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The supercritical series expansion of the survival probability for the one-dimensional contact process in
heterogeneous and disordered lattices is used for the evaluation of the loci of critical points and critical
exponents �. The heterogeneity and disorder are modeled by considering binary regular and irregular lattices
of nodes characterized by different recovery rates and identical transmission rates. Two analytical approaches
based on nested Padé approximants and partial differential approximants were used in the case of expansions
with respect to two variables �two recovery rates� for the evaluation of the critical values and critical expo-
nents. The critical exponents in heterogeneous systems are very close to those for the homogeneous contact
process thus confirming that the contact process in periodic heterogeneous environment belongs to the directed
percolation universality class. The disordered systems, in contrast, seem to have continuously varying critical
exponents.

DOI: 10.1103/PhysRevE.76.011119 PACS number�s�: 05.70.Ln, 05.70.Fh, 64.60.Ht, 02.50.Ey

I. INTRODUCTION

In nonequilibrium statistical mechanics, phase transitions
have been identified and studied for some time now. Similar
to equilibrium systems, these phase transitions fall into a
number of different universality classes, one of which is the
directed percolation �DP� universality class �1,2�. According
to a conjecture by Janssen �3� and Grassberger �4�, all ab-
sorbing state phase transitions with a scalar order parameter
and no additional conservation laws are characterized by DP
critical exponents.

One of the questions that has not been answered conclu-
sively is how the introduction of quenched disorder affects
the universal critical behavior of the DP class. According to
the Harris criterion �5�, the critical exponents should change
even for weak disorder. This has been investigated in particu-
lar for the contact process �CP� �6� which is one of the ar-
chetypical models of the DP universality class. Currently,
there are two alternative scenarios in which the exponents
change with introduction of disorder: according to the results
in Refs. �7–11�, they change continuously with degree of
disorder, while Vojta �12� has suggested an abrupt change to
the values in the strong disorder limit corresponding to the
universality class of the random transverse Ising model.

The above controversy can be addressed either by numeri-
cal or analytical methods. Among analytical methods, time-
dependent perturbation theory as introduced by Dickman and
Jensen �13,14� for homogeneous 1d systems gives the most
accurate numerical values. Technically, this has been done by
using one-variable Padé approximants in the analysis of the
series for the survival probability. In this paper, we extend
their approach to heterogeneous and disordered 1d lattices

and introduce the use of Padé approximants similar to the
nested Padé approximants �NPA’s� �15,16� in order to deal
with two control parameters �two recovery rates�, character-
istic of binary lattices. A different approach based on partial
differential approximants �PDA’s� has been used by Dantas
and Stilck in Ref. �17�, who applied the supercritical series
expansion to study the crossover between the 1d CP and the
voter model �6�, thereby introducing a second control param-
eter to the perturbation theory. We also use PDA’s in order to
compare results from the two extrapolation methods.

The aim of the paper is twofold: first, we present and
discuss the technical details of the supercritical series expan-
sions in the case of two variables, i.e., of two different re-
covery rates characteristic of nodes of two different types,
which are different from the well-studied one-parameter case
�13,14�. Second, we investigate the range of applicability and
the effects of variations of our procedure based on NPA’s on
the estimates of critical values and exponents and compare
these results to those obtained by employing PDA’s.

The structure of the paper is as follows: we introduce the
CP in Sec. II. The supercritical series expansion, the analysis
of the resulting two-variable series and the configurational
averaging of the order parameter for disordered environ-
ments are discussed in Sec. III. In Sec. IV, we present the
results in terms of phase diagrams and the critical exponent
� for the different systems, which we then discuss in Sec. V,
the final section.

II. MODEL

The CP, originally introduced by Harris �18�, is a spatial
SIS �susceptible-infected-susceptible� model for the spread
of epidemics through a network. In a network, usually taken
to be a hypercubic lattice, the nodes or sites can be in one of
two states: “infected” or “susceptible.” A susceptible/vacant
site i can be infected by a neighboring infected/occupied site
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j, while an occupied site k can spontaneously recover and
become susceptible again. These processes occur with rates
�ij /z and �k, respectively, where z is the number of nearest
neighbors in the lattice.

In all dimensions, the CP undergoes a nonequilibrium
phase transition into an absorbing state which does not allow
any further time evolution. For a fixed set of transmission
rates, this occurs when the recovery rates become smaller
than a set of critical values. At this point, the survival prob-
ability, that is the probability that process will not enter the
absorbing state �in the thermodynamic limit�, becomes
greater than zero. Several observables can be identified that
describe the critical state of the CP, such as the average den-
sity of infected sites, ��t�, or the survival probability up to
time t after starting from a single seed, Ps�t�. As t→�, in a
homogeneous system ��ij =1 and �k=��, close to the critical
point these quantities are expected to behave like �2�

lim
t→�

��t� � �stat � ��, lim
t→�

Ps�t� � P� � ��. �1�

Here � is the critical exponent associated with stationary
behavior of the order parameter and �=�c−��0, where �c
is the critical point for the control parameter recovery rate �.

Each site i of the system of Ns nodes obeying the rules of
the CP can be in two states: ��i� where �i=0 or �i=1 so that
a microstate of the system with Ns sites can be written as

��� = ��1� � . . . � ��Ns
� = �

i

Ns

��i� = �
i

Ns 	1 − �i

�i



This representation ensures that the microstate vectors form a
2Ns-dimensional orthonormal basis. The state of the system at
time t is

�P�t�� = �
�

P��,t���� , �2�

where P�� , t�= �� � P�t�� is the probability that the system is
found in microstate ���. The time evolution of the state of the
system is governed by the master equation

�t�P�t�� = L̂�P�t�� , �3�

where L̂ is the Liouville operator whose nonzero off-
diagonal elements in this basis are the transition rates be-
tween microstates that for the CP differ in their occupation
number by one. This operator describes the probability flow
between different microstates and is thus represented by a
stochastic matrix in which all the diagonal elements are the
sums of the off-diagonal elements in the corresponding col-
umns taken with the opposite sign.

In a formalism introduced by Doi �19� and Peliti �20� for
stochastic systems, “annihilation” and “creation” operators
on site i, ai, and ai

†, respectively, are defined such that
ai ��i�=�i ��i−1� and ai

† ��i�= �1−�i� ��i+1� �e.g., ai �0�=0�
and that they obey hard-core bosonic commutation relations.

For simplicity, we assume all the transmission rates to be
the same and define the time scale by setting �ij =1. The
recovery rates for binary systems are characterized by one of

two values �i= �A ,�B�. For such models, the operator L̂ in
the one-dimensional case reads as

L̂ = �Ŵ + V̂ , �4�

where the operators �Ŵ and V̂ are

�Ŵ = ��
i

�i

�
�1 − ai

†�ai, �5�

V̂ = �
i

1

2
�1 − ai�ai

†�ai−1
† ai−1 + ai+1

† ai+1� . �6�

The parameter � is introduced for convenience and �i /�
�1 with both recovery rates being close to the homogeneous

critical point and thus �i	1. The operator V̂ creates off-

spring at the nearest neighbors of an occupied sites, while Ŵ
destroys occupation at sites. The above formalism is useful
for the supercritical series expansion in � described below.

