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We use the method of Balister, Bollobás, and Walters �Random Struct. Algorithms 26, 392 �2005�� to give
rigorous 99.9999% confidence intervals for the critical probabilities for site and bond percolation on the 11
Archimedean lattices. In our computer calculations, the emphasis is on simplicity and ease of verification,
rather than obtaining the best possible results. Nevertheless, we obtain intervals of width at most 0.0005 in all
cases.
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I. INTRODUCTION

In this paper we study site and bond percolation on planar
lattices, in particular the Archimedean lattices, in which all
faces are regular polygons and all vertices are equivalent.
The 11 Archimedean lattices are shown in Fig. 1, labeled
with the notation of Grünbaum and Shephard �1�: Each lat-
tice is represented by a sequence listing the numbers of sides
of the faces meeting at a vertex, in cyclic order around that
vertex.

In site percolation on a graph �, each vertex, or site, of �
is assigned a state, open or closed. In independent site per-
colation the states of the sites are independent, and each site
is open with a certain probability p. The definitions for bond
percolation are similar, except that is the edges, or bonds, of
� that are assigned states. We shall write Pp for the corre-
sponding probability measure, suppressing the dependence
on � and on whether it is site or bond percolation that we
consider.

The basic question of percolation theory is “when is there
an infinite open cluster,” i.e., an infinite subgraph of � all of
whose sites �for site percolation� or bonds �for bond perco-
lation� are open. It is not hard to see that there is a certain
“critical probability” pc, such that for p� pc there is never
�i.e., with probability 0� an infinite open cluster, while for
p� pc there always is. For this and other basic facts about
percolation, see Grimmett �2�, or Bollobás and Riordan �3�,
for example. When we wish to specify the lattice, and
whether it is site or bond percolation that we are considering,
then we write pc

s��� or pc
b���.

The exact value of pc is known in rather few cases: In
1980, Kesten �4� proved that pc

b�Z2�=1/2, where Z2 is the
square lattice. Shortly afterwards �5�, he proved that pc
=1/2 also holds for site percolation on the triangular lattice
T. Later, Wierman �6� used his “substitution” method to give
rigorous proofs of the values pc

b�T�=2 sin�� /18� and pc
b�H�

=1−2 sin�� /18� for bond percolation on the triangular and
hexagonal lattices, respectively; these values had been ob-
tained heuristically much earlier by Sykes and Essam �7,8�.
There are two further values that may be easily derived from
these: The �3,6 ,3 ,6� or Kagomé lattice K is the line graph of
the hexagonal lattice, so pc

s�K�= pc
b�H�=1−2 sin�� /18�.

Also, the �3,122� or extended Kagomé lattice K+ is the line
graph of the lattice H2 obtained by subdividing each bond of
H exactly once, so

pc
s�K+� = pc

b�H2� = �pc
b�H� = �1 − 2 sin��/18��1/2.

These are the only critical probabilities known for
Archimedean lattices. Indeed, it may be that the exact values
of the other critical probabilities associated to the
Archimedean lattices will never be known; they may simply
be numbers that have no simpler descriptions than their defi-
nitions as critical probabilities.

Given the dearth of exact results, it is not surprising that
much effort has been put into the estimation of critical prob-

Square: (44) Triangular: (36) Hexagonal: (63)

Kagomé: (3, 6, 3, 6) (34, 6) (3, 122)

(3, 4, 6, 4) (4, 6, 12) (33, 42)

(32, 4, 3, 4) (4, 82)

FIG. 1. The 11 Archimedean lattices.
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abilities. Almost all results in this area are of one of two
types: �1� Rigorous upper and/or lower bounds, and �2� heu-
ristic estimates based on computer calculations. There are
also a few heuristic derivations of conjectured exact results;
we shall return to this briefly in Sec. V. Examples of �1� are
the bounds obtained by Wierman �9–11� �see also Parviainen
and Wierman �12�� using his substitution method. Even with
considerable work on efficient algorithms and extensive
computer calculations, it seems to be hard to obtain narrow
intervals between rigorous upper and lower bounds: Of the
intervals listed in �12�, two have width a little under 0.01, but
many have width 0.1 or even 0.2.

There are a small number of recent, more accurate, rigor-
ous results, including intervals of width 0.00135 and 0.0046
for site percolation on the �3,122� and Kagomé lattices ob-
tained by May and Wierman �13�.

