the noise terms were obtained from Bril-
louin zone sums with N=53. The correlation function was
obtained from an ensemble of 2000 trajectories. All simula-
tions reported in this work were performed on a Beowulf
cluster containing 64 processors. In Fig. 8, we report
1
2 ��X̂1�t� , X̂1�	 and 1

2 ��V̂1�t� , V̂1�	 where the 1 subscript de-
notes the green silicon atom shown in Fig. 3. These two
correlations are shown at 300 and at 30 K. In each panel, the
classical correlation is shown for comparison. Figure 8
clearly shows that our simulation procedure and MSR map-
ping combined with our approximate methods for simulating
Eq. �3.32� is very accurate throughout the displayed time
window. Except the small error that builds up for the 300 K
position correlation at later time, the agreement is still very
good for larger times.

As expected, Fig. 8 clearly shows that the quantum cor-
rections are larger at 30 than at 300 K for both types of
correlations. Perhaps more interestingly, Fig. 8 also shows
that the quantum corrections to the velocity-velocity correla-
tions are noticeably larger than the quantum corrections to
the position-position correlations. Even at 300 K, the enve-
lope of the velocity-velocity correlation is about twice as
large in the quantum mechanical case, while, at the same
temperature, the classical and quantum position-position cor-
relation function only differ slightly.

C. Diffusion and the permeability

We know from Fig. 8 that the quantum corrections to the
lattice dynamics are significant even at room temperature. In
this section, we examine their coupling to the guest motion.
In Fig. 9, we show �vG,z�t�vG,z	xg�t=0�=rg

calculated by simu-
lating the GLE �3.32� and averaging over 2000 ensemble
members at 300 K, and where we chose rg= �−0.2305 Å,
−0.93 Å,0.0 Å� �a point in the barrier top plane, position

“B” in Fig. 3�. As above, this was done using a time step of
2.5�10−16 s and the noise was obtained from Brillouin zone
sums with N=53. Note that aging is not necessary in this
formalism since the target atoms initial positions are sampled
directly from Gaussian distribution given in Eq. �3.29�,
which includes the relaxation of the lattice to a new equilib-
rium position. The total length of the simulations was
2.048�10−12 s.

As seen from Fig. 9, the quantum mechanical effects on
the guest correlations are small, but noticeable. The velocity-
velocity correlation function decorrelates faster in the quan-
tum mechanical case, as seen from the faster decrease of the
quantum correlations at short time as well as from the lower
value of the time integral of the quantum velocity-velocity
correlation functions �the inset in Fig. 9�. This effect can be
explained from the fact that, in the quantum case, the lattice
effectively vibrates “more” �the amplitude of the position
and velocity correlation functions shown in Fig. 8 are larger
in the quantum case�. Note that we have shown in paper II
that the lattice vibrations tends to slow down the diffusion
�i.e., make the velocity autocorrelation function integrals
smaller�. We believe that the reason these effects are small
comes from the guest-free position correlations that are
shown in Fig. 8. Remember that, even if the velocity corre-
lations of the quantum lattice is very different compared to
the classical lattice at 300 K, the position correlations are
not. This means that the actual extent of the motion of the
crystal atoms increases in the quantum case, but not by
much, at least at 300 K.

When the temperature is dropped to 30 K, the differences
become larger. This is shown in Fig. 10 where we again
compare �vG,z�t�vG,z	xg�t=0�=rg

in the quantum and classical
case. Again, the time integral of the velocity correlation
function is bigger for the classical calculation. The plateau
value of the inset in Fig. 10 is equal to �1.8199±0.46�
�10−10 m2/s in the quantum case and �4.2822±0.45�
�10−10 m2/s in the classical calculation �also note that both

FIG. 9. The simulated velocity-velocity time correlation
function for a trajectory where the guest is initially at
xg= �−0.2305 Å,−0.93 Å,0.0 Å� is reported for our semiclassical
treatment and for the completely classical case at 300 K. In the
inset, we compare the time integral of the same correlation function.

