
Return times for stochastic processes with power-law scaling

Piero Olla
Istituto di Scienze dell’Atmosfera e del Clima ed Istituto Nazionale di Fisica Nucleare, Sezione di. Cagliari,

I-09042 Monserrato, Italy
�Received 20 March 2007; published 27 July 2007�

An analytical study of the return time distribution of extreme events for stochastic processes with power-law
correlation has been carried out. The calculation is based on an � expansion in the correlation exponent:
C�t�= �t�−1+�. The fixed point of the theory is associated with stretched exponential scaling of the distribution;
analytical expressions have been provided in the preasymptotic regime. Also, the permanence time distribution
appears to be characterized by stretched exponential scaling. The conditions for application of the theory to
non-Gaussian processes have been analyzed and the relations with the issue of return times in the case of
multifractal measures have been discussed.
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I. INTRODUCTION

Calculating the return time statistics of rare events in sto-
chastic processes is one of the classical problems in probabil-
ity theory. The applications are widespread, one of the most
direct being the determination of safety margins against cata-
strophic events such as floods and earthquakes. In other
fields, such as statistical mechanics and information theory,
the statistics of return times plays an important role, being
intimately connected with the way a system loses memory of
its initial conditions.

Starting from the work of Döeblin �1�, and that of Bell-
man and Harris on Markov chains �2�, one of the known
results is that if the system correlations decay sufficiently
fast the distribution of the return times of asymptotically rare
events will tend to be exponential �see �3� for recent refer-
ences�.

More recently, motivated by the observation that a wide
variety of experimental records present long-time correla-
tions �see �4�, and references therein�, there has been grow-
ing interest in the case where the stochastic process is power-
law correlated, with an exponent small enough for the
correlation time to be infinite. An interesting result is that, in
this case, the return time distribution of extreme events ap-
pears to be well fitted by a stretched exponential, with an
exponent equal to the power in the correlation decay, rather
than by a simple exponential �4–7�.

Actually, seen in the light of the classical work by Newell
and Rosenblatt �8� on the probability of no zero crossing for
power-law correlated Gaussian processes, this result is not
really surprising. If the rare event is associated with the
crossing of a high threshold by a stochastic variable, the
return time probability will be the no-crossing probability,
for an initial condition in which the variable is right below
threshold.

The central idea in �8� is that threshold crossings will be
less likely for processes with longer correlations. Comparing
with the processes with known return time distribution �typi-
cally, a superposition of an Ornstein-Uhlembeck process and
a stochastic variable�, Newell and Rosenblatt were able to
prove that the no zero-crossing probability for y is bounded
from above and from below by stretched exponentials.

In principle, the approach in �8� could be extended to the
case of a threshold different from zero, allowing one to con-
clude that the stretched exponential is the correct asymptotic
scaling of the return probability for large values of its argu-
ment. This leaves open, however, some important questions.
It would be of obvious interest to tighten the inequalities in
�8�, fixing the values of the prefactors in the stretched expo-
nential scaling. It would also be interesting to have some
idea of how and when �and perhaps why� the asymptotic
regime is reached, and if Gaussianity is really an essential
hypothesis.

The purpose of this paper is to present an analytical treat-
ment of these issues, based on renormalized perturbation
theory and an � expansion in the correlation exponent:
�y�t�y�0����t�−1+�; this is basically an expansion around the
transition to infinite correlation time. The expansion will turn
out to work well also for rather large values of �, providing,
in the Gaussian case, valid approximate expressions for the
return time distributions.

Among other things, the analysis will point out the domi-
nance of transient behaviors, in any range of practical inter-
est for the return times. It will also point out that, perhaps
contrary to intuition, the return time distribution is less sen-
sitive to the extreme statistics of the process than to its cor-
relation structure, in particular that of the correlations be-
tween scales. This will allow extension of the results to
rather generic non-Gaussian processes.

This paper is organized as follows. In Sec. II, the main
definitions and results are recalled. In Sec. III, it is shown
how the long memory of the process is associated with secu-
lar behaviors in the evolution equations for the exit prob-
abilities. Section IV contains the main results of the paper,
and analytic expressions for the return time distribution are
provided in the form of a renormalized � expansion. Sections
V and VI focus again on the relation between the statistics of
the stochastic process and that of the return times, extending
the results to the case of non-Gaussian processes. Section VII
is devoted to the statistics of permanence above threshold.
Section VIII contains the conclusions.

II. RETURN, PERMANENCE, AND EXIT

Let us consider a unit variance and zero mean, stationary
Gaussian process y�t�, with correlation C�t�= �y�t�y�0�� de-
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caying similar to a power law at sufficiently long time sepa-
rations,

C�t� = Ã�t�−1+�, �t� � �0, 0 � � � 1. �1�

This corresponds to the energy spectrum

C� =	 dtei�tC�t� � �−�, �2�

which is a common occurrence in several physical systems
�9�. Notice also that the scaling in Eq. �1� is that of the
velocity of a superdiffusive particle: y= ṙ, ��r�t�−r�0��2�
��t�2−�. For ��0, in turn, the correlation time would be
O��0�, and ��r�t�−r�0��2���t�, such as in the case of a
Brownian particle. For ��1, Eq. �2� would give the spec-
trum of a signal with local anomalous diffusive behavior
��y�t�−y�0��2���t�−1+�.