Turning to �2�, there are so many papers on this topic,
going back to the 1960s, that it is impossible to attempt even
a representative list. Let us mention a couple of examples,
however: For pc

s�Z2�, Reynolds, Stanley, and Klein �14� re-
ported the impressively accurate nonrigorous estimate
0.5931±0.0006 already in 1980. In 1986, Ziff and Sapoval
�15� gave the exceedingly accurate estimate of 0.592745�2�.
In 1990 Yonezawa, Sakamoto and Hori �16� gave estimates
for several Archimedean lattices, with error terms a little
over 10−4. More recently, many very precise estimates have
been given using quite sophisticated methods, for example,
by Suding and Ziff �17�, Newman and Ziff �18,19�, and
Parviainen �20�. It is very likely that these estimates are ex-
tremely accurate; errors of “about ±3�10−6” are claimed in
�17�, and even smaller errors in �18–20�. However, these
estimates come with no mathematical guarantees, and it is
hard to be sure how accurate they really are. Although theo-
retical error analysis is sometimes given �see Ziff and New-
man �21�, for example�, this is certainly nonrigorous. Even
assuming unproved results about the scaling limits of planar
percolation models gives only the asymptotic behavior of
these errors; it does not allow us to say anything about the
relationship between a finite number of data points and the
true value of pc. Also, there is disagreement about even the
asymptotic form of the errors in some cases �see Parviainen
�20��, and there are several instances where earlier estimates
have been contradicted by later ones.

Surprisingly, it is possible to give a result intermediate in
nature between a rigorous bound and a heuristic estimate:
One can prove that a certain �random� procedure generates a
bound that is correct with probability at least 99.9999%, say;
in other words, one can rigorously generate confidence inter-
vals for critical probabilities. Such intervals are typically
much narrower than the 100% bounds, although nothing like
as narrow as the �claimed� uncertainties for heuristic esti-
mates. Results of this kind were first proved by Bollobás and
Stacey �22� in the context of oriented percolation, and then
by Balister, Bollobás, and Walters �23� in the context of �un-
oriented� continuum percolation. Here we use the method of
the latter paper, which applies essentially “as is” to percola-
tion on two-dimensional lattices, to obtain confidence inter-
vals for the site and bond percolation critical probabilities for
all 11 Archimedean lattices. Indeed such an interval for site
percolation on the square lattice was given in �23�, namely

�0.5919,0.5935� �with a lower confidence of 99.99%�. Here,
with greater computational effort, we obtain narrower inter-
vals.

II. METHOD

A. Mathematics

The method of Balister, Bollobás, and Walters �23� is
based on a simple application of the concept of
1-independent percolation �also known as 1-dependent per-
colation�. A bond percolation measure on a graph �, i.e., a
measure on assignments of states to the bonds of �, is
1-independent if, whenever S and T are sets of bonds such
that the graph distance from S to T is at least 1, the states of
the bonds in S are independent from the states of the bonds
in T. In other words, roughly speaking, the states of vertex-
disjoint bonds are independent. Such measures arise natu-
rally in percolation theory, in particular in static renormaliza-
tion arguments �see Sec. 7.4 of Grimmett �2��, and have been
considered by many authors. Although the assumption of
1-independence is weaker than independence, it is strong
enough to ensure percolation if the individual bonds are open
with sufficiently high probability, as shown by the following
lemma of Balister, Bollobás, and Walters �23�.

Lemma 1. Let P̃ be a 1-independent bond percolation
measure on Z2 in which each bond is open with probability
at least p0=0.8639. Then the probability that the origin lies
in an infinite open cluster is positive.

If the value of p0 is not important, then a weak form of
lemma 1 �with p0 replaced by some constant smaller than 1�
is more or less immediate from first principles �see Bollobás
and Riordan �24�, for example�. It also follows from the very
general results of Liggett, Schonmann, and Stacey �25� com-
paring 1- �or k-� independent measures on general graphs
with product measures.