FIG. 10. The simulated velocity-velocity time correlation
function for a trajectory where the guest is initially at
xg= �−0.2305 Å,−0.93 Å,0.0 Å� is reported for our semiclassical
treatment and for the completely classical case at 30 K. In the
inset, we compare the time integral of the same correlation function.
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numbers are about 1 or 2 orders of magnitude below their
values at 300 K�. Again, for such low temperatures, the clas-
sical guest approximation is suspect.

Before going further, recall that the correlation that is
shown in Fig. 9 �in the semiclassical approximation� is in
fact an anticommutator correlation. On the other hand, the
space-dependent diffusion coefficient is given in terms of
Kubo averages. Here, we take the anticommutator correla-
tion of Fig. 9 and, from it, we obtain the Kubo average using
Eq. �2.9� �using numerical Fourier transforms�. The results
are shown in Fig. 11. At 300 K, for this system and within

the approximation that only the lattice is quantum mechani-
cal, it is clear that the Kubo average and the anticommutator
are almost identical. They only differ slightly at short
times.This is shown in the inset of Fig. 11. We have also
verified that the anticommutator correlation that reduces to
��F�z�t1��vG,z	xg�t=0�=rg

is also almost identical to its Kubo
average. Hence, all anticommutator correlations, at this tem-
perature, can be considered to be Kubo averages.

We now examine the space-dependent diffusion coeffi-
cient D�z�. Recall that D�z� can be obtained from the long-
time limit of

D�z,t� �

n��
0

t

dt1�
unit cell

dr��vG,z�t1�vG,z	xg�t=0�=rg
e−�W�r�

Acell + �
0

t

dt1�
unit cell

dr���F„z�t1�…vG,z	xg�t=0�=rg
e−��W�r�−W�z��

, �5.2�

where Acell is the area of the primitive unit cell. In Fig. 12,
we show how the dynamics �the velocity correlations�
changes the region in the plane that contributes to D�z� at
300 K. To do so, we compare the Boltzmann factor e−�W�rg�

against the factor 
0
t dt1�vG,z�t1�vG,z	xg�t=0�=rg

e−�W�rg� for the
quantum case in the maximum energy plane. For each point
in the plane, we obtain the required correlation functions
through simulations that we described above. The rectangu-
lar window that we used to characterize this plane is defined
by its lower left corner position �−0.8072 Å,
−1.86 Å,0.0 Å�, and its upper right corner position
�0.154 Å,1.86 Å,0.0 Å�. We used a 6�5 grid within this
window where, at each grid point, the correlations are explic-
itly calculated. We then extrapolated between these grid
points with a two dimensional bicubic spline. Outside this

window, the contribution to D�z� is negligible. Note that, for
this plane, W�z�=8.4997kBT quantum mechanically and
W�z�=8.4077kBT classically at 300 K. On the scale of the
figure, it is hard to see the differences between the quantum
and classical cases, hence, the classical data was not shown.
Nonetheless, a careful analysis shows that the contributions
to the quantum D�z� are smaller than the classical ones. Also,
the region in the plane that contributes to D�z� is slightly
narrower in the semiclassical case.

The factor D�z , t� /n�e−�W�z� for the maximum energy
plane is shown in Fig. 13, where we also show the uncor-
rected part of D�z , t�, i.e., what is obtained by neglecting the
denominator in Eq. �5.2�. As expected, Fig. 13 also shows
that the quantum corrections to the space dependent diffusion
coefficient are not very large, but still make it smaller com-
pared to the classical case. From the plateau value of
D�z , t� /n�e−�W�z�, we can obtain the space dependent diffu-
sion coefficient for that plane. In the quantum case, we find
that D�z , t� /n�e−�W�z�= �5.3198±0.10��10−9 m2/s at z=0,
compared with �6.1968±0.14��10−9 m2/s classically.