The Gaussian process y�t� could be generated numeri-
cally, e.g., by the algorithm described in �10�, approximating
y�t� by a superposition of independent Ornstein-Uhlenbeck
processes xn�t�, n=0,1 , . . . ,N. A correlation such as the one
in Eq. �1� could be obtained for the correlation time and
variance of xn by setting

�n = �02n and �xn

2 =
�1 − 2�−1�2��−1�n

1 − 2�N+1���−1� . �3�

The lower line in Fig. 1 is the correlation profile obtained
with this technique for �=0.5 and N=24.

We identify an extreme event by the condition y�q,
where q is a sufficiently large threshold for the process, and
introduce two occurrence times: the permanence time Sq of
the variable y above threshold, and its counterpart below
threshold, the return time Rq to the event, which coincides
with the first exit time from y�q, for initial condition y�0�
=q. The averages R̄q and S̄q can be related to the event prob-

ability P�y�q� by means of the general relation �Kac theo-
rem �11��

S̄q/R̄q 
 P�y � q� . �4�

We are interested in the occurrence time distributions P�Sq

� t� and P�Rq� t�. We focus first on the return time distribu-
tion P�Rq� t�, and we can write

P�Rq � t� = P„y����q,� � �0,t��y�0� = q , �5�

which coincides with the no-exit probability for the initial
condition y�0�=q. This probability is the integral from �=0
to �= t of the probability current across q. If y�t� obeyed a
stochastic differential equation, the whole problem would re-
duce to a solution of a Fokker-Planck equation with absorb-
ing boundaries at q �12�.

In general, calculation of the current requires knowledge
of the profile near q of the conditional probability density
function �PDF� 	(y�t� �y����q ,�� �0, t� ;y�0�=q). Exponen-
tial scaling of P�Rq��� would be associated with a current
−
P�Rq� t�, with 
 a constant, determined by the limit form
of 	(y�t� �y����q ,�� �−� , t�), when the initial condition
time is sent to −�. In the case of a long correlated stochastic
process, it will appear that this limit form is associated with
zero current and that the approach to the limit is what gen-
erates the anomalous scaling of the return time distribution.

III. THE EFFECT OF MEMORY

The problem becomes more tractable if sampling is car-
ried on at discrete times tk=k�; we then indicate yk=y�tk�
and define A= Ã�−1+� so that C�tk�=A�k�−1+�. Notice that for
��0, the statistics would itself become � dependent, and,

for large �, S̄q�����; from Kac theorem we would then

have R̄q����� / P�y�q�. Normalizing times with respect to
�, the discrete version of Eq. �5� will read

P�Rq � n� = P�yk�q,k = 1, . . . ,n�y0�q� ,

which can be expressed in terms of the conditional probabili-
ties

P�yk�q,k = 1, . . . ,n�y0�q� = �
k=1

n

�1 − Pk�k�� , �6�

with Pk�k�= P�yk�q �yl�q , l=1, . . . ,k−1;y0�q� the return
probability at time tk conditioned to being a first return. More
in general, we introduce the return probability conditioned to
no exits before a time tl� tn:

Pl�n� = P�yn � q�yj � q, j = 1, . . . ,l − 1;y0 � q� , �7�

the return probability conditioned to exits at times tk1
� tk2

� . . . tkp
, and no exits before a time tl� tk1

,

Pl�n�k� � Pl�n�yki
� q,i = 1, . . . ,p� . �8�

From here, an exact recursion relation can be derived, de-
scribing the evolution of the return probability from the ini-
tial condition at n=0. Equations �7� and �8� provide us, in
fact, with the following identities:
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FIG. 1. Scaling of the correlation function C�t� �lower line� and
the probability difference �P�t�= P(y�t��q �y�0��q)− P�y�q�
�upper line�, for �=0.5 and N=24. The thin line is t−0.5. The corre-
lation function is obtained from Eq. �3� using C�t�=n�xn�t�xn�0��;
�P�t� is obtained using this expression for C�t� and Eqs. �11� and
�12�.
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Pn+1�m� = Pn�m�yn � q� = �1 − Pn�n��−1Pn�ym � q,yn � q�

= �1 − Pn�n��−1�Pn�m� − Pn�yn,m � q��

= �1 − Pn�n��−1�Pn�m� − Pn�n�Pn�m�n�� ,

which can be rearranged to give

Pn+1�m� = Pn�m� + P̂n�n��Pn�m� − Pn�m�n�� ,

where P̂n�n�= Pn�n��1− Pn�n��−1. In a certain sense, this is
the analog for a discrete non-Markovian process of the
Fokker-Planck equation with absorbing boundary conditions
discussed previously, and can be iterated to give

Pn�m� = P1�m� + 
l=1

n−1

P̂l�l��Pl�m� − Pl�m�l�� . �9�

The physical meaning of this equation is to quantify how
many of the phase points above threshold at times l
=1, . . . ,n−1 should be subtracted from the probability mass
that, without taking into account the condition of first return,
would be above threshold at time m.