Starting from independent site or bond percolation on a
lattice ��R2, there is a natural way to obtain a

1-independent bond percolation measure P̃ on the square lat-
tice Z2: Given a “scale parameter” s�0, partition R2 into
disjoint s by s squares Sv, v�Z2. For each bond e of Z2 let
Re be the corresponding rectangle, so if e=uv then Re
=Su�Sv. Let Ee be some event that depends only on the
states of the sites or bonds of � that lie within Re, and take

the bond e of Z2 to be open with respect to P̃ if and only if Ee
holds. Since the rectangles corresponding to vertex-disjoint
bonds of Z2 are disjoint, this defines a 1-independent mea-

sure P̃.
Suppose that the squares Sv and events Ee are chosen so

that the following condition holds:

whenever there is an infinite path v0v1v2 . . . such that

Eei
holds for each ei = vivi+1, there is an infinite

open cluster in the original lattice �1�

and then p is chosen so that

Pp�Ee� � 0.8639 for every bond e of Z2. �2�
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Then lemma 1 implies that pc� p. Indeed, we have al-

ready noted that P̃ is 1-independent, so from Eq. �2� and
lemma 1 there is a positive probability that the origin is in an

infinite P̃-open cluster. But then �as Z2 is locally finite� there

is an infinite P̃-open path starting at the origin, so from con-
dition �1� there is an infinite open cluster in the original
percolation with positive probability. Hence p� pc, as re-
quired. This type of argument, but in a qualitative form
where the value of p0 is not important, provides one of the
many easy ways of deducing Kesten’s pc

b�Z2�=1/2 result
from a suitable “sharp-threshold” result; see Bollobás and
Riordan �3,24�.

Here we follow Balister, Bollobás, and Walters �23� in our
choice for the event Ee. For v�Z2, let �v denote the sub-
graph of � induced by the sites in Sv. For each bond e=uv of
Z2, let �e by the subgraph of � induced by the sites in Re
=Su�Sv. Let Ee be the event that each of �u and �v contains
a unique largest open cluster with these clusters part of the
same open cluster in �e. Here “largest” simply means con-
taining the most sites. Note that Ee does depend only on the
states of bonds or sites within Re, so we do obtain a
1-independent measure. Also, condition �1� is immediately
satisfied.

To obtain an upper bound on pc, it remains only to find a
pair �s , p� for which Eq. �2� is satisfied. Note that it will
suffice to check condition �2� for �usually� one or �occasion-
ally� two bonds e of Z2: Without changing the graph struc-
ture, we shall redraw all our lattices � so that the vertex set
is a subset of Z2, and so that horizontal and vertical transla-
tions through some small integer C act as isomorphisms of
�. For u= �a ,b�, a, b�Z, we shall take

Su = ��x,y�:sa � x � s�a + 1�,sb � y � s�b + 1�� ,

where s is a “scale” parameter with C dividing s. Thus all
squares Sv are equivalent with respect to the lattice. Further-
more, for the lattices with an axis of symmetry, our new
representation will have the line x=y as an axis of symmetry.
This ensures that all rectangles Re are equivalent, so Pp�Ee�
=Pp�Ef� for all e, f . When there is no axis of symmetry, we
have to consider one rectangle with each orientation.

So far, we have only discussed upper bounds; this is be-
cause we can obtain lower bounds by bounding the critical
probability for a related lattice from above. Indeed, given a
planar lattice �, let �� be the usual planar dual of �, with
one site for each face of �, and a bond e� for each bond e,
joining the two sites of �� corresponding to the faces in
which e lies. It is “well known” that

pc
b��� + pc

b���� = 1. �3�

Thus, to bound pc
b��� from below we may bound pc

b����
from above.

Note that while Eq. �3� is widely assumed to be true in
great generality, it has only been proved under certain sym-
metry assumptions. Under very general conditions, the upper
bound pc

b���+ pc
b�����1 follows immediately from Men-

shikov’s theorem �26�. For the lower bound, one shows that
it is not possible to have bond percolation in � at a param-
eter p and also bond percolation in �� at parameter 1− p. For

lattices �doubly periodic, locally finite planar graphs� with
rotational symmetry of some order k�4, there is a simple
proof of the lower bound due to Zhang; see lemma 11.12 of
Grimmett �2�, where this argument is presented for Z2. Re-
cently, Bollobás and Riordan �27� �see also �3�� have pointed
out that this argument can be easily adapted to lattices with
rotational symmetry of any order k�2. This is important
here: all 11 Archimedean lattices have such rotational sym-
metry, but two, the lattices �32 ,4 ,3 ,4� and �33 ,42�, do not
have rotational symmetry of higher order. Even more re-
cently, Sheffield �28� has given a much more complicated
argument that proves Eq. �3� for lattices without further sym-
metry assumptions.

