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We propose a numerical integration scheme to solve stochastic differential equations driven by Poissonian
white shot noise. Our formula, which is based on an integral equation, which is equivalent to the stochastic
differential equation, utilizes a discrete time approximation with fixed integration time step. We show that our
integration formula approaches the Euler formula if the Poissonian noise approaches the Gaussian white noise.
The accuracy and efficiency of the proposed algorithm are examined by studying the dynamics of an over-
damped particle driven by Poissonian white shot noise in a spatially periodic potential. We find that the
accuracy of the proposed algorithm only weakly depends on the parameters characterizing the Poissonian white
shot noise; this holds true even if the limit of Gaussian white noise is approached.
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I. INTRODUCTION

The need for accurate simulations of stochastic processes
arises across almost all disciplines of natural science, engi-
neering, and finance. It requires not only the appropriate de-
scription of random fluctuations but also efficient numerical
schemes. As a first approximation of real fluctuations with a
short correlation time, Gaussian white noise �GWN� has
been used almost universally. The resulting processes are de-
scribed by Fokker–Planck equations �1,2� which can be tack-
led by analytical and numerical methods. The numerical in-
tegration of the equivalent Langevin equation offers an
alternative approach for the study of stochastic processes
driven by GWN �2,3�.

While GWN provides an adequate description for a broad
class of continuous random processes, other stochastic pro-
cesses, which are also frequently met in physical, biological,
chemical, and sensory systems, exhibit instantaneous dis-
crete jumps and therefore must be modeled differently in
terms of shot noise. Realizations of shot noise consist of
sequences of very sharp pulses with random heights and ran-
domly distributed times between subsequent pulses. Poisso-
nian white shot noise �PWSN� provides a particular math-
ematical model of shot noise. It consists of �-function shaped
pulses, which occur at times forming a Poissonian point pro-
cess. The strengths of the pulses assume identically distrib-
uted values, which are independent of each other and also
independent of the times between the pulses. As a conse-
quence of these particular properties, the autocorrelation
functions and all higher multitime correlation functions of
PWSN are composed of � functions in time. This implies in
particular that the power spectral density of PWSN is con-
stant as a function of frequency. Moreover, the integral of
PWSN as a function of the upper integration limit constitutes
a process with independent increments. As a consequence the
solutions of stochastic differential equations driven by
PWSN are Markovian processes. The process remains Mar-
kovian if the noise sources are composed of GWN and
PWSN �4–6�. The equations of motion of the probability

density of such processes are of first order in time and
integro-differential equations in terms of the state space vari-
ables with maximally second-order derivatives. Moreover,
GWN can be obtained as a limiting case of PWSN �7�.

Processes driven by PWSN have been studied for various
systems, such as Brownian oscillators with fluctuating pa-
rameter �8–10�, or a single file of Brownian particles
�11–13�. Another interesting problem is transport of Brown-
ian particles induced by PWSN in a spatially periodic poten-
tial �14,15�. These systems may exhibit nontrivial ratchetlike
transport properties even for reflection symmetric potentials.
To induce a directed motion, it is essential to have nonequi-
librium noise which is statistically asymmetric in the sense
that its cumulants of odd order do not vanish �16,17�. Further
studies include thermal ratchets driven by PWSN �18,19�. In
these model systems, equilibrium thermal fluctuations are
represented by GWN and nonequilibrium impulsive fluctua-
tions by PWSN. In contrast to the above-mentioned works,
which consider PWSN with pulse distributions having a fi-
nite second moment, recent work has considered pulse dis-
tributions with algebraic tails such as Pareto, or Lévy distri-
butions �20–23�.

The analytical treatment of dynamical systems driven by
PWSN poses more difficulties compared to systems driven
by GWN. Analytical expressions of the time-dependent
probability density functions of PWSN driven processes
have been derived only for very limited cases �24�. This is so
because their time evolution is governed by rather intractable
partial integro-differential equations �4,7,9,10,25�. Stationary
solutions in the long time limit, however, are available in
certain cases, for example, if the peak weights are exponen-
tially distributed, both for natural and for periodic boundary
conditions �7,14,26�. Analytical studies have been pursued
for dynamical properties such as mean first-passage times or
activation rates �27�. For systems driven by both GWN and
PWSN, the characteristic functions of the time-dependent
probability densities of jump-diffusion systems have been
available in the case of constant and linear drift �28�. An
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alternative approach based on the Langevin equation has
been pursued for a Verhulst-type model �29�.

In this paper, we present a numerical method to solve
stochastic differential equations with PWSN. The basic idea
underlying previous numerical simulations can be summa-
rized as follows �30�. Each sample trajectory is integrated by
an ordinary integration rule except at the Poisson time, at
which the trajectory jumps by a random step from a pre-
scribed distribution. In contrast, our method uses a discrete
time approximation based on an integral equation which is
equivalent to the stochastic differential equation. This
method is similar to the Euler method widely used for sys-
tems driven by GWN �2,3�, and is closely related to the
method developed for dichotomous Markov noise �DMN�
�31�.