In order to solve Eq. �9�, we need to know the function
Pl�m � l�, which is essentially the second return probability.
Repeating the same steps leading to Eq. �9� with the prob-
ability Pl�m �k�, we see that Eq. �9� is the first item in an
unclosed hierarchy of equations, whose generic element
reads

Pn�m�k� = P1�m�k� + 
l=1

n−1

P̂l�l�k��Pl�m�k� − Pl�m�kl�� ,

�10�

where P̂l�l �k�= Pl�l �k��1− Pl�l �k��−1.
A natural strategy could be, at this point, perturbation

theory around the “ground states” Pn
�0��m�= P1�m� and Pn

�0�

��m �k�= P1�m �k�. Notice that substituting Pk�k�→Pk
�0��k�

in Eq. �6� and sending n→� would lead to exponential scal-
ing of the return time distribution,

P�Rq � n� 
 �1 − P1����n 
 exp�− n/R̄q� ,

where R̄q
1/ P�y�q� �compare with Eq. �4��, and we have
exploited P1���= P�y�q��0.

The lowest-order expressions Pn
�0��m�= P1�m� and Pn

�0�

��m �k�= P1�m �k� can be calculated explicitly from PDFs in
the form

	1�n� =
1

�2��1/2�1�n�
exp�−

�yn − �1�n��2

2�1
2�n�

� , �11�

and the similar expression for 	1�n �k�. For large q, in fact,
the conditions y0 ,yki

�q in P1�k� and P1�n �k� can be re-
placed by y0 ,yki

=q and this guarantees Gaussian statistics.
The conditional mean and variance in Eq. �11� can be written
in the following form �see, e.g., �13�, Appendix C�:

�1�n�k� = q
ij

CiDij ,

�1�n�k� = 
ij

CiDijCj , �12�

where Ci=C�n−ki�, Dij is the inverse of the matrix C�ki

−kj�, and we have defined k0=0 so that now i , j
=0,1 , . . . , p.

Unfortunately, we are going to see that the first-order cor-

rection Pn
�1��m�=l=1

n−1P̂1�l��P1�m�− P1�m � l�� diverges for n
→�, and the same occurs with Pn

�1��m �k�. As expected, ex-
ponential scaling does not appear to be an appropriate guess
for the asymptotic behavior of the return time distribution.

Let us prove this. Rearrange indices so that P1�l��P1�m�
− P1�m � l��→ P̂1�m− l��P1�m�− P1�m �m− l�� and send n ,m
→� with m−n finite, so that memory of the initial condition
at t=0 is lost. We have in this limit

Pn
�1��m� = 

l=m−n+1

�

P̂1����P1��� − P1�l�� .

The PDF 	1��� associated with P1��� is just the equilibrium
PDF for y, corresponding to setting in Eq. �11� �=0 and
�2=1. From Eqs. �12� and �1� we find

�1�l� = qAl−1+�, �1
2�l� = 1 − A2l−2+2�, �13�

and, for large l, we can Taylor expand Eq. �11�,

	1�l� = ��1�l�yl +
1

2
�yl

2 − 1���1
2�l� − 1��	1��� .

Substituting into P1�l�=�q
�	1�l�dyl and calculating the inte-

gral by the Laplace method, we find

P1��� − P1�l� = − �q2/2�P1���Al−1+� + O�l−2−2�� , �14�

where P1���
�2��−1/2q−1 exp�−q2 /2�; this scaling can be
compared with the top curve in Fig. 1. Substituting into
P1����P1���− P1�l��, we find that the sum is divergent for
��0. Notice that the leading contribution to the scaling in
Eq. �14�, the one that causes divergence of Pn

�1��m�, is the
slow decay of the conditional mean �1�l� in Eq. �13�.

Let us prove that also Pn
�1��m �k� diverges as the initial

condition is sent to t=−�. The summand in Pn
�1��m �k� �see

Eq. �10�� reads

P̂1�l�k��P1�m�k� − P1�m�kl��

= P1�m�k�„P̂1�l�k�/P1�l�k�…�P1�l�k� − P1�l�mk�� .

From Eq. �12�, for k1− l�m−k1: �1�l �k� ,�1�l �mk�

qC�k1− l�ijDij ��k1− l�−1+� and we find again
P1�l �k� , P1�l �mk���1+O��k1− l�−1+���P1���. This leads to
the expression


l=1

n−1

P̂1�l�k��P1�m�k� − P1�m�kl�� � 
l=1

n

l−1+�, �15�

which grows similar to n�; again, divergence is produced by
the slow decay of the conditional mean �1�l�.
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IV. � EXPANSION

We have seen that a “bare” perturbation expansion of Eqs.
�9� and �10� around the zeroth order Pn

�0��m�= P1�m� and
Pn

�0��m �k�= P1�m �k� leads to infinities. Some kind of renor-
malization is necessary; however, in order to have a work-
able theory, we still need, to lowest order, the equations in
the hierarchy �10� to remain decoupled. This basically fixes
the renormalization procedure.