For site percolation, let �� be the �in general nonplanar�
graph obtained from � by adding a bond between any two
sites in the same face of �; we shall refer to �� as the site
dual of �. One has

pc
s��� + pc

s���� = 1.

The comments above about symmetry assumptions apply in
this case also.

B. Statistics

For sufficiently small scale parameters s, it is possible to
find a p for which Eq. �2� holds by enumerating all possibili-
ties for which sites or bonds in Re are open, and so writing
Pp�Re� as a polynomial in p. Needless to say, this is imprac-
tical and gives poor results in practice. The key idea of Bal-
ister, Bollobás, and Walters �23� is to use a statistical ap-
proach, obtaining confidence intervals with precisely
calculated error probabilities instead of 100% upper bounds.
Indeed, suppose that we have a random procedure A for gen-
erating a pair �sA , pA�, and that one can prove that, with prob-
ability at least 99.9999%, the random pair produced is one
for which Eq. �2� holds. Then �−	 , pA� is a �random, as
always� one-sided 99.9999% confidence interval for pc �see
below�. Such a procedure A is very easy to define; again, we
follow �23�, with one small modification �and with different
numbers�.

Suppose that we have somehow “guessed” values of the
scale parameter s and percolation parameter p for which we
expect that Pp�Ee� is somewhat larger than 0.8639. We then
generate N=400 random simulations of the configuration
within Re, and count the number m of them in which Ee
holds. If Pp�Ee�=�, then m has a binomial Bi�N ,�� distri-
bution with parameters N and �. In particular, if �
�0.8639, then

P�m � 378� � P�Bi�400,0.8639� � 378�

= 1.1489 ¯ � 10−7 � 10−6/6.

If our simulation does give m�378, we can thus assert with
very high confidence that ��0.8639, i.e., that Eq. �2� does
hold, which, as noted above, implies pc� p.

This is the heart of the method of Balister, Bollobás, and
Walters �23� �and also of the related method of Bollobás and
Stacey �22��: No matter how we arrive at our “guess” for s
and p, provided we only perform one “final” simulation, the
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simple inequality above shows that the probability that we
assert an incorrect upper bound for pc is at most 10−6 /6.
Note that we may be unlucky: If m�378, then we can assert
only the trivial upper bound 1. In terms of the description
above, our random procedure returns the guessed values
�s , p� if m�378, and the trivial pair �s ,1� otherwise. Note
that we have no bound on the probability that we get 1 as an
upper bound, but this does not matter for the argument that
�−	 , pA� is a 99.9999% confidence interval. Of course, to
obtain useful results, we want to be reasonably sure that we
will have m�378, and this is where the careful choice of
parameters comes in.

Here we modify the method very slightly: the choice of
the number 378 gives us individual error probabilities that
are smaller than 10−6 /6. Hence, we can perform up to three
different runs with different parameters s and p �which may
depend on the results of previous runs�, and choose the best
bound given by a successful run. It is still true that each run
has at most a probability 10−6 /6 of producing an incorrect
bound, so the probability that our final bound is incorrect is
at most 10−6 /2. Bearing in mind that the same applies to the
lower bounds �realized as upper bounds on a dual critical
probability�, we still obtain 99.9999% confidence intervals.

A small side note: Since the lattice �34 ,6� does not have
an axis of symmetry, we ran our method in two directions,
horizontally and vertically. This means that we wanted the
individual error probability to be smaller than 10−6 /12 which
was satisfied by requiring at least 379 successes in this case.

There are two advantages to this method: it turns out to be
slightly more efficient �based on heuristic calculations�.
Bearing in mind that we can stop after one successful run, we
can perform three runs each of which has a 90% chance of
succeeding, say, more quickly than one run for the same p
but a larger s that has 99.9% chance of succeeding. Secondly,
if we are not very confident of our guesses, after a failed first
run we can choose more conservative parameters for the sec-
ond and third runs �for example, keeping p fixed but increas-
ing s�, to be very sure of obtaining reasonable bounds in the
end.

C. Random number generation

So far, we have assumed the availability of a suitable
source of random numbers. In practice, one usually uses a
pseudo-random number generator. This introduces a possible
source of error: it could be that there is some pattern in the
output of the generator that affects the results of the simula-
tions. To minimize the likelihood of this we used the well
known and well trusted MT19937 “Mersenne Twister” gen-
erator developed by Matsumoto and Nishimura �29�, as up-
dated in 2002. See their website �30� for the source code and
related literature.