III. ANALYSIS

A. Supercritical series expansion

The supercritical series expansion is a perturbation series
for the ultimate survival probability P� which is taken to be
the order parameter, with P��0 being characteristic of the
CP in the active phase. To probe the long-time limit of the
system, the Laplace transform of the probability state vector
is taken,

�P̃�s�� = �
0

�

dte−st�P�t�� , �7�

so that a standard identity of Laplace-transform theory,

limt→�f�t�=lims→0s f̃�s�, can be used. The ultimate survival
probability is then given by

P� = lim
s→0

�1 − s�0�P̃�s�� . �8�

Inserting the formal solution �P�t��=e−L̂t � P�0�� of Eq. �3�
into Eq. �7� results in

�P̃�s�� = �s − �Ŵ − V̂�−1�P�0�� . �9�

We can then formally expand the operator on the right-hand
side of Eq. �9� in a Taylor series with respect to the small
parameter � thus obtaining the following supercritical ex-
pansion:

�P̃�s�� = �P̃0�s�� + ��P̃1�s�� + �2�P̃2�s�� + ¯ �10�

where the vectors �P̃n�s�� obey the following recursion rela-
tions:
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�P̃0�s�� = �s − V̂�−1�P�0�� , �11�

�P̃n�s�� = �s − V̂�−1Ŵ�P̃n−1�s�� for n 
 1. �12�

The action of the operator Ŵ on a given configuration can be
straightforwardly computed using its definition given by Eq.
�5�, i.e.,

Ŵ��� = �
i

m
�i

�
���̄i� − ���� . �13�

The summation is taken over all m occupied sites in state �
and ��̄i�=ai ���, i.e., the �̄i and � have the same occupation
except for site i being occupied in state � and vacant in �̄i.

The action of the operator �s− V̂�−1 on a given configura-
tion, ���, can be computed with the use of the following
identity,

�s − V̂�−1 = s−1 + s−1�s − V̂�−1V̂ , �14�

so that

�s − V̂�−1��� =
1

s + q1/2 + q2

�	��� + �s − V̂�−1�1

2�
i

q1

��̃1,i� + �
i

q2

��̃2,i��
 ,

�15�

where the sums represent the action of the operator V̂ on the
state � with vacant sites of two types: sites which have one
�first sum in Eq. �15� is taken over a number q1 of such sites�
or two �second sum in Eq. �15� is taken over q2 of such sites�
occupied nearest neighbors. The vectors ��̄1,i� and ��̄2,i� rep-
resent the states in which the formerly vacant sites i of the
first and second type, respectively, are now occupied. To go
further we should use the recursive nature of the operator

�s− V̂�−1 and substitute its representation given by Eq. �14�
into Eq. �15�. Such a procedure can generate an infinite num-
ber of new configurations. However, when we calculate the
survival probability perturbatively up to a given order N in �
for the initial condition of a single occupied site, it is only
necessary to retain states with up to N occupied sites. This is

due to the fact that the annihilation operator Ŵ in an expan-
sion up to order �N acts N times on any generated state, after
which remaining states will be projected onto the absorbing
state, thereby projecting out any states with more than N
occupied sites. Following this procedure, we can perturba-
tively calculate the survival probability P� and thus find the
critical point where the survival probability becomes zero. In
order to obtain good numerical estimates of this critical value
and compute critical exponents, it is necessary to employ
numerical methods such as Padé approximants �21�.

B. Nested Padé approximants: Critical values and exponent

For systems with two different recovery rates, �A and �B,
the survival probability �see Eq. �8�� expanded in series is a
polynomial in these two variables,

P���A,�B� = 1 − �
n=1

N

�
m=0

n

cnm�B
m�A

n−m. �16�

The critical line �B
�c�=�B

�c���A
�c�� that separates the absorbing

state from the active state is a solution to the equation
P���A ,�B�=0 corresponding to the smallest �real� root. In
practice, just finding the roots of the polynomial—the trun-
cation of an infinite series at finite order—does not produce
very good estimates of the critical values. Better results are
obtained by using d-log Padé approximants �22�: given an
expansion in one variable, P����, up to order N, the Padé
approximant �21,23� of the series for �� lnP���� is formed.
Technically, this is done by expanding the denominator of
�� ln P����=��P��� / P��� up to order N−1 and thus obtain-
ing a polynomial fN−1��� for this fraction, the Padé approx-
imant of which is then constructed. The first positive �real�
pole and its residue then provide good estimates of the criti-
cal value and the critical exponent of P�, respectively. The
extension of this approach to two variables, however, is not
straightforward—there is a number of different multi-
variable generalizations �24,25� of the one-variable Padé ap-
proximation. In this work, we employ a scheme similar to
the NPA’s �15,16� in which we in turn form one-variable
Padé approximants with respect to the two variables.

To this end, we transform the variables ��A ,�B� to the
following three more convenient sets, T1, T2, and T3. The
first transformation, T1, is symmetric so that the values
��A ,�B� are replaced by ��̄ ,�� where �̄= ��A+�B� /2 and
�= ��A−�B� /2. The transformations T2 and T3 are asym-
metric with ��A ,�B� replaced by either ��̄=�A ,�=�A−�B�
or ��̄=�B ,�=�B−�A�, respectively. Expanding
� /��̄ ln P���̄ ,��=��̄P� / P���̄ ,�� up to order N−1 in �̄ and
�, we obtain

�

��̄
ln P���̄,�� = �

n=0

N−1

fn����̄n + O��̄N� . �17�

We then form the Padé approximants of the coefficients,

fn��� =

�
m=0

J

qm�m

1 + �
m=1

K

qJ+m�m

, �18�

where N−1−n=J+K. As always with Padé approximants,
we have the freedom to choose J and K for a given n. For
even N−1−n, we use diagonal Padé approximants �J ,J� with
J=K= �N−1−n� /2, while for odd N−1−n, we form approxi-
mants �J−1,J� with J= �N−n� /2.

Then, in turn, we form the Padé approximant with respect
to �̄,
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��̄ ln P� =

�
n=0

L

rn����̄n

1 + �
n=1

M

rL+n����̄n

+ O��̄N� , �19�

where N−1=L+M. A more graphical representation of the scheme is the following:

�20�

�21�

�22�

Here we have denoted the formation of the Padé approxi-
mant with respect to a variable x with numerator degree N
and denominator degree M as �N ,M�x ��·� and �·� are the floor
and ceiling functions, respectively�.

Thus for any given �, we can find the corresponding pole
of ��̄ ln P���̄ ,��, which is then taken to as the critical value
�̄�c����, yielding a point on the critical line, ��A

�c�= �̄�c� ,
�B

�c�= �̄�c�+��, ��A
�c�= �̄�c�+� ,�B

�c�= �̄�c��, or ��A
�c�= �̄�c�

+� ,�B
�c�= �̄�c�−��, depending on the initial transformation.

It turns out that occasionally the first positive real roots
are unphysical ones that appear before the physical solution.
However, these roots are very closely matched by roots of
the numerator of the Padé approximant of ��̄ ln P���A ,��, so
that these two cancel each other, leaving the physical root as
the solution. In order to extract unphysical roots, a further
parameter  has been introduced. Two roots, x1 and x2, of the
numerator, n�x�, and the denominator, d�x�, respectively, i.e.,
�x−x1�n�x� / ��x−x2�d�x��, are considered to be the same
value and cancel if �x1−x2 � �. All results presented below
are obtained by setting =10−3.