We separate out of the probabilities in Eqs. �9� and �10� a
renormalized part PR and a remnant PN, P= PR+ PN, and
expand PR=l=0

� �lP
R, where �0PR= P1. The first-order

renormalization to Eq. �9� reads

�1Pn
R�m� = 

l=1

n−1

��1Pl
R�l� + P1�l���P1�m� − P1�m�l��sec,

where �P1�m�− P1�m � l��sec contains the contribution leading
to divergence of Pn

�1��m�, and, seeking an analogy with quan-
tum field theory �see also �14��, �1Pl

R�l� could loosely be
seen as a counterterm. Analogous expressions are obtained
for �1Pn

R�m �k� and Eq. �10�. Combining with P1�m�, we
obtain the lowest-order equation for the renormalized prob-
ability

Pn
R�m� = P1�m� + 

l=1

n−1

Pl
R�l��P1�m� − P1�m�l��sec. �16�

The pth order renormalization can be expressed in the form

�pPn
R�m� = 

l=1

n−1

��pPl
R�l��Pl�m� − Pl�m�l��sec

�p−1�

+ Pl
R,p�l��p−1�Pl�m� − Pl�m�l��sec� , �17�

and we use here a superscript to indicate the order at which
each expression is considered: PR,p= P1+l=1

p �lP
R and

�¯�sec
�p−1�=l=0

p−1�l�¯�sec. Equation �17� can be rewritten in
the more concise form, which generalizes Eq. �16�:

Pn
R,p�m� = P1�m� + 

l=1

n−1

Pl
R,p�l��Pl�m� − Pl�m�l��sec

�p−1�.

Again, analogous expressions hold for �pPn
R�m �k� and Eq.

�10�. From inspection of Eqs. �10� and �17�, we see that, in
order to renormalize Pn�m� to order p, we have to solve the
first p renormalized equations in the hierarchy �10�, with the
second equation solved to order p−1, the third to order p
−2, . . ., the pth to first order.

Turning to the remnant, PN will contain, order by order,

corrections in the form P̂l
R�l�− Pl

R�l� and �P1�m�− P1�m � l��
− �P1�m�− P1�m � l��sec, which do not lead to divergence in
Eqs. �16� and �17� and their counterparts for Eq. �10�.

Pursuing the analogy with quantum field theory, we see
that �=0 plays a role analogous to the upper critical dimen-
sion, which suggests to us to calculate the renormalized
probability using an �-expansion approach. We choose to
keep in �¯�sec only the scaling part, and, substituting Eq.
�14� into �16�, we obtain

�1Pn
R�m� = −

1

2
q2AP1���

l=1

n−1

Pl
R�l��m − l�−1+�. �18�

For n→�, we approximate the sum by an integral; defining
f�z�= Pk

R�k� with k=n�1−z�, we write


l=1

n−1

Pl
R�l��m − l�−1+� 
 n�	

zmin

zmax

dzf�z��m/n − 1 + z�−1+�,

where zmin=1/n, zmax=1−1/n, and the factor n� comes from
n−1+� /�z with �z=1/n the discrete increment in the integral.
The interesting case is m=n. Integrating by parts and ex-
panding in �,

n�	
zmin

zmax

dzf�z�z−1+� = �−1�n� − 1�Pn
R�n� + O��� .

Substituting into Eq. �18� and then into Eq. �16�, we obtain
the result

Pn
R�n� = �1 +

Aq2P1���
2�

�n� − 1��−1

P1�n� , �19�

and, sending n→�,

Pn
R�n� = P̄n−� + O��2� , �20�

where P̄=2� / �Aq2�. Notice again the analogy with quantum

field theory, with P̄ behaving similar to the fixed point value
of a renormalized coupling constant. Substituting into Eq.
�6�, we obtain the stretched exponential scaling for the return
time PDF,

P�Rq � n� � exp�− P̄n1−�� . �21�

The expectation that the result in �8� extends to the return
time statistics is therefore confirmed, and we have gained
knowledge of the prefactor in the exponent. Conversely, in
the range ��0, no divergence would have arisen in Eqs. �14�
and �15�, so that no renormalization would have been neces-
sary. Hence, the bare perturbation theory would have been
appropriate, with the ground state Pn

�0��n�→P1��� leading to
exponential scaling for the return time distribution.