It would be very easy to modify our program to use other
random number generators, or even a hardware generator.

The selection of a random number generator for simula-
tions is often glossed over; here we emphasize this as it is
important for our results: The only assumption in our results
�that our procedure produces 99.9999% confidence intervals
for pc� is that the random numbers used in the simulation
may be treated as genuinely random.

D. Choice of parameters

In this subsection we outline the purely heuristic argu-
ments we used to choose suitable parameters for running our
final statistical tests. The correctness of the results does not
depend on the correctness of these arguments. For this reason
we allow ourselves to use consequences of the very widely
believed but, except for one lattice, unproved conformal in-
variance conjecture. This conjecture of Aizenman and Lang-
lands, Pouliot and Saint-Aubin �31� states �among other
things� that, for any planar lattice, after a suitable affine
transformation, the limiting crossing probabilities for large
regions are invariant under conformal mappings, and, more
precisely, are given by Cardy’s formula �32�. For more de-
tails see Bollobás and Riordan �3�, for example. As shown by
Smirnov and Werner �33�, building on work of Schramm
�34� and Lawler, Schramm, and Werner �35–38�, this conjec-
ture, if true, enables the values of certain “critical exponents”
to be calculated. Note that the conjecture has been proved,
by Smirnov �39�, only for site percolation on the triangular
lattice; for all other lattices it is still open.

Fixing the percolation model under consideration, i.e.,
fixing the lattice �, and considering either bond or site per-
colation throughout, let pc be the appropriate critical prob-
ability, and set

f�s,p� = Pp�Ee�

for one fixed bond e of Z2, noting that the definition of the
squares Su and hence of the event Ee depends on our scale
parameter s. It is not hard to convince oneself that f�s , pc�
tends to some constant 0�a�1 as s→	, although this does
not obviously follow formally from the conformal invariance
conjecture.

Turning to the p dependence of f�s , p�, it is natural to
guess that for fixed s, for p not too far from pc, the function
f�s , p� will roughly satisfy the differential equation

d

dp
f�s,p� = C�s�f�s,p��1 − f�s,p�� ,

where C�s� is a constant depending on s �and on the lattice�.
For one thing, f�s , p� should decay exponentially, and ap-
proach 1 exponentially, as p moves away from pc. Also, by
the Margulis-Russo formula, �d /dp�f�s , p� is exactly the ex-
pected number of sites or bonds that are pivotal for the event
Ee, i.e., such that changing the state of this site or bond from
closed to open or vice versa alters whether Ee holds. If a site
�say� v is pivotal, then Ee must hold in the configuration with
v open, and not hold with v closed, so it is reasonable to
guess that for fixed s and a fixed site v, the probability that v
is pivotal will be roughly proportional to Pp�Ee��1−Pp�Ee��.

Up to a constant factor, C�s� above is just s2 times the
probability that a “typical” site �or bond� v is pivotal for Ee
at p= pc. Roughly speaking, v is pivotal if and only if, when
v is open, two open clusters of �linear� scale s are joined
which, if v is closed, are separated by a path of linear scale s.
Hence the probability that v is pivotal should scale as s−
4,
where 
 is the “multichromatic 4-arm exponent.” Roughly
speaking, 
4 is defined as the scaling exponent of the prob-
ability that there are four disjoint paths P1 , P2 , P3 , P4 from v
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�or from “near” v� to points at distance s from v, with P1 and
P3 open, P2 and P4 closed, with the endpoints of the Pi
appearing in cyclic order. Assuming conformal invariance,
from �33� we have 
4= �42−1� /12=5/4, so we expect C�s�
to scale as s2−5/4=s3/4.

Putting the above together, it is reasonable to expect the
function f�s , p� to have approximately the form

1

1 + exp�a − bs3/4�p − pc��
, �4�

for some constants a and b�0 that depend on the lattice.
Our procedure for choosing the final parameters �s , p� to use
is as follows: First, numerically estimate f�s , p� for a fixed
small value s0 of s �typically 72� and various values of p.
Then fit the data with the function above to give a rough
estimate of a and b. Then calculate values p1/3, p2/3 of p at
which the formula predicts f�s0 , p1/3�=1/3 and f�s0 , p2/3�
=2/3. Next, run more extensive simulations to estimate
f�s0 , pi/3�, and use these two datapoints to calculate better
estimates of a and b. The reason for this step is that we do
not expect Eq. �4� to give a very accurate description of the
shape of the curve f�s , p� with s fixed and p varying, particu-
larly when p is far from pc, so we wish to extrapolate from
consistently chosen points on this curve.