In order to evaluate the stability of a certain pole, several
approximants are formed with respect to �̄ close to the diag-
onal approximant, e.g. for even N−1=2K, we compute
�K ,K� , �K−1,K� , �K ,K−1� , . . . , �K−2,K−2� and take the
average over these poles. Once we obtained the critical
value, the critical exponent � associated with the order pa-
rameter P� can be found as well, as it is just the residue at
the pole �̄�c�. Again, the average over the residues for differ-
ent Padé approximants is taken. As the error that we could
extract from employing this method is small and does not
take into account the inherent error in the series expansion,
we perform this averaging to minimize the effects due to a
particular choice of approximant and use the standard devia-
tion only to evaluate the numerical stability of a pole.

C. Partial differential approximants: Critical values

Another method for estimating critical values given a fi-
nite two-variable series are the PDA’s originally developed

by Fisher �26� in order to investigate multicritical points.
The starting point of this method is that one is given a

finite two-variable polynomial, F�x ,y�=��i,j��Sf ijx
iyj, that

approximates a true function f�x ,y�, that is expected to have
the following form,

f�x,y� = ��x − xc� + ��y − yc�����x,y� , �23�

where ��x ,y� is some general function with ��xc ,yc��0.
The set S is a so-called label set that contains the pairs of
powers �i , j� of x and y only if f ij�0, i.e., �i , j��S if F�x ,y�
has a nonzero term of order xiyj. For fixed label sets L,
M, and N, it is possible to find polynomials PL�x ,y�
=��i,j��Lpijx

iyj, QM�x ,y�=��i,j��Mqijx
iyj, and RN�x ,y�

=��i,j��Nrijx
iyj such that they satisfy the defining equation

PL�x,y�F = QM�x,y�
�F

�x
+ RN�x,y�

�F

�y
+ EK�x,y� , �24�

with EK=��i,j��Keijx
iyj denoting a sum of nonzero terms

whose powers are not in the matching set K. This matching
set defines for which powers xiyj Eq. �24� should hold ex-
actly with eij =0, while for �m ,n��K, the values of emn are
allowed to be nonzero. In order for Eq. �24� to be a solvable
set of linear equations, the label sets must obey the constraint
that the label sets L, M, and N must together contain one
more element than the matching set K because of the con-
ventional choice of p00=1.

Once the polynomials PL, QM, and RN are found, e.g., by
using an algorithm proposed by Styer �27�, they can be used
to find an estimate for the line of critical points by the
method of characteristics �e.g. see �28��. According to this
method, consider a single curve of points which only de-
pends on a single parameter �, x���= �x��� ,y����. The rate
of change of F�x��� ,y���� along this line is dF /d�
= ��F /�x��dx /d��+ ��F /�y��dy /d��. The survival probability
P�, for which we are going to apply this method, is zero
along the critical line. Thus, considering the case where
F�x��� ,y����=0, it can be seen that the curve described by
the equations
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dx

d�
= QM�x���,y���� , �25�

dy

d�
= RN�x���,y���� , �26�

and substituted in Eq. �24� yields the relation 0= ��F /
�x��dx /d��+ ��F /�y��dy /d��. Together with a suitable initial
condition, this curve is therefore equivalent to the critical
line as F does not change along the curve x���. This suitable
initial condition has to be a known point on the critical line:
in our case, this is the critical point of the homogeneous
system at which x=y=xc.

D. Configurational averaging

The schemes above are straightforwardly applied to het-
erogeneous topologically ordered systems. In topologically
disordered systems, the survival probability has to be aver-
aged over different realizations of disorder. For concreteness,
we consider disorder only in recovery rates �i on different
nodes i assuming that �i are independent random variables
distributed according to the probability distribution func-
tions ���i�. A configurationally averaged survival probability
is then given by the following expression, �P��
=�P���i��i���i�d�i. For simplicity, we consider a bimodal
distribution of recovery rates,

���i� = p���i − �A� + �1 − p����i − �B� , �27�

i.e. the nodes A �hosts�, characterized by recovery rate �A, of
concentration p and B �impurities� of concentration 1− p are
randomly and independently placed on the sites of a regular
chain.

Using the series expansion of order N for P� is equivalent
to considering the CP on the finite chain of length 2N−1, i.e.,
for a given value of n�N all states on 2n−1 sites with the
origin at its center with at most n sites occupied contribute,
so that

�P�� = 1 + �
n=1

N

�
m=0

n

�cnm��B
m�A

n−m, �28�

where

�cnm� = �
k=0

2n−1

�
c:NB�c�=k�

�1 − p�kp2n−1−kcnm�c� , �29�

with the second sum running over all disorder configurations
c= ��−n+1 , . . . ,�0 , . . . ,�n−1� that have a certain number NB�c�
of impurity sites B. The values of cnm are the coefficients in
the expansion of the survival probability for a particular dis-
order configuration. The factor �1− p�kp2n−1−k stems from the
fact that the probability of having a particular disorder con-
figuration is just the product of the probabilities of any site
being either �A or �B, drawn from the bimodal distribution
given by Eq. �27�.

The memory requirements in calculations of the coeffi-
cients in the series expansions impose a restriction, N
�Nmax, on the highest order of expansion for disordered lat-
tices, Nmax=19, which is rather lower than for homogeneous
�14� and heterogeneous cases, Nmax=24. The exact configu-
rational averaging discussed above, exploiting symmetry
about the origin and under the exchange of �A and �B, is not
possible for such high orders due to computational cost when
dealing with a very large number �of O�22Nmax�� of configu-
rations. We have been able to undertake the exact configura-
tional averaging up to order Nc,max=12.

For higher orders, Nc,max�N�Nmax, a configurationally
averaged survival probability is calculated approximately by
only including disorder configurations that have no more
than a certain number of impurities in the averaging. Assum-
ing that each coefficient is of the order of the coefficient in a
homogeneous system, cnm�c��cn, then each coefficient �cnm�
will remain of the same order of magnitude if we choose a
maximum number of impurities kmax�n , p� in

�cnm� � cn �
k=0

kmax 	2n − 1

k

�1 − p�kp2n−1−k, �30�

such that the sum is close to unity. For �1− p��1 and large
n�1, one can choose kmax�2n−1, e.g., for kmax�19,0.96�
=2, �k=0

kmax� 2n−1
k

��1− p�kp2n−1−k=0.817. For lower orders, the
weight of the configurations that are dropped decreases for
constant kmax, but, because it becomes computationally fea-
sible, we choose to increase kmax by one for each lower order
by letting kmax�Nmax− i , p�= i+2. This way, the lower the or-
der the closer the approximate configurational averaging is to
the exact one. With kmax�Nmax− i , p�= i+2, the averaging be-
comes exact from order n�N /3+1.

IV. RESULTS

In this section, we will present the results for critical val-
ues and critical exponents obtained by the analysis described
above and applied to different systems. These results come in
the form of phase diagrams in which the critical points are
plotted in the rate-space plane ��A ,�B� or as plots of the
critical exponent � as a function of the critical rate �A

�c�.
In Ref. �29�, it has been demonstrated that for the 1d CP

the line of critical points close to the homogeneous critical
point, ��A=�c ,�B=�c� is well described by the relation

�c � exp„E�ln��i��… , �31�

where E�·� denotes the expectation value with respect to the
distribution of the recovery rates �i. In this work, we will
compare the critical points to the line given by Eq. �31� to
examine how far from the homogeneous critical point the
relationship describes the critical line well.

In all figures below, we only keep critical points and criti-
cal exponents that have standard deviations from the mean
values of less than 0.001 and 0.005, respectively, after aver-
aging over the Padé approximants as described in Sec. III B.