We can use Eqs. �6� and �19� to study the approach to the
asymptotic regime �21�. In this transient regime, it is appro-
priate to use the expression for P1�n� that is obtained from
Eqs. �3� and �12� rather than from the asymptotic formula
�13�. We see in Fig. 2 that the analytical approximation does
a good job even up to �=0.5, which is a consequence of the
fact that the first correction to �1Pn

R�n� arises only at O���.
Is this stretched exponential scaling? Actually it is pos-

sible to fit P�Rq� with stretched exponentials, but the fit does
not match Eq. �21�. Using Eq. �3�, in the two cases �=0.5
and �=0.2, we evaluate A
0.5 and A
0.4; for q=3, this

would correspond to P̄
0.2 in both cases, which goes from
a factor of 2 to two orders of magnitude away from the fits in
Fig. 2.

What is happening is that Eq. �19� reaches its asymptotic

limit �20� only for n �P̄ / P1����1/�, which grows very rap-
idly with q and 1/�. To have an idea, for �=0.2 and q=3, we
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would have P1���
0.0015 and �P̄ / P1����1/��1010. Clearly
such long return times would occur only with vanishingly
small probability.

Some idea of the higher orders in the perturbative expan-
sion could be obtained by studying Eq. �17� for p=2. We
focus on the case m=n and start by analyzing whether the
second line in Eq. �17�, �1�Pl�n�− Pl�n � l��, gives a secular
contribution. From Eq. �16�, we thus have to evaluate

�1Pl�n� = 
j=1

l−1

P̂j
R�j��P1�n� − P1�n�j��sec,

�1Pl�n�l� = 
j=1

l−1

P̂j
R�j�l��P1�n�l� − P1�n�lj��sec. �22�

From Eq. �14� and the argument leading to Eq. �15�, we
see that �P1�n�− P1�n � j��sec��n− j�−1+� and �P1�n � l�
− P1�n � lj��sec��l− j�−1+�. We know from Eq. �20� that Pj

R�j�
� j−�; we still need Pj

R�j � l�. We can repeat the steps from
Eqs. �18� and �19�, substituting  j=1

l−1Pj
R�j � l��l−1�−1+� in the

sum of Eq. �18� and the final result is again

Pj
R�j�l� � j−�.

Indicating j=n�1−z� and f�z�= Pj
R�j�,Pj

R�l � j�, the leading or-
der behavior for l /n→0 of the sums in Eq. �22� is therefore

l�	
0

1

f�z��n/l − 1 + z�−1+� 
 ln−1+�.

We see that no divergences are present at small l in the sum


l=1

n−1

Pl
R�l��1�Pl�n� − Pl�n�l�� , �23�

so that �Pl�n�− Pl�n � l��sec=0 and no renormalizations are
necessary to this order �see Eq. �17��.

We consider now the remnant, which receives contribu-
tions at both orders p=1 and p=2. The only contribution
surviving for n→� turns out to be that at order p=2, pro-
duced by the sum in Eq. �23�. The sum is dominated by l

→n; hence �1Pl�n�� Pn
R�n�− P1�n��−P1�n�, �1Pn−1�n �n

−1��−P1�n �n−1�, and, for sufficiently large �, P1�n �n
−1�� P1�n�. For n→�, P1�n �n−1�= P1�1� and we estimate

Pn
N�n� � Pn

R�n�P1�1� . �24�

Thus, the validity of the renormalized expansion rests on the
smallness of the exit probability after one step, �= P1�1�,
which behaves similar to an expansion parameter for the
theory beside �. In order for the theory to work, it is then
necessary that the sampling constant � be sufficiently large.
However, this appears to be a rather weak constrain, as, al-
ready for �=1, q=3 and �=0.5, �
0.15.

Substituting into Eq. �17� for p=3, we see that Pn
N�n�

contributes to �2�Pl�n�− Pl�n � l��sec and to the renormaliza-
tion of Pn�n�, while terms such as Pl�lji� contribute to
Pl

N�n � l� with the same mechanism that leads to Eq. �24�. This
suggests that the higher-order renormalizations to Pn�n� are
O��n� corrections to prefactors in Eqs. �19�–�21�, while the
exponent in Eq. �20� should remain invariant. This exponent
depends in fact only on the part of �Pl�n �k�− Pl�n �k��t0→−�

with the slowest decay, which is ��t0�−1+� for all p �see the
discussion leading to Eq. �15��.

V. PDF STRUCTURE

The key element of the analysis carried out so far is that

the conditioned return probability Pn
R�n�
 P̄n−� �see Eq.

�20�� goes to zero for n→�. Recalling the discussion at the
end of Sec. II, it is this behavior, in contrast to that produced
by bare perturbation theory Pn�n�→P1����0, that leads to
the anomalous scaling of the return time distribution. This
means that the PDF 	n

R�n� determining Pn
R�n� through the

relation Pn
R�n�=�q

�	n
R�n�dyn must have vanishing tails at yn

�q. The fact that for n→�, 	n
R�n��	�yn� is the signature of

the long memory of the process.
An equation for the PDF 	n�n� could be derived repeating

the steps leading to Eq. �9�,
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FIG. 2. Return time probability
for �=0.5 �left� and �=0.2 �right,
curve a�. Curve b on the right re-
fers to exit from the initial condi-
tion y�0�=−q, again for �=0.2. In
all cases �=2 and q=3, corre-

sponding to R̄q
�P1����−1
677.
Thin lines: numerical integration
of y�t�=nxn�t�, using Eq. �3� with
N=24. Dotted lines: theory using
Eqs. �6� and �19�. Heavy lines:
theory using Eqs. �26� and �27�.
Inset: same results without rescal-
ing, superimposed with the
stretched exponential fits �circles�:
0.004 exp�−0.1Rq

0.5� and
0.0016 exp�−0.007Rq

0.8�.