Finally, we aim to choose a �large� s and a p close to pc
such that f�s , p� is approximately 0.957; this is because
P�Bi�400,0.957��378� is close to 90%, so with these pa-
rameters we have a good enough chance of obtaining a valid
bound, bearing in mind that we can perform three separate
runs. Extrapolating Eq. �4� this far does not give very good
results; experimentally, when Eq. �4� is about 0.945, or a
little less, the true value of f�s , p� is large enough. Of course,
the larger s is, the closer p can be taken to pc. The exact
values of s and p were chosen based on the amount of com-
puter time available, and so that we obtained intervals of
width at most 0.0005 in all cases.

III. COMPUTATIONS AND RESULTS

Although our final results are confidence intervals, we are
aiming for rigorous confidence intervals, i.e., we must prove
that, for each lattice, our procedure has probability at least
99.9999% of producing an interval containing the true value
�assuming the random number generator we used is well be-
haved�. The main practical consequence of this is that we
must ensure that we evaluate Pp�Ee� for rectangles Re that fit
together exactly in the manner required for the argument in
Sec. II A.

The first step is to transform each lattice so that transla-
tions through some small constant C in the x and y directions
act as isomorphisms. Such a representation of the lattice
�4,82� with C=8 is shown on the left of Fig. 2; in this draw-
ing, the vertex set consists of all points �x ,y��Z2 with x
+y odd �for some of the lattices we use x+y even�. The white
central portion of the figure shows a square region Su with
scale parameter s=8. It is this drawing of the lattice that we
consider when defining Su, Re and Ee.

Note that s must be a multiple of C, so that all squares Su
induce isomorphic subgraphs of the lattice. For the lattices

with mirror symmetry �all except for �34 ,6� and its bond and
site duals�, we choose a representation with the line x=y or
x=−y as an axis of symmetry; a rectangle Re corresponding
to a horizontal bond e may be mapped into a rectangle Rf
corresponding to a vertical bond by a reflection in either of
these lines, so this ensures that all rectangles Re induce iso-
morphic subgraphs of �; thus our program need only evalu-
ate Pp�Ee� for one fixed �horizontal� bond of Z2. For the
lattices without such symmetry, we run the same program on
two drawings of the lattice, related by reflection in the line
x=y; the horizontal rectangle considered for the second
drawing corresponds to a vertical one in the first.

Most of the representations we use are modifications of
those shown in Fig. 3 of Suding and Ziff �17�, most of which
have a horizontal axis of mirror symmetry. Since we want a
diagonal axis here, we have rotated many of the representa-
tions by 45°, obtaining a graph on points in Z2 with x+y
even. Our representations for all 11 Archimedean lattices �
and their planar duals �� are shown in the Appendix. We
have omitted any lattice for which the critical probability is
known exactly. �In each case the site dual �� is represented
in the same way as �, but with additional bonds added to
every face.�

For those lattices represented with vertices in Z2 with x
+y even, it is computationally more efficient to modify the
representation to make it more compact, by mapping �x ,y� to
��x /2� ,y�, say. An example for the lattice �4,82� is shown on
the right of Fig. 2. Note that an s /r by s rectangle in the
compact form corresponds to an s by s square in the original,
where 1/r=1/2 is the ratio by which we have squashed the
lattice when compactifying it. In the program files, this is
stored as the field RATIO for each lattice; this squashing is
undone in the print_ lattice routines.

The program perc.c, available from our website �40� reads
in the lattice, assigns states to the sites or bonds randomly,
and then finds the largest open clusters in the left and right
halves �u and �v of �e, the subgraph of � induced by the
sites in Re. �In fact, to avoid using too much memory, these
two processes are done concurrently, see below for details.�
Finally, it tests whether these open clusters are joined in �e.
The open clusters are found using a simple incremental al-
gorithm that scans Su from the left and Sv from the right. The
method used to find the largest open cluster is �a simplified
form of� that of Balister, Bollobás, and Walters �23�, and

FIG. 2. Lattice �4,82� drawn with vertices a subset of Z2, in
original form and in squashed form.
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works as follows. We divide the square Su into strips which
are narrow but are sufficiently wide that no edge jumps an
entire strip �i.e., all the edges meeting the strip are entirely
contained in the union of the strip and its two neighboring
strips�.