At this point, we assume that D�z�e�W�z� to be constant in
the barrier region �i.e., the diffusion is a Smoluchowski pro-
cess� and we calculate the permeability �2.1�. We do not test
this approximation here as it already was verified classically
in papers I and II, and because the semiclassical formalism is
much more time consuming numerically. Remember that the
goal of this work is to establish the extent of the quantum
corrections, if any, on the permeability and for this purpose,
the analysis of a single plane is sufficient. With this approxi-
mation, we use Eq. �2.1� to calculate the intrinsic permeabil-
ity and find that P��300 K�=9.91�108 s / �mkg� quantum
mechanically, compared with 1.26�109 s / �mkg� classically.
This predicts that, for this system, the quantum nature of the
lattice vibrations decreases the intrinsic permeability by
about 25%, with a little less than half the effect coming from

FIG. 11. The anticommutator velocity-velocity correlation
shown in Fig. 9, obtained within our semiclassical formalism, is
compared with the velocity-velocity Kubo average. The region
where the two curves differ the most is shown in the inset.
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the potential of mean force and the rest from the velocity
correlations. Of course, this result depends strongly on the
system under study and even more on the interaction poten-
tial that is used.

VI. DISCUSSION

The purpose of this paper was to establish the extent of
the first quantum corrections to the guest diffusion in chan-
neled structures. In order to do this, we chose a system for
which we have shown classically �2� that the lattice vibra-
tions play a role in the diffusion process. This work was
motivated from the well known fact that many crystal
phonons are not excited at room temperature, but still have
significant zero-point motion contributions.

We have developed a semiclassical formalism where, in
effect, the guest is treated classically and the lattice quantum
mechanically, based on the MSR relation between stochastic
process and path integrals that allowed us to calculate the
desired Kubo averages or anticommutator correlations. This
formalism, which depends on the fact that the guest is slow,
has the advantage that the time correlation function theory of
permeability developed earlier by Vertenstein and Ronis �3�

remains unchanged formally. More precisely, the connection
between the microscopic information, the correlation func-
tions, and the macroscopic permeability is exactly the same
as what was used in papers I and II, but now the time corre-
lation functions where obtained from modified generalized
Langevin equations and potential of mean force that include
the quantum nature of the lattice.

One of the crucial parts of this work is described in Sec.
IV. After all, quantum Langevin equations are not new and
have been studied for different systems. Here, we gave a
very technical procedure that combines Brillouin zone sums
techniques and contour integrals such that the new �quan-
tum� terms in the Langevin equations and potential of mean
force can be accurately calculated. We also showed how, by
using appropriately chosen Gaussian random amplitudes in
the Brillouin zone sums, that we could effectively simulate
the noise terms in the Langevin equation. This procedure was
able to reproduce the guest-free correlation with high accu-
racy as shown in Fig. 8.

These pure lattice correlation functions show that even at
room temperature, the crystal is far from behaving classi-
cally. In fact, the velocity-velocity correlations in Fig. 8, in
the quantum case, is almost identical at 300 and 30 K, sug-
gesting that at room temperature the velocity of the lattice is

FIG. 12. The Boltzmann factor e−�W�rg� in the maximum energy plane is compared with 
0
t dt1�vG,z�t1�vG,z	xg�t=0�=rg

e−�W�rg� at 300 K. The
second panel has units of m2/s.

FIG. 13. The quantum space-dependent diffu-
sion coefficient D�z� obtained from the plateau
value of the solid curves for the maximum energy
plane, z=0 is compared with its classical counter-
part. The dashed curve represents D�z , t� but
where the denominator has been set to 1 in Eq.
�5.2�.
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still dominated by zero-point motion. Moreover, at 300 K,
the amplitudes of the velocity-velocity correlations are twice
as large in the quantum case. On the other hand, the ampli-
tude of the motion, as characterized by the position-position
correlations, does not change drastically, at room tempera-
ture, when quantum mechanics is included.