RETURN TIMES FOR STOCHASTIC PROCESSES WITH… PHYSICAL REVIEW E 76, 011122 �2007�

011122-5



	n�m� = 	1�m� + 
l=1

n−1

P̂l�l��	l�m� − 	l�m�l�� ,

with obvious definitions for the various PDFs appearing in
the formula. Taking moments, we obtain equations for the
conditional mean

�n�m� = �1�m� + 
l=1

n−1

P̂l�l���l�m� − �l�m�l�� , �25�

and similarly for the higher moments of 	n�n�. The perturba-
tive analysis of Eq. �25� is identical to that of Eq. �9�. Using
Eqs. �12� and �13�, we see that the same pattern of diver-
gences is produced,

��1�n� − �1�n�l��sec = − qA�n − l�−1+�,

and this confirms the role of the conditional mean �1�n�
= �yn �y0�q� in the renormalization procedure. Generalizing
Eq. �25� to the higher moments Mn,p�m�=�	n�m�ym

p dym, in
fact, it is possible to see that M1,p�n�−M1,p�n � l���n
− l�−p�1−�� and for ��0.5, the higher moment equations do
not have divergent behaviors.

Using Eq. �25�, it is possible to renormalize Eq. �24� us-
ing the same procedure leading from Eqs. �18�–�20�. This
leads to the result

�n
R�n� = �1�n� − �q/���n� − 1�Pn

R�n� → − 2/q , �26�

which is confirmed in Fig. 3 �as in Fig. 2 with P1�n�, the
expression from Eq. �12� is adopted here for �1�n��. Notice
the constant value for n→� of �n

R�n�, much larger than the
value −qP�y�q� that would be obtained subtracting from
the equilibrium PDF the values of y above threshold.

Clearly, knowledge of the conditional mean �n
R�n� is not

sufficient by itself to guarantee vanishing PDF tails at y�q.
However, using such a simple approximation for 	n�n� as

	n�n� 
 �2��−1/2 exp�− �yn − �n
R�n��2� , �27�

with �n
R�n� given by Eq. �26�, and substituting into Pn�n�

=�q
�	n�n�dyn and in Eq. �6�, produces results in Fig. 2 in

some case better than from Eq. �19�. One reason for this is
the better scaling properties of �1�n�−�1�n � l�
−�1�n− l� as
compared with P1�n�− P1�n � l� �see Fig. 1�.

VI. THE NON-GAUSSIAN CASE

We have seen that the scaling of the return time distribu-
tion depends on the tails of the conditioned PDF 	n�n�. These
in turn are determined by the behavior of a bulk quantity
such as the conditional mean �1�n�= �yn �y0�q�. It seems
therefore that it is not the extreme statistics of the process,
rather, its correlation structure that determines the return time
distribution. It is natural at this point to question whether
Gaussian statistics is strictly necessary for �quasi�stretched
exponential scaling.

We examine the conditions under which 	1���−	1�l� and
therefore also the difference P1���− P1�l� in Eq. �14�, scale
similar to �1�l�� l−1+�. We provide a sufficient condition for
this scaling in the form of a requirement of weak correlation
between scales in the process.

Let us write y0=x0+z and yl=xl+z, with z the result on y
of some low-pass filtering at scale l in the region in exam.
From Eqs. �1� and �2�, we have, for large l: �z2�� l−1+�. We
can obtain 	1�l� and 	1��� from 	�y� and 	�y ,y� ; l�, which
are respectively the equilibrium PDF for y and the joint PDF
that yl=y and y0=y�. Indicating by 	� and 	� the PDFs for
the low-pass filtered signal z and for x=y−z, we can write

	�y,y�,l� =	 dz	��z�	��x,x�;l�z� ,

	�y�� =	 dz	��z�	��x��z� . �28�

We can introduce a function g�y ,y� ,z , l� parametrizing the
correlation between the small scale components xl=yl−z and
x0=y0−z:

	��x,x�;l�z� = �1 + g�y,y�,z,l��	��x�z�	��x��z� .