SUPERCRITICAL SERIES EXPANSION FOR THE … PHYSICAL REVIEW E 76, 011119 �2007�

011119-5



A. Periodic lattices

First, we analyzed periodic lattices, i.e., the CP in systems
with a repeating pattern of nodes characterized by the recov-
ery rates �A and �B. Thinking of a periodic system in terms
of unit cells that are repeated throughout the lattice and de-
noting a site in this unit cell that has recovery rate �A ��B� as
an A�B� site, the three 1d lattices AB, AAB, and AABB are
considered. As can be easily seen from Eq. �31�, the critical
lines of AB and AABB should coincide, at least sufficiently
close to the homogeneous critical point. Therefore, we will
only consider AB and AAB in detail, except for a comparison
of the stability of the critical values away from the homoge-
neous critical point for AB and AABB, which will be the
subject of the last part of this section.

1. Results obtained by NPA’s

The series expansion for all three systems has been cal-
culated up to order N=24. For AB, the series coefficients are
presented in Tables I and II in the Appendix. In order to
evaluate how the estimates provided by the analysis de-
scribed in Sec. III B behave with the order of the expansion,
in Figs. 1�a� and 1�b� the critical line and the critical expo-
nent for the AB lattice are shown for four different values of
N, N= 10,17,24�. The points in Figs. 1�a� and 1�b� were
obtained after using transformation T1. Most notably, as seen
in Fig. 1, the range of reliable critical points increases with
increasing order N. Of course, the accuracy of the prediction
also increases with increasing N. However, in general it can
be said that even for low orders of the expansion the critical
values are of good accuracy.

The critical exponents are more sensitive to the order of
expansion—their behavior with N is shown in the Fig. 1�b�.
Not surprisingly, we find that with increasing order the
critical exponents come closer to the best known value

for the homogeneous CP from series expansions, �
�0.2769�14�—at least close to the homogeneous critical
point. Further away from this point, all the critical exponents
for all orders fluctuate between �=0.275 and �=0.28, the
range in �A of reliable exponents coinciding with the range
for the critical points.

In an attempt to extend the range of applicability of the
series expansion to locate critical points, the linear transfor-
mations described in Sec. III B are applied to the expansion
variables. These transformations change the magnitude of the
new variables �̄ and � and are therefore expected to provide
extensions in different regions of the phase diagram. First,
the transformations T1 and T2 are in employed in the AB
system �T3 being related by symmetry to T2�. Figure 2
shows that for this particular lattice the transformation T1
performs far better than T2 in giving stable critical points
and critical exponents. The results of the transformations for
the asymmetric system AAB are compared in Figs. 3�a� and
3�b�. Here, two things are to note: transformation T2 extends
the critical line further in the �A��c direction than T1,
whereas T3 generally provides poor estimates compared to
the other two.

We also investigate the effects of different orders of Padé
approximants for �̄ and � in the analysis as described in Sec.
III B. In order to do this, the steps given by Eqs. �20� and
�21� are followed, but then, instead of taking the Padé ap-
proximant ���N−1� /2� , ��N−1� /2���̄ as shown in Eq. �22�, the
series in Eq. �21� is truncated at order M �N−1 in �̄. This
means that the coefficients of the terms �̄n with n�M that
remain in the series are Padé approximants in � formed from
polynomials of degree larger than N−1−M. Therefore, the
extrapolation provided by the Padé approximants of these
coefficients can be expected to be more accurate than for
polynomials of lower degree, which is the case for the coef-
ficients of �̄n for n�M. Then, the Padé approximant
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FIG. 1. �Color online� Comparison of critical points �a� and
critical exponents �b� of the AB system obtained from series expan-
sion for different orders N: N=10 ���, N=17 ���, and N=24 �+�.
The symmetric transformation T1 was used. The dashed lines �---�
are given by Eq. �31� in �a� and by � at the homogeneous critical
point, �=0.2769, from series expansions �14� for the CP, in �b�.

0.2 0.3 0.4 0.5 0.6
µ

A

0.2

0.3

0.4

0.5

0.6

µ B

0.1 0.2 0.3 0.4 0.5 0.6
µ

A

0.27

0.275

0.28

0.285

β

(a)

(b)

FIG. 2. �Color online� Comparison of the critical points �a� and
critical exponents �b� of the AB system obtained from series expan-
sions up to order N=24 with different transformations, T1 ��� and
T2 �+�. The dashed lines �---� are given by Eq. �31� in �a� and by �
at the homogeneous critical point, �=0.2769, from series expan-
sions �14� for the CP, in �b�.
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��M /2� , �M /2���̄ is taken. The results of such a cutoff is that
the range of the convergence of the series is improved, al-
lowing for well behaved poles further away from the homo-
geneous critical point. The extension of the range for the
phase-separation line achieved by this procedure can be seen
in Figs. 4�a� and 4�b� for the AAB system. For this system,
the transformation T2 significantly extends the line of critical
points into the region �A

�c���c and �B
�c���c. In Fig. 4�b�, it

can be seen that the critical exponents deviate from the value
�=0.2769 by less than 1.2%.

The fact that this procedure of truncating in orders of
expansion in �̄ performs well in this particular case can be
understood in the following way. For the transformation T2,
�̄=�A and �=�B− �̄=�B−�A, leading to small values of the
variable ��̄� in which the expansion is cut, while � is very
large for �A��c and �B��c. Therefore, we can expect the
effects of dropping terms in �̄ to be small while the benefit
of only using Padé approximants in � formed from high-
order polynomials to be large. This explains the sizeable ex-
tension of the region in which the poles of the series are well
behaved.

In contrast to the AAB system, the procedure described
above does not produce much extension of the critical line
for the AB lattice, as can be seen Fig. 5: there are only a few
points obtained by using transformation T2 further away
from the homogeneous point than the critical points obtained
by the regular analysis with T1.

It is worth noting that the deviation of the critical line
from the line given by Eq. �31� appreciably increases away
from the homogeneous critical point �see Fig. 4�. It shows
that Eq. �31� is only a lowest-order approximation in relation
to the homogeneous critical point.

For the AABB system, it is found that, in general, there is
a smaller range of the critical values and critical exponents
compared to the situation for AB and AAB chains. In order to
investigate this difference in the range of stability of the
critical points and exponents, the AABB critical line is com-
pared with that for the AB lattice, which should follow the
same curve according to Eq. �31�. It is found that the differ-
ence of the stability of the critical values seems to be a result
of the number of unit cells that the series expansion takes
into account. For order N=24, six unit cells on either side of
the origin affect the series expansion for AABB while the
number is twice that for AB. If order N=12 expansion for the
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FIG. 3. �Color online� Comparison of the critical values �a� and
critical exponents � �b� of the AAB system obtained from series
expansions up to order N=24 with different transformations, T1
���, T2 �+�, and T3 ���. The dashed lines �---� are given by Eq.
�31� in �a� and by � at the homogeneous critical point, �=0.2769,
from series expansions �14� for the CP, in �b�.
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FIG. 4. �Color online� Comparison of critical values �a� and
critical exponents �b� of the AAB lattice obtained from series ex-
pansions up to overall order N=24 which are cut off at order M
=12 �+� or in which all the terms up to order M =23 ��� are re-
tained. Transformation T2 was used to obtain these critical points.
The dashed lines �---� are given by Eq. �31� in �a� and by � at the
homogeneous critical point, �=0.2769, from series expansions �14�
for the CP, in �b�.
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FIG. 5. �Color online� Comparison of critical values �a� and
critical exponents �b� of the AB lattice obtained from series expan-
sions up to overall order N=24 which are cut off at order M =12 �+�
or in which all the terms up to order M =23 ��� are retained. Trans-
formations T2 and T1, respectively, were used to obtain these criti-
cal points. The dashed lines �---� are given by Eq. �31� in �a� and by
� at the homogeneous critical point, �=0.2769, from series expan-
sions �14� for the CP, in �b�.
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AB lattice, which also only takes six unit cells into account,
is compared with the order N=24 expansion for the AABB
chain, then we find that their ranges are very similar. This is
shown in Fig. 6 where the critical points start to fluctuate
wildly for both systems at the same point in the phase dia-
grams �not presented in Fig. 6�.