The effects of the quantum lattice were first examined for
the potential of mean force. Figures 5 and 6 show that the
quantum correction to the potential of mean force are small
at room temperature. Still, when the permeability is com-
puted, according to Eq. �2.1�, one has to compute

−d

d dz e�W�z�. This integral is a multiple of 
UCdze�W�z�, where
the “UC” subscript means that the integration region is lim-
ited to the primitive unit cell along z. For the quantum case,
this equals 7.077�10−7 m while in the classical case, this
gives 6.4323�10−7 m at 300 K. The intrinsic permeability is
inversely proportional to this factor. Note that small relative
quantum corrections to W�rg� can be significant when expo-
nentiated if �W�rg� is large, as seems to be the case here.
Hence, at the level of the potential of mean force only, the
quantum corrections already decreases the permeability by
about 10%.

When the dynamics are included, we get a further de-
crease in the permeability by another factor of about 15%.
This decrease in the diffusion, compared to the classical
case, is shown by the plateau value of Fig. 13. This effect is
explained by the fact that the lattice effectively vibrates more
rapidly in the quantum case. This is in agreement with what
we found in paper II where the lattice vibrations slowed
down the guest inside the crystal. We also believe that the
quantum corrections to the diffusion coefficient are small
because the amplitude of the vibrations �the average dis-
placement of each crystal atoms� increases, but only slightly,
compared to the classical case.

We have also computed the potential of mean force of
argon in �-quartz. In this case, the potential of mean force
quantum corrections to the permeability decreases the latter
by about 25%. We did perform a limited number of simula-
tions for this case and obtained the velocity time correlation
function �vG,z�t�vG,z	xg�t=0�=rg

for some points, although not
enough to be able to compute D�z�. It seems that the dynami-
cal quantum corrections to the permeability is very small for
the heavier argon atom.

In conclusions, for the neon and �-quartz systems, both
the potential of mean force and the dynamics work in the
same direction and ultimately decrease the crystal permeabil-
ity to neon at room temperature. The total decrease is about
25%. The quantum corrections to the activated free energies
or the preexponential dynamical factors are rationalized as
follows. In this semiclassical formalism, the lattice effec-
tively vibrates more which further constrains the motion of
the guest in an already narrow channel. This extra confine-
ment of the guest manifest itself in larger absolute energies
and slower dynamics. Two effects that reduce the permeabil-
ity.
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APPENDIX: AN ALTERNATE APPROXIMATION
FOR W„xg…

In this approximation, the potential is written as follows:

U = V�rg
�1�,Rt

�1�� +
1

2
Rt

�1�T
KeffRt

�1� +
1

2
�R − R�1��TK��R − R�1��

+ 
U , �A1�

where the one superscript now refers to the position of a
minimum �global or local� of the total potential

K� � K + D�1� �A2�

and D�1� is the full matrix of curvatures of V at the minimum
�it only has nonzero gg, gt, tg, and tt blocks�.

Clearly, if the potential is completely harmonic, 
U is
zero. Here, we choose 
U such that, in the high temperature
limit, we obtain our usual classical approximation for the
potential of mean force. Hence, we write


U � V�rg,Rt
�0�� − V�rg

�1�,Rt
�1�� −

1

2
��rg − rg

�1��TDgg
�1��rg − rg

�1��

+ 2Rt
�0�T

�Keff + Dtt
�0���Rt

�0� − Rt
�1�� + Rt

�1�T
Dtt

�0�Rt
�1�

− Rt
�0�T

Dtt
�0�Rt

�0�� +
1

2
�Rt − Rt

�1��T�Dgg
�0� − Dgg

�1���Rt − Rt
�1��

− �Rt − Rt
�1��T�Keff + Dtt

�0���Rt
�0� − Rt

�1�� − �Rt

− Rt
�1��TDtg

�1��rg − rg
�1�� , �A3�

and where Rt
�0� is obtained by solving Eq. �3.8� and where

Dtt
�0� is given by Eq. �3.12�. All quantities with a “�1�” super-

script are obtained at the minimum while all quantities with
a zero superscript refer to the target and bath minimum when
the guest is fixed at rg. With these defined, we postulate the
approximate diagonal part of the complex time propagator