If correlation between scales are weak and l is large, we can
Taylor expand 	��x �z� and 	�x� �z� around z=0 and consider
g�y ,y� ,z , l� a small quantity. With these substitutions, Eq.
�28� becomes

	�y,y�;l� 
 	��y�0�	��y��0��1 + �g�y,y�;l� + A�z2�� ,

	�y�� 
 	��y��0��1 + B�z2�� ,

where A=A�y ,y�� and B=B�y��. From here, we obtain fi-
nally

	�y�y�;l� 
 	�y��1 + �g�y,y�;l� + �A − B��z2�� . �29�

The two contributions to 	1�l�−	1���
	�y �y� ; l�−	�y� are
deeply different in nature. The term �A−B��z2� is the direct
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FIG. 3. Scaling for the conditional mean �n�n� for q=3, �
=0.2, and �=2. Dotted line: “bare result” �1�n�; heavy line: renor-
malized result �n

R�n� using Eq. �26�; thin line: numerical simulation
using the same parameters of Fig. 2.
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additive contribution from the long time-scale fluctuations,
while �g �y ,y� ; l� probes long time correlations of the small
scale fluctuations. The last contribution and the direct cou-
pling between fluctuations at different scales �15� are typi-
cally associated with a multifractal structure of the signal
�16�. Dominance of the additive contribution �z2�� l−1+� in-
dicates therefore absence of multifractal properties in the sig-
nals. The difference P1���− P1�l� in Eq. �14� will behave in
this case as if y were Gaussian, and P�Rq� should become a
stretched exponential in the large Rq limit.

The fact that fractal objects are not processes with a
stretched exponential distribution of return times is not a
surprise. This is easy to see in the case of a middle-third
Cantor set, in which the return times can be identified with
the “holes” in the measure: at the nth generation there are
2n−1 holes of length Rq=3−n and this gives the power-law
distribution P�Rq��Rq

−D with D=ln 2/ ln 3 the fractal dimen-
sion of the set. Actually, there have been some recent at-
tempts to characterize multifractal sets by a return time spec-
trum, beside the more standard singularity and dimension
spectra �17,18�.

The prediction that the return time statistics is dominated
by the correlation structure of the process is confirmed by
numerical simulation of non-Gaussian power-law correlated
processes, as illustrated in Fig. 4. The four curves in the
figure are all characterized by the same power-law correla-
tion with �=0.2, but are generated with different forms of
intermittency in the subprocesses xn�t� in y�t�=nxn�t�. The
intermittency is generated letting the noise amplitude in the
Langevin equation governing each process fluctuate on the
time scale of the process,

ẋn�t� = − �nxn�t�−1 + bn�t���t�, ���t���0�� = ��t� ,

with �bn
2�
2�xn

2 /�n. In the multifractal case, the noise ampli-
tude fluctuations are generated by a multiplicative process of
the kind utilized in �16�. In the other cases, the noise ampli-
tude fluctuations are independent. In the first case, the fluc-
tuations are tuned to produce the same kurtosis �y4�
12.5 as
in the fractal case. In the second case, the intermittency
grows with scale �which would produce nontrivial scaling of

the higher diffusion exponents for r�t�=�0
t y���d��. In the

third case, the signal is Gaussian. As expected, the return
time distributions of the nonmultifractal signals collapse on

one another if one rescales with R̄q, while the multifractal
one leads to a distribution that is closer to a power law.

VII. PERMANENCE TIME DISTRIBUTION

Let us conclude the analysis turning to the permanence
times and verifying that their distribution is characterized by
stretched exponential scaling, as an extension of the theory
in �8� would suggest. The analysis is limited to the Gaussian
case. The analog of Eq. �5� in the case of the permanence
times Sq reads

P�Sq � t� = P−1�y � q�P„y��� � q,� � �0,t�… ,

where the factor P−1�y�q� gives the condition that the sto-
chastic variable is initially above threshold. Let us isolate
in y��� its average in �0, t�: y���=z+x���, where z
= t−1�0

t y���d�. We then obtain

P�Sq � t� = P−1�y � q�

� 	
q

�

dz	��z�P„x��� � q − z,� � �0,t��z… .

�30�

The PDF for z, for large t, is obtained eliminating frequen-
cies ���� t−1 in the power spectrum for y; from Eq. �2�:
�z2�����t��1C�d�� t−1+�. In the same limit, the condition on
z in P(x����q−z ,�� �0, t� �z) can be disregarded for Gauss-
ian statistics.

To evaluate Eq. �30�, we consider the simpler problem of
discrete sampling in time: t→ tn=n�. This allows us to write

1 � P„x��� � q − z,� � �0,t�… � �P�x � q − z��t/�.

Substituting into Eq. �30�, the first inequality allows us to
write, to leading order in q and t,

P�Sq � t� � exp�− Kq2t1−�� , �31�

where we have estimated 	��z��exp�−Kz2t1−�� and then, for
large q, P�z�q��exp�−Kq2t1−��.

Passing to the second inequality, making the substitution
in Eq. �30�: P(x����q−z ,�� �0, t�)→ �P�x�q−z��t/�, the
integrand in that formula will take the form

exp�− Kz2t1−� + �t/��ln�1 − P�x � q − z��� .

For t /�→�, the contribution to the integral will be from
values of z for which ln�1− P�x�q−z�� is small, i.e., z−q is
large; we can approximate

ln�1 − P�x � q − z�� � − exp„− K�q − z�2t1−�
… .