We find the component structure of the open subgraph
restricted to the two left most strips. Then we look at the next
strip and find the new component structure formed. At each
stage we have an equivalence relation on the vertices in a
strip where two vertices are equivalent if they are in the same
open cluster in the part of Su to the left of the current strip.
We also keep track of the size of each of these clusters, and
the size of the largest open cluster we have seen so far. When
we get to the right hand edge of the square Su we know
exactly which vertices �if any� in that strip are part of the
largest open cluster of �u.

We repeat the process on Sv but working from right to
left. Finally we add the edges between the right most strip of
Su and the left most of Sv and see whether the largest open
clusters in each are joined.

The important thing to note about this algorithm is that
the storage required is proportional to the side length of Su,
i.e., to s, not to the area of Su.

IV. RESULTS

For our percolation bounds, see Table I. For full results,
including numbers of successes, please see our website �40�.
Note that in the 400 simulations associated with each bound
�or with each attempt to obtain a bound� we have always
seeded the random number generator with 400 consecutive
seeds starting from 12345678. This means that the exact re-
sults of our simulations should be reproducible as a way of
checking the program. Also, it shows that we have not per-
formed many different runs and finally chosen seeds that
work.

The computations were performed running in the back-
ground on around 70 �mostly fairly old� computers in the
Department of Pure Mathematics and Mathematical Statis-
tics, University of Cambridge, over a period of around two
weeks. This was made much easier by the fact that the de-
partment uses Linux rather than Windows.

V. CONCLUSIONS

We have shown that it is practical to use the method of
Balister, Bollobás, and Walters �23� to obtain narrow confi-

Square: (44) Triangular: (36) Hexagonal: (63) Kagomé: (3, 6, 3, 6)

(34, 6) Horizontal (34, 6) Vertical (3, 122)

(33, 42) (32, 4, 3, 4) (4, 82)

(3, 4, 6, 4) (4, 6, 12)

FIG. 3. The 11 Archimedean lattices on a square grid.

TABLE I. Rigorous 99.9999% confidence intervals for critical probabilities for site and bond
percolation.

Lattice Site Width Bond Width

Square �0.5925, 0.5930� 5�10−4 0.5 0

Triangular 0.5 0 2 sin�� /18� 0

Hexagonal �0.6968,0.6973� 5�10−4 1−2 sin�� /18� 0

Kagomé 1−2 sin�� /18� 0 �0.52415,0.52465� 5�10−4

�3,122� �1−2 sin�� /18� 0 �0.7402,0.7407� 5�10−4

�3,4 ,6 ,4� �0.6216,0.6221� 5�10−4 �0.5246,,0.5251� 5�10−4

�33 ,42� �0.5500,0.5505� 5�10−4 �0.4194,0.4199� 5�10−4

�32 ,4 ,3 ,4� �0.5506,0.55105� 4.5�10−4 �0.4139,0.4144� 5�10−4

�34 ,6� �0.57925,0.57975� 5�10−4 �0.4341,0.4345� 4�10−4

�4,6 ,12� �0.7476,0.7480� 4�10−4 �0.6935,0.6940� 5�10−4

�4,82� �0.7295,0.7300� 5�10−4 �0.6766,0.6770� 4�10−4
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dence intervals for the critical probabilities for site and bond
percolation on Archimedean lattices. Unlike the �presum-
ably� much more precise estimates obtained by other meth-
ods, these intervals come with mathematically guaranteed
error bounds. The intervals are much narrower than those
that can be 100% proved, and the error probabilities are very
small; the running time does not increase much with a large
decrease in the desired error probability, so a probability that
is in practice zero �here one in a million for each lattice� may
be achieved.

We have tried to keep the computations relatively simple;
there is no point in using an algorithm that is proved correct
if it is not possible to verify the computer program used. At
the cost of more complicated programming, better results
could be obtained in two ways. First, the current program
could be made to cache better and hence run faster by scan-
ning the rectangle Re in a more complicated manner: This 2s
by s rectangle could be broken down into k by k squares
small enough that the boundary of one square fits into the
processors primary cache, and these squares could then be
processed column by column. The overall storage require-
ment is approximately the same �one entire column must be
stored�, but the frequency of cache misses is reduced by a
factor of about k.