The paper is organized as follows. In Sec. II, we give a
brief review on the existing numerical method, and present
our formulation of the numerical integration scheme. In Sec.
III, a comparison of the methods is presented for a particle
moving in a piecewise linear periodic potential under the
influence of PWSN. The paper ends with a conclusion in
Sec. IV.

II. NUMERICAL METHODS

We consider the following form of a stochastic differential
equation:

ẋ�t� = f�x,t� + g�x,t���t� . �1�

The random driving process ��t� is given by PWSN which is
defined as

��t� = �
k=1

n�t�

zk��t − �k� − a , �2�

where ��t� is the Dirac delta function. The random times ��k�
form a Poisson sequence, i.e., the probability that a sequence
of k �-impulses occurs in the interval �0, t� is given by the
Poissonian distribution

Prob�n�t� = k� =
��t�ke−�t

k!
. �3�

The heights �zk� of the �-pulses are independent and identi-
cally distributed according to a given probability distribution
��z�. For the sake of definiteness we assume ��z� to have an
exponential distribution, even though our method is appli-
cable for any height distribution ��z�,

��z� =
e−z/A

A
��z� , �4�

where A is the mean value of the weights and ��z� is the
Heaviside step function. The deterministic compensator a is
defined as

a = ��z	 , �5�

so that

���t�	 = 0, �6�

where the angle brackets � 	 denote an average over realiza-
tions of the PWSN. Finally, we require that the stochastic
differential equation be interpreted in the Ito sense, i.e., that
the average of the random term contributing to the time rate
of change in Eq. �1� vanishes,

�g�x,t���t�	 = 0. �7�

We start with a brief review of the previous method used
in the literature. The differences between subsequent Poisso-
nian times sk=�k−�k−1 have an exponential distribution

��s� = �e−�s��s� , �8�

therefore sk can be obtained by the transformation

sk = −
1

�
ln�1 − Uk� �9�

of independent, uniformly distributed random numbers Uk
from the unit interval. Analogously, random heights zk,
which are exponentially distributed according to Eq. �4�, can
be obtained from

zk = − A ln�1 − Vk� , �10�

where Vk is another random number having uniform distri-
bution on the unit interval. During the times between random
kicks, �k−1	 t	�k, Eq. �1� reduces to a deterministic differ-
ential equation,

ẋ�t� = f�x,t� − ag�x,t� . �11�

At each �k, the impulse gives rise to a finite jump in x�t�. If
x��k

−� and x��k
+� denote the values of x just before and right

after the jump at �k, respectively, we have from Eq. �1�,

x��k
+� = x��k

−� + zkg
*, �12�

where g* represents the value of g at �k, whose value is
determined by the integration rule applied. For the Ito rule
one obtains �5,32�

g* = g„x��k
−�,�k… . �13�

Then the value of x��k
+� is determined from Eq. �12�. If g

does not depend on x, i.e., g�x , t�=g�t�, then there is no need
to worry about the integration rule; g* simply coincides with
g��k�.

The numerical procedure to obtain x��k
+� from a given

value x��k−1
+ � is summarized as follows: First random num-

bers zk and sk are drawn from the probability distributions �4�
and �8�, respectively, next, the ordinary differential equation
is numerically integrated from �k−1

+ to �k
− and finally x��k

+� is
determined by Eq. �12�. This procedure can be iterated to
determine a trajectory of the given stochastic differential
equation for a prescribed interval of time. This method
though requires variable time steps which must be adapted to
each sequence of Poisson times �k. In particular, with in-
creasing values of �, the integration time step must be re-
duced, which causes numerical inefficiency. To cure this
problem we suggest a numerical scheme that uses a constant
time step. Our method is described as follows. We first draw
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a random number n�
t� of Poisson times from the Poisson
distribution, Eq. �3�, and depending on that number deter-
mine the magnitude 
X of the noise accumulated in 
t. This
random increment in combination with the deterministic time
evolution yields the update of the process after the time step

t.

The method is based on the formal integration of Eq. �1�
over a time step which gives

x�tn+1� = x�tn� + 

tn

tn+1

f„x�s�,s…ds + 

tn

tn+1

g„x�s�,s…��s�ds ,

�14�

where tn+1= tn+
t. Replacing the integration time s in the
functions f(x�s� ,s) and g(x�s� ,s) by the lower limit of inte-
gration, tn, we have

x�tn+1� � x�tn� + f„x�tn�,tn…
t + g„x�tn�,tn…
Xn, �15�

where the random increment 
Xn is defined as


Xn = 

tn

tn+1

��s�ds . �16�

Hence we obtain the following time discrete approximation:

yn+1 = yn + f�yn,tn�
t + g�yn,tn�
Xn, �17�

where y0=x�t0� and yn=y�tn�.
A similar form of a time discrete approximation as Eq.

�17� can be found in the well-known Euler formula for an Ito
process driven by the GWN �2,3�, and also in the first-order
truncated form of the stochastic Taylor expansion developed
for the DMN �31�. However, notice that the orders of con-
vergence of Eq. �17� are different depending on the type of
noise. The order