The integrand in Eq. �30� will then take the form

exp�− Kz2t1−� − K�t exp„− K�q − z�2t1−�
…� ,

which is peaked, for t→�, at z
q+�� ln t. Estimating the
integral in Eq. �30� by the steepest descent gives the result
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FIG. 4. Return time probability for different non-Gaussian pro-
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exp�−K�t1−� ln t�. Combining with Eq. �31�, we obtain the
bound, valid to leading order in q and t,

exp�− K�t1−� ln t� � P�Sq � t� � exp�− Kq2t1−�� , �32�

which is similar in form to the one in �8�. Contrary to the
case of the return times, the value of the sampling constant �
is not crucial to the theory. This is confirmed by the fact that,
in the present limit, all dependence on �, accounted for by
K�, disappears. We compare in Fig. 5 with the result of nu-
merical simulation using Eq. �3� and see that stretched expo-
nential scaling is compatible with the permanence time dis-
tributions in the range considered.

Notice that replacing the upper bound in Eq. �32� with
equality would imply

P�Sq � t� � P�z � q� � P�y � qt1−�� ,

in other words, the probability of a single peak of height
qSq

1−� would be the same as that of a permanence Sq. This is
not surprising: given an initial condition y�0��q�1, from
Eqs. �11� and �13�, 	(y�t� �y�0�) would be narrowly peaked

around y�0�Ãt−1+� and the time it takes to y�t� to go below q

would be t� (Ãy�0� /q)1/�1−��. Substituting y�0�=qSq
1−�, we

obtain precisely t�Sq. As confirmed also in Fig. 5, one ex-
pects, therefore, that longer permanences above threshold, be
associated with higher peaks.

VIII. CONCLUSION

The analysis carried out in this paper confirms the obser-
vation in �4–6� �among others� that long correlations in sto-
chastic processes lead to return time distributions with scal-
ing close to stretched exponential. Similar properties, albeit
with different mechanisms, are confirmed for the perma-
nence time distribution �see Eq. �32��.

These results are consistent with the extension to thresh-
olds different from zero, of the bounds derived in �8� on no
zero-crossing probabilities. The same analysis also suggests
that what can be observed in experimental time series is only
a very slow transient regime. The stretched exponential scal-

ing predicted in �8� is achieved only as an asymptotic limit,
requiring exceedingly long return times and vanishing prob-
abilities. However, as the theory is based on an � expansion,
it is not ruled out that the asymptotic limit may occur earlier
in the range �→1, where new physics may become impor-
tant.

From the practical point of view, it is probably irrelevant
whether a return time distribution that can be fitted by a
stretched exponential is really a stretched exponential. More
important, the present theory provides approximate expres-
sions for the return time distribution, valid for any value of
the argument and working well up to �
0.5, i.e., the middle
of the range considered �see Eqs. �6� and �20� or �26� and
�27��. The theory is limited to discrete sampling and is actu-
ally in the form of a double expansion in � and the parameter
�= P�y1�q �y0�q�, which is heavily dependent on the sam-
pling constant � �see Eq. �24��. However, for large enough q,
in the range of � in which the theory works, considering � in
the scaling range for the correlation C�t� appears to be suf-
ficient.

Another important fact is that, although the approximate
expressions in the present paper are derived in the Gaussian
case, they continue to be valid for non-Gaussian processes,
provided one rescales the relevant quantities by the mean
return time R̄q: Rq→Rq / R̄q and P�Rq�→P�Rq�R̄q. Basically,
only multifractal processes are excluded. �The importance in
this context of rescaling by R̄q was pointed out in �4��.

The mechanism for the nonexponential scaling of the re-
turn time distribution appears to be that trajectories originat-
ing from an above-threshold event are distributed around a
mean �y�t� �y�0��q� that decays very slowly with time.
When imposing that the trajectories remain below threshold
up to the return time Rq, loosely speaking, this slow decay
produces correlations between the conditions of no exit at
different times that cannot be treated as independent. The
important point is that, as long as no slower scaling quanti-
ties are characterizing the process �due, e.g., to multifractal-
ity�, this mechanism will be insensitive to whether or not the
process is Gaussian �see Eq. �29� and following discussion�.
This insensitivity on the tail structure of the statistics was
recently observed in �19�.

From the conceptual point of view, it is interesting that the
cumulative effect of the correlation between the below-
threshold conditions becomes manifest through secular be-
haviors in the equations for the evolution of the trajectory
distributions. It is also interesting that the most natural way
to treat these behaviors is renormalization, with a strategy
similar to �14�. In particular, the stretched exponential scal-
ing limit appears to be associated with the fixed point of the
renormalized theory. The range ��0, corresponding to a
process with finite correlation time and exponential scaling
for the return distribution, conversely, is associated with a
trivial theory that does not require renormalization.

It is to be noted that equations similar to the ones consid-
ered in the present paper arise in the context of avalanche
models �20�, where they have been treated as well within an
�-expansion approach.
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