2. Results obtained by PDA’s

As described in Sec. III C, by applying the PDA method
to the P���A ,�A� we can also compute a line of critical
points. The results obtained by this method depend on the
choices of the label sets, L, M, N for the polynomials
PL�x ,y�, QM�x ,y�, and RN�x ,y� and the matching set K. For
all our analyses employing PDA’s, we use either label sets
M, N, and K that have triangular or rectangular form. The
label set L is then chosen to mimic the form of the others
while at the same time making sure that the number of ele-
ments in all four sets satisfies the constraint that is imposed
on them �see Sec. III C�. By “triangular” label set M we
mean that �i , j��M if 0� �i+ j��Mmax, while “rectangular”
refers to a set M for which �i , j��M if 0� i�Mmax,i and
0� j�Mmax,j with some integers Mmax, Mmax,i, and Mmax,j.
From here on, we will refer to a particular choice of the label
sets L, M, N and matching set K as an input set.

Often, different input sets produce critical lines of varying
extent in ��A ,�B� space. In Fig. 7, we show the results from
one input set for the AB lattice and from two input sets for
the AAB lattice in comparison to the lines given by Eq. �31�.
The input set for the AB lattice are triangular while the ones
for the AAB system are rectangular and triangular. The criti-
cal lines obtained by PDA’s are presented in log-log scale
because they extend to a rather wider range than those cal-
culated by NPA’s �cf. Figs. 1, 3, and 7�. One can clearly see
that around the homogeneous critical point the lines from the
series and described by Eq. �31� agree very well while de-
viations develop further away. It can be seen in Fig. 7 that
the critical lines for triangular and rectangular input sets in

the case of the AAB chain coincide in the vicinity of the
critical point with a consistent tendency to be above the pre-
diction given by Eq. �31�. There is a point, though, where
these two approximate curves for the critical line diverge:
from there, the estimates given by the PDA’s can no longer
be considered reliable �cf. the behavior of the curves marked
by + and � in Fig. 7 for �A�1�.

B. Disordered contact process with bimodal distribution

1. Results obtained by NPA’s

For the disordered CP, in which the recovery rates are
drawn from the bimodal distribution given by Eq. �27�, the
same analysis as for the periodic lattices is carried out, with
the only difference being that the survival probability is con-
figurationally averaged. Up to order N=12, the expansion of
the survival probability can be configurationally averaged
exactly for any value of p. For p=0.5, the series coefficients
are presented in Table III in the Appendix.The results for
such systems characterized by p=0.5 and p=0.7 are shown
in Figs. 8 and 9. For both values of p, the line of critical
points and the critical exponents for the two different linear
transformations, T1 and T2, are compared.

Similar to the heterogeneous AB lattice, we find that for
the disordered system with p=0.5, transformation T1 extends
the line of critical points furthest �see Fig. 8�. The critical
points are again well described by Eq. �31�. The critical ex-
ponents, however, behave differently for the disordered case
than for the heterogeneous lattices: while in the latter case
they fluctuate up immediately away from homogeneous point
�c but then fluctuate down again, in the former system, they
almost linearly increase away from the homogeneous critical
point.

Figure 9 shows the results for the disordered lattice with
p=0.7. This system behaves more like the heterogeneous
AAB lattice with transformation T2 extending the critical line
furthest to the left, for �A��c and T1 furthest to the right,

0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33
µ

A

0.26

0.28

0.3

0.32

0.34

0.36

0.38
µ B

FIG. 6. �Color online� Comparison of phase diagram for the AB
system obtained from series expansion up to order N=12 ��� and
for the AABB chain obtained from series expansion up to order N
=24 �+�. The dashed line �---� is given by Eq. �31�.
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FIG. 7. �Color online� Critical lines in log-log scale for the AB
lattice ��� and the AAB lattice �+ and �� as obtained by PDA’s:
The dashed lines �---� and �· ·− · · � are given by Eq. �31� for the AB
and the AAB system, respectively.
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�A��c. As usual, the points obtained from T3 lie in the
middle and thus do not extend the critical line in any direc-
tion. The critical exponent � displays very similar behavior
as for p=0.5, mostly monotonically increasing away from
the homogeneous critical point.

As noted in Sec. III D, the exact configurational averaging
of the survival probability, �P��, becomes rapidly computa-
tionally very demanding with order of expansion and is only
possible for N�12. Therefore, the approximate scheme for
averaging has to be applied for orders N�12. Such a scheme
has been described in Sec. III D. In order to test the reliabil-
ity of this scheme, we analyze the disordered systems char-

acterized by p=0.96, for which both exact and approximate
averaging, with kmax�12, p�=2, are possible. The comparison
between the two configurational averages are shown in Figs.
10�a� and 10�b�. It can be seen that the critical points agree
very well for the two configurational averages where they
both produce stable critical points, showing that the approxi-
mation scheme is indeed faithful for small disorder concen-
trations.

For a system with small concentration of B sites, e.g. for
p
0.96, the approximate scheme described in Sec. III D can
be applied for configurational averaging up to order N=19.
Below, we present results for p=0.96 with kmax�19, p�=2.
Figures 11�a� and 11�b� show the critical values and critical
exponents for this case. Clearly, the transformation T2 works
best for this system as is to be expected from its performance
for the heterogeneous periodic AAB lattice. The critical
points from transformation T3 cover less range than T1 or
T2, so we left these points out of Fig. 11. Deviation of the
critical line from the curve given by Eq. �31� can be seen for
�A��c. The critical exponent � increases monotonically
with increasing value of �A away from the homogeneous
critical point, �A��c, while for �A��c, significant fluctua-
tions can be seen.

It should be mentioned that the critical line is only mar-
ginally extended by the procedure of cutting the series in
different orders for �̄ and � described in the previous section.

2. Results obtained by PDA’s

Using similar input sets as for the heterogeneous systems
�as described in Sec. IV A 2�, we apply PDA’s to the disor-
dered systems as well. Generally, smaller input sets, with
fewer elements in the label sets, are used because the series
are shorter for the disordered systems but the triangular and
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FIG. 10. �Color online� Comparison of critical values �a� and
critical exponents �b� of the disordered 1d lattice with p=0.96 ob-
tained from series expansions up to order N=12 using exact con-
figurational averaging ��� and approximate configurational averag-
ing �+� with kmax�12, p�=2. In both expansions T1 was used. The
dashed lines �---� are given by Eq. �31� in �a� and by � at the
homogeneous critical point, �=0.2769, from series expansions �14�
for the CP, in �b�.
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FIG. 8. �Color online� Comparison of critical values �a� and
critical exponents �b� of the disordered system with p=0.5 obtained
from series expansions up to order N=12 using transformations T1
��� and T2 �+�. The dashed lines �---� denote �a� the curve given by
Eq. �31� and �b� the value for the critical exponent at the homoge-
neous critical point for the CP from series expansion, �=0.2769
�14�.
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FIG. 9. �Color online� Comparison of critical values �a� and
critical exponents �b� of the disordered system with p=0.7 obtained
from series expansions up to order N=12: T1 ���, T2 �+�, and T3
���. The dashed lines �---� denote �a� the curve given by Eq. �31�
and �b� the value for the critical exponent at the homogeneous criti-
cal point for the CP from series expansion, �=0.2769 �14�.
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rectangular shapes are still maintained. In Fig. 12, phase
separation lines for three systems with the different degrees
of disorder characterized by the following values of p=0.7,
p=0.7, and p=0.96 are shown. It can be clearly seen that Eq.
�31� describes the critical lines obtained by the PDA’s very
well around the homogeneous point. For the p=0.96 system,
from �B=1.5 the critical points deviate from Eq. �31�. Con-
sistent with the results from the NPA’s, the critical points
obtained by PDA’s deviate above the line given by Eq. �31�.