A more significant improvement could be obtained by
considering a different event Ee: Let Ee be the event that
there is an open path crossing Re from left to right, and that
there is an open path crossing the left-hand end square of Re
from top to bottom. As noted by Bollobás and Riordan �24�,
for example, this event still has the property �1�. �Essentially
this observation was used by Balister, Bollobás, and Walters
�23� in obtaining a lower bound on the critical parameter for
a certain continuum percolation model.� Also, the scaling
behavior of Pp�Ee� near pc should be the same as for the
event considered here. The gain is that whether or not Ee
holds in a given configuration can be tested faster, using an
interface following algorithm of the type used by Ziff, Cum-
mings, and Stell �41� in 1984, for example. Assuming con-
formal invariance, the expected length of the interface is
s2−
3 =s4/3, where 
3= �32−1� /12 is the multichromatic
three-arm exponent for the stochastic Loewner evolution
�SLE6�. Note, however, that to use this algorithm in practice
without running into memory or caching problems, one
needs to generate the state of each site or bond from a pseu-
dorandom function, rather than a pseudorandom number gen-
erator.

All the exactly known critical probabilities associated to
Archimedean lattices are roots of �simple� polynomial equa-
tions with integer coefficients. While it is easy to construct
other lattices whose critical probabilities may be found in
this form �see Ziff �42�, for example�, it may well be that
there are no such expressions for the remaining Archimedean
lattices, although some have been conjectured. In particular,
Wu �43� conjectured that for bond percolation on the
Kagomé lattice, pc

b=0.524429, a root of the equation p6

−6p5+12p4−6p3−3p2+1=0. Tsallis �44� conjectured the
values pc

b=0.522372 and pc
b=0.739830 for bond percolation

on the Kagomé and �3,122� lattices, respectively. Tsallis’s
conjectures have been effectively ruled out some time ago by
experimental estimates �see �16�, for example�; they are

rather far from the current best estimates of 0.5244053 and
0.74042195. They have not yet been rigorously disproved,
although the latest results of May and Wierman �13� come
close. For both lattices, our results provide a rigorous
“99.9999% disproof” of Tsallis’s values—they lie outside
our rigorous 99.9999% confidence intervals.

Wu’s conjectured value for pc
b�K� seems to be much closer

to the truth; it is well within the confidence interval we ob-
tain. Nevertheless, it is still believed to be false; see Ziff and
Suding �45�, for example. More recently, Scullard and Ziff
�46� have predicted certain values for pc

b for the Kagomé and
�3,122� lattices, using a heuristic version of the star-triangle
transformation. Although they leave open the “possibility”
that one of these values might be exact, there seems no rea-
son �to us, or, apparently, to them� to really believe this: The
method is �as they admit� nonrigorous, and the value ob-
tained in the same way for the Kagomé lattice �given earlier
by Hori and Kitahara without derivation� is outside the error
bounds of existing experimental results.
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APPENDIX

Figure 3 shows the representations of the Archimedean
lattices � that we used; the representations of the planar
duals �� are shown in Fig. 4. The representations of the site
duals �� that we used are based on those of the original
lattices �, with extra edges. The planar duals �� of lattices

Kagomé (3, 6, 3, 6) (34, 6) Horizontal (34, 6) Vertical

(3, 122) (33, 42) (32, 4, 3, 4)

(4, 82) (3, 4, 6, 4) (4, 6, 12)

FIG. 4. Bond duals of 9 of the Archimedean lattices.
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for which the critical probability for bond percolation is
known exactly are omitted.

Let us make some remarks about specific lattices. We
wanted our lattices to have an axis of symmetry at 45 de-
grees to the horizontal through a corner of each fundamental
region Su: in all the pictures except �3,122� this is the line
down and to the right. In the bond dual of the �4,6 ,12�
lattice the picture looks asymmetric but that is only due to
our squashing to make it fit the square lattice. In other words
if we reflect the graph about a line at 45 degrees to the

horizontal we get an isomorphic graph.
One lattice, �34 ,6�, does not have an axis of symmetry, so

we ran the program horizontally and vertically on this lattice.
Both representations are shown and it is easy to see that one
is the reflection of the other about a line 45 degrees to the
horizontal.

For efficiency we tried to avoid having holes �vertices of
the lattice not involved in the graph� in our representations: it
was not practical to avoid this for the Kagomé and �3,122�
lattices �and their site duals� and the bond dual of �4,6 ,12�.
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