	�R,R� = det� M1/2K̃�1/2M1/2

2
� sinh���K̃�1/2�
�1/2

�exp�− �V�rg
�1�,Rt

�1�� −
�

2
Rt

�1�T
KeffRt

�1�

−
1

2
�R − R�1��TF�D��R − R�1�� − C
U� ,

�A4�

where

F�D�0�� � �−1M1/2 tanh���K̃�1/2

2
�K̃�1/2M1/2. �A5�

The additional parameter C in Eq. �A4�, must equal � for
high temperature, but is otherwise arbitrary. Because the
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nonharmonic nature of the potential is mainly governed by
the guest, we choose

C =
2

3�
j=1

3

Fgj,gj�D�1��
1

Dgj,gj
�1� , �A6�

which is similar to what is done in Refs. �30–32�. Note that
the choice of reference potential is justified by the fact that,

at low temperatures, the path integral is dominated by the
paths that spend most of the time near the minimum, no
matter what rg is.

Using this approximate form for the density matrix, the
potential of mean force is obtained using Eq. �3.13�, where
the reduced density matrix is obtained by integrating Eq.
�A4� over the crystal degrees of freedom. When this is done,
we obtain

�W�rg� = �� − C�V�rg
�1�,Rt

�1�� + CV�rg,Rt
�0�� + �rg − rg

�1��T�Fgg − C
Dgg

�1�

2
��rg − rg

�1�� + C�Rt
�0�T

KeffRt
�0� + Rt

�0�TDtt
�0�

2
Rt

�0�

+ Rt
�1�TDtt

�0�

2
Rt

�1� − Rt
�0�T

KeffRt
�1� − Rt

�0�T
Dtt

�0�Rt
�1�� + �Rt

�1�TKeff

2
Rt

�1� + �rg − rg
�1��T�CDgt

�1�LttFtg + CDgt
�1�LtbFbg − FgcLccFcg

−
C2

4
Dgt

�1�LttDtg
�1���rg − rg

�1�� + �Rt
�0� − Rt

�1��T�C�Keff + Dtt
�0��LttFtg + C�Keff + Dtt

�0��LtbFbg −
C2

2
�Keff + Dtt

�0��LttDtg
�1��

��rg − rg
�1�� −

C2

4
�Rt

�0� − Rt
�1��T�Keff + Dtt

�0��Ltt�Keff + Dtt
�0���Rt

�0� − Rt
�1�� −

1

2
ln�det���� −

1

2
ln�det��0�� +

1

2
ln�det�Fcc� ��

−
1

2
ln�det�F0�� +

3

2
ln� mg

2
��2� , �A7�

where

� �
M1/2K̃�1/2M1/2

2
� sinh���K̃�1/2�
. �A8�

The matrices with zero superscript, �0 and F0, are defined in
the absence of the guest �in terms of the original force con-
stant matrix� and they live in the crystal space only �hence,
their rank is smaller�. We have introduced yet another matrix,
Lcc, that is defined in the crystal space as

Lcc
−1 � Fcc� , �A9�

where

Fcc� = Fcc + �C

2
�Dtt

�1� − Dtt
�0�� 0

0 0
� . �A10�

Note that, for high temperatures, Ltt=
2
� �Keff+Dtt

�1��−1. Equa-
tion �A7� can then be evaluated numerically using contour
integral techniques combined with the theory of defects in a
way which is very similar to what is described in Sec. IV A.
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