V. DISCUSSION AND CONCLUSION

To conclude, we have presented a detailed description of
the supercritical series expansions for the survival probabil-
ity of the contact process in heterogeneous and disordered
one-dimensional binary lattices. The heterogeneous systems
are modeled by lattices with repeating patterns of sites of
two types A and B characterized by different recovery rates,
�A and �B, and the disordered systems are represented by
lattices of similar sites randomly placed on the lattice sites
with probabilities p and 1− p, for nodes A and B, respec-
tively. For the analysis of the two-variable series �in �A and
�B�, we have presented a scheme based on NPA’s in order to
extract critical values and the critical exponent � and have
also used PDA’s to obtain estimates for the line of critical
points.

It has been demonstrated that �i� using symmetric and
asymmetric linear transformations, it is possible to extend
the range of stable critical points in different regions of the
rate-space ��A ,�B�; �ii� keeping different orders in the Padé
approximants with respect to the two variables, an extension
of the line of critical points and an extended range for the
critical exponents can be achieved; �iii� results from NPA’s
and PDA’s compare well, PDA’s usually widening the range

of the critical lines a bit further in the ��A ,�B� plane; �iv� an
approximate scheme for configurational averaging can be ap-
plied in disordered lattices.

In general, the critical values can be reliably obtained by
supercritical series expansions and they are in good agree-
ment with the analytical approximation given by Eq. �31�.
For the critical exponents, the results are less conclusive due
to larger errors, but certainly give some indication as to what
happens to the universal critical behavior when spatial het-
erogeneity and disorder is introduced. For all heterogeneous
lattices, we see fluctuations away from the best known value
for the CP from series expansions, �=0.2769 �14�, but they
hardly ever exceed �=0.28 over the range of reliable points.
This suggests that the CP for heterogeneous lattices still be-
longs to the DP universality class.

For the disordered systems, we see a qualitatively differ-
ent picture. In general, we find that the critical exponents
monotonically increase away from the value at the homoge-
neous critical point. As we were only able to compute the
exact configurationally averaged survival probability up to
order N=12 and an approximate one up to order N=19,
we do not have very high precision, but the above tendency
is clearly visible in all the data. This picture of continuously
changing exponents is consistent with what a number of
other authors �7–11� have found and with the Harris criterion
�5�.
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FIG. 11. �Color online� Comparison of critical values �a� and
critical exponents �b� of the disordered 1d lattice with p=0.96 ob-
tained from series expansions of the approximately configuration-
ally averaged survival probability up to order N=19 using the trans-
formations T1 ��� and T2 �+�. The dashed lines �---� denote �a� the
curve given by Eq. �31� and �b� the value for the critical exponent at
the homogeneous critical point for the CP from series expansion,
�=0.2769 �14�.
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FIG. 12. �Color online� Critical lines in log-linear scale for the
disordered lattice with p=0.5 ���, p=0.7 �+�, and p=0.96 ��� as
obtained by PDA’s: the three lines �—�, �---�, and �· ·− · · � are given
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APPENDIX: SELECTED SERIES COEFFICIENTS

TABLE I. Series for the ultimate survival probability, P�=1−�n=1
N �m=0

n cnm�A
n−m�B

m, for the heterogeneous lattice AB starting from a
single occupied A site up to order N=15 �continued in Table II�. �Numbers in brackets indicate powers of ten.�

n m cnm n m cnm n m cnm

0 0 1.00000000000000000000�+00� 7 1.65000000000000000000�+01� 12 −0.00000000000000000000�+00�
8 −0.00000000000000000000�+00�

1 0 −1.00000000000000000000�+00� 13 0 −1.00000000000000000000�+00�
1 −0.00000000000000000000�+00� 9 0 −1.00000000000000000000�+00� 1 −2.07000000000000000000�+02�

1 −6.80000000000000000000�+01� 2 −6.74625000000000000000�+03�
2 0 1.00000000000000000000�+00� 2 −7.58500000000000000000�+02� 3 −7.44351406860351562500�+04�

1 −2.00000000000000000000�+00� 3 −1.69084472656250000000�+03� 4 −3.01900451407580578234�+05�
2 −0.00000000000000000000�+00� 4 3.02032038031683987356�+03� 5 −2.76109780525427486282�+05�

5 1.11290729437934101043�+03� 6 8.00284240250960225239�+05�
3 0 −1.00000000000000000000�+00� 6 −1.77129394531249909051�+03� 7 4.74728979742886382155�+05�

1 5.00000000000000000000�−01� 7 −4.27500000000000000000�+02� 8 −3.91561916647056990769�+05�
2 −1.50000000000000000000�+00� 8 −2.10000000000000000000�+01� 9 −2.26055896148412110051�+05�
3 −0.00000000000000000000�+00� 9 −0.00000000000000000000�+00� 10 −3.99103976440429469221�+04�

11 −2.51875000000000000000�+03�
4 0 1.00000000000000000000�+00� 10 0 1.00000000000000000000�+00� 12 −4.40000000000000000000�+01�

1 3.00000000000000000000�+00� 1 9.40000000000000000000�+01� 13 −0.00000000000000000000�+00�
2 −1.20000000000000000000�+01� 2 1.45700000000000000000�+03�
3 3.50000000000000000000�+00� 3 6.01312646484374818101�+03� 14 0 1.00000000000000000000�+00�
4 1.02500000000000000000�+01� 4 −7.55620689863017105381�+01� 1 2.58000000000000000000�+02�

5 −1.94405384114583393966�+04� 2 1.02715000000000000000�+04�
5 0 −1.00000000000000000000�+00� 6 4.71605225664304089150�+03� 3 1.41998072448730497854�+05�

1 −9.00000000000000000000�+00� 7 4.74978173828125090949�+03� 4 7.83967321483503794298�+05�
2 1.02500000000000000000�+01� 8 7.19500000000000000000�+02� 5 1.54877796274059498683�+06�
3 −5.25000000000000000000�+00� 9 2.60000000000000000000�+01� 6 −8.33349567427633097395�+05�
4 −6.00000000000000000000�+00� 10 −0.00000000000000000000�+00� 7 −4.23806772828293405473�+06�
5 −0.00000000000000000000�+00� 8 3.58496589470378821716�+05�

11 0 −1.00000000000000000000�+00� 9 1.49872407836358295754�+06�
6 0 1.00000000000000000000�+00� 1 −1.25500000000000000000�+02� 10 5.21977267719965777360�+05�

1 1.80000000000000000000�+01� 2 −2.57100000000000000000�+03� 11 7.00816817626952833962�+04�
2 2.44999999999999893419�+01� 3 −1.59531196289062500000�+04� 12 3.56925000000000000000�+03�
3 −1.21875000000000000000�+02� 4 −2.17014048374422091001�+04� 13 5.10000000000000000000�+01�
4 4.07500000000000000000�+01� 5 4.88961204626596372691�+04� 14 −0.00000000000000000000�+00�
5 9.00000000000000000000�+00� 6 2.47395297945582315151�+04�
6 −0.00000000000000000000�+00� 7 −2.65267486447097398923�+04� 15 0 −1.00000000000000000000�+00�

8 −1.06594931640625000000�+04� 1 −3.16500000000000000000�+02�
7 0 −1.00000000000000000000�+00� 9 −1.14000000000000000000�+03� 2 −1.51542500000000000000�+04�

1 −3.05000000000000000000�+01� 10 −3.15000000000000000000�+01� 3 −2.55901594619751005666�+05�
2 −5.25000000000000000000�+00� 11 −0.00000000000000000000�+00� 4 −1.81766897669971594587�+06�
3 1.83769531250000000000�+02� 5 −5.47577552606320381165�+06�
4 2.11445312500000213163�+01� 12 0 1.00000000000000000000�+00� 6 −3.39287989124816888943�+06�
5 −1.11250000000000000000�+02� 1 1.63000000000000000000�+02� 7 1.32761055815006103367�+07�
6 −1.25000000000000000000�+01� 2 4.26500000000000000000�+03� 8 8.67954126374729350209�+06�
7 −0.00000000000000000000�+00� 3 3.62502430419921875000�+04� 9 −5.72495353703939169645�+06�

4 9.72816786722543474752�+04� 10 −4.44897483104257006198�+06�
8 0 1.00000000000000000000�+00� 5 −2.92123691227543495188�+04� 11 −1.10378333697890699841�+06�

1 4.70000000000000000000�+01� 6 −2.79344760523458826356�+05� 12 −1.17472772171020405949�+05�
2 3.47500000000000000000�+02� 7 4.62104999846149221412�+04� 13 −4.93375000000000000000�+03�
3 1.52800781250000198952�+02� 8 8.62397669988747074967�+04� 14 −5.85000000000000000000�+01�
4 −1.45959277343750000000�+03� 9 2.14371234130859302240�+04� 15 −0.00000000000000000000�+00�
5 4.47820312500000113687�+02� 10 1.72550000000000000000�+03�
6 2.33250000000000000000�+02� 11 3.75000000000000000000�+01�
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TABLE II. Series for the ultimate survival probability, P�=�n=16
N �m=0

n cnm�A
n−m�B

m, for the heterogeneous lattice AB starting from a single
occupied A site up to order N=24 �continued from Table I�. �Numbers in brackets indicate powers of ten.�

n m cnm n m cnm n m cnm

16 0 1.00000000000000000000�+00� 9 3.80933065114315605164�+09� 9 9.19978211394436798096�+10�
1 3.83000000000000000000�+02� 10 2.79066540292775917053�+09� 10 −1.41663236622908508301�+11�
2 2.17725000000000000000�+04� 11 −1.18839624965687608719�+09� 11 −3.09544181677179382324�+11�
3 4.40507505485534784384�+05� 12 −1.54566718886240291595�+09� 12 −5.92025291294928512573�+10�
4 3.88379059831085987389�+06� 13 −6.04278256410952091217�+08� 13 1.17816956489996398926�+11�
5 1.58357353872441500425�+07� 14 −1.20264935356224894524�+08� 14 9.15751721367468566895�+10�
6 2.44039435816917717457�+07� 15 −1.27080503243713695556�+07� 15 3.26331674054245605469�+10�
7 −1.85767939421518109739�+07� 16 −6.68376087843894492835�+05� 16 6.70219656522058677673�+09�
8 −6.69576071585644334555�+07� 17 −1.49485000000000000000�+04� 17 8.07064469443650722504�+08�
9 4.24265176388191117439�+05� 18 −9.35000000000000000000�+01� 18 5.49525110365272164345�+07�

10 2.54600385214862190187�+07� 19 −0.00000000000000000000�+00� 19 1.94577521464836411178�+06�
11 1.14637431981598399580�+07� 20 2.97977500000000109139�+04�
12 2.18359439378216117620�+06� 20 0 1.00000000000000000000�+00� 21 1.25000000000000000000�+02�
13 1.89539660865783487679�+05� 1 7.39000000000000000000�+02� 22 −0.00000000000000000000�+00�
14 6.67674999999999818101�+03� 2 7.58940000000000000000�+04�
15 6.65000000000000000000�+01� 3 2.78482589066410297528�+06� 23 0 −1.00000000000000000000�+00�
16 −0.00000000000000000000�+00� 4 4.77064398069097101688�+07� 1 −1.11450000000000000000�+03�

5 4.30921612129856288433�+08� 2 −1.66033750000000000000�+05�
17 0 −1.00000000000000000000�+00� 6 2.15946993785786914825�+09� 3 −8.73441611697400361300�+06�

1 −4.58000000000000000000�+02� 7 5.80407028293784332275�+09� 4 −2.18288062553152590990�+08�
2 −3.05770000000000000000�+04� 8 5.94638918469835090637�+09� 5 −2.99289542933531618118�+09�
3 −7.29997349998474353924�+05� 9 −7.40305007272274589539�+09� 6 −2.41184413851611099243�+10�
4 −7.78990695947526767850�+06� 10 −1.82033732679653511047�+10� 7 −1.17519830906608703613�+11�
5 −4.04899793576145172119�+07� 11 −2.40532317192275094986�+09� 8 −3.41927873040872924805�+11�
6 −9.69540386525691747665�+07� 12 7.10905857967732429504�+09� 9 −5.02858276294200012207�+11�
7 −3.89085116880342364311�+07� 13 4.71814863830389404297�+09� 10 3.15742561692385902405�+10�
8 2.23379967691832602024�+08� 14 1.42660811422320199013�+09� 11 1.14735787437879589844�+12�
9 1.55998095356879800558�+08� 15 2.35853332781435012817�+08� 12 8.97016221831120605469�+11�

10 −8.29453441516727209091�+07� 16 2.12726885021208114922�+07� 13 −2.27905936943680297852�+11�
11 −8.40138382690373063087�+07� 17 9.71620832698821439408�+05� 14 −5.02435627291505371094�+11�
12 −2.68378383641524799168�+07� 18 1.90230000000000000000�+04� 15 −2.66655503063110687256�+11�
13 −4.09565602203018311411�+06� 19 1.03500000000000000000�+02� 16 −7.74699632413517761230�+10�
14 −2.96166594512939278502�+05� 20 −0.00000000000000000000�+00� 17 −1.35731640547505397797�+10�
15 −8.87100000000000000000�+03� 18 −1.42167162412259006500�+09�
16 −7.50000000000000000000�+01� 21 0 −1.00000000000000000000�+00� 19 −8.53138949911509156227�+07�
17 −0.00000000000000000000�+00� 1 −8.53000000000000000000�+02� 20 −2.69011596571039920673�+06�

2 −9.97227500000000000000�+04� 21 −3.67522500000000072760�+04�
18 0 1.00000000000000000000�+00� 3 −4.15225493661523098126�+06� 22 −1.36500000000000000000�+02�

1 5.42000000000000000000�+02� 4 −8.13538837860736250877�+07� 23 −0.00000000000000000000�+00�
2 4.21000000000000000000�+04� 5 −8.53730911617448449135�+08�
3 1.17137547012138389982�+06� 6 −5.09422722262319755554�+09� 24 0 1.00000000000000000000�+00�
4 1.48443261883842591196�+07� 7 −1.72895074425995292664�+10� 1 1.26300000000000000000�+03�
5 9.48619801399879902601�+07� 8 −2.92424105203240814209�+10� 2 2.10837500000000000000�+05�
6 3.07316159384340524673�+08� 9 −2.19503462337732887268�+09� 3 1.23666210482723508030�+07�
7 3.81732671278393089771�+08� 10 6.57535642176373291016�+10� 4 3.45435577848057389259�+08�
8 −3.78560457913966596127�+08� 11 4.99555141215952529907�+10� 5 5.34326366176584434509�+09�
9 −1.09090039428584504128�+09� 12 −1.67071432757774791718�+10� 6 4.91754102809474029541�+10�

10 −7.22351460704629123211�+07� 13 −2.80141699739296989441�+10� 7 2.78581107827627380371�+11�
11 4.26837997859395503998�+08� 14 −1.29120452738848495483�+10� 8 9.79218318459290283203�+11�
12 2.37199959095923602581�+08� 15 −3.17061061754675102234�+09� 9 1.98256718408773803711�+12�
13 5.84676568044034391642�+07� 16 −4.44081987989710092545�+08� 10 1.41222325451664990234�+12�
14 7.35058582342192064971�+06� 17 −3.46190648118626475334�+07� 11 −2.67964226093419287109�+12�
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TABLE III. Series for the configurationally averaged ultimate survival probability, �P��=1−�n=1
N �m=0

n �cnm��A
n−m�B

m, for the disordered
lattice with impurity concentration p=0.5 up to order N=12. �Numbers in brackets indicate powers of ten.�

n m �cnm� n m �cnm� n m �cnm�

0 0 1.00000000000000000000�+00� 7 0 −1.02856445312500000000�+00� 4 8.57398099693330948412 �+01�
1 6.71752929687499911182�+00� 5 −1.59956149689860012586�+03�

1 0 −5.00000000000000000000�−01� 2 −7.88159179687500000000�+00� 6 8.57398099692479576106 �+01�
1 −5.00000000000000000000�−01� 3 −3.63503417968750000000�+01� 7 −3.78991681481602029180 �+02�

4 −3.63503417968750000000�+01� 8 3.15666996812323645827 �+02�
2 0 0.00000000000000000000�+00� 5 −7.88159179687500000000�+00� 9 −1.12182894054082581192 �+02�

1 −1.00000000000000000000�+00� 6 6.71752929687500000000�+00� 10 1.97285068645925996123 �+01�
2 0.00000000000000000000�+00� 7 −1.02856445312500000000�+00�

11 0 −6.38827981592922071741 �+01�
3 0 1.25000000000000000000�−01� 8 0 1.91795349121094105271�+00� 1 2.76683537172620788169 �+02�

1 −1.12500000000000000000�+00� 1 −1.00450286865234925671�+01� 2 −5.81148325010243183897 �+02�
2 −1.12500000000000000000�+00� 2 4.34407348632823939738�+01� 3 1.08098985786890170857 �+03�
3 1.25000000000000000000�−01� 3 −1.05206558227552989138�+02� 4 −1.09115308153965179372 �+03�

4 −7.39358825683648177574�+01� 5 −2.15854719928576787424 �+03�
4 0 2.18750000000000000000�−01� 5 −1.05206558227541165706�+02� 6 −2.15854719928370877824 �+03�

1 −8.75000000000000000000�−01� 6 4.34407348632839358515�+01� 7 −1.09115308154012654995 �+03�
2 2.18750000000000000000�−01� 7 −1.00450286865224249766�+01� 8 1.08098985786938828824 �+03�
3 −8.75000000000000000000�−01� 8 1.91795349121088110067�+00� 9 −5.81148325010462372120 �+02�
4 2.18750000000000000000�−01� 10 2.76683537172492606260 �+02�

9 0 −9.13367027706589240665�+00� 11 −6.38827981592518412413 �+01�
5 0 1.56250000000000000000�−01� 1 4.07988169988005395794�+01�

1 3.43750000000000000000�−01� 2 −5.42188301086439778942�+01� 12 0 1.82464000646571463449 �+02�
2 −6.00000000000000000000�+00� 3 6.09921527438696244872�+01� 1 −9.07237726925243578080 �+02�
3 −6.00000000000000000000�+00� 4 −3.40893967946386396761�+02� 2 2.01989525183668274622 �+03�
4 3.43750000000000000000�−01� 5 −3.40893967946387931534�+02� 3 −2.51445338021211500745 �+03�
5 1.56250000000000000000�−01� 6 6.09921527438643025221�+01� 4 4.03956355580561148599 �+03�

7 −5.42188301086414981000�+01� 5 −8.47482562600732853753 �+03�
6 0 3.45703125000000000000�−01� 8 4.07988169988003761546�+01� 6 −3.63662968564300990693 �+03�

1 −1.91406250000000000000�−01� 9 −9.13367027706600786985�+00� 7 −8.47482562600957498944 �+03�
2 −1.76757812500000000000�+00� 8 4.03956355578774446258 �+03�
3 −2.53984375000000000000�+01� 10 0 1.97285068645884216210�+01� 9 −2.51445338020943927404 �+03�
4 −1.76757812500000000000�+00� 1 −1.12182894054052439969�+02� 10 2.01989525183534055941 �+03�
5 1.56250000000000000000�−01� 2 3.15666996812357751878�+02� 11 −9.07237726928176357433 �+02�
6 3.45703125000000000000�−01� 3 −3.78991681481601744963�+02� 12 1.82464000646704874953 �+02�

TABLE II. �Continued.�

n m cnm n m cnm n m cnm

15 4.50249120122909313068�+05� 18 −1.38645204595112707466�+06� 12 −5.34463787449065527344�+12�
16 1.15980000000000000000�+04� 19 −2.39322500000000000000�+04� 13 −1.30437844961177197266�+12�
17 8.40000000000000000000�+01� 20 −1.14000000000000000000�+02� 14 1.94623313797743408203�+12�
18 −0.00000000000000000000�+00� 21 −0.00000000000000000000�+00� 15 1.74636441085664794922�+12�

16 7.14760408659765625000�+11�
19 0 −1.00000000000000000000�+00� 22 0 1.00000000000000000000�+00� 17 1.74634440975768798828�+11�

1 −6.35500000000000000000�+02� 1 9.78000000000000000000�+02� 18 2.64786405199085998535�+10�
2 −5.69645000000000000000�+04� 2 1.29406500000000000000�+05� 19 2.43568212742165803909�+09�
3 −1.82815355796528002247�+06� 3 6.07409790126359928399�+06� 20 1.29837631260614901781�+08�
4 −2.71021273926327489316�+07� 4 1.34919942776649802923�+08� 21 3.66895718129834206775�+06�
5 −2.07776329672791510820�+08� 5 1.62617631624924206734�+09� 22 4.49402500000000072760�+04�
6 −8.53126758990889191628�+08� 6 1.13523417998541107178�+10� 23 1.48500000000000000000�+02�
7 −1.69019990104488110542�+09� 7 4.67520642304774093628�+10� 24 −0.00000000000000000000�+00�
8 −3.82997793883490979671�+08� 8 1.07905537383186004639�+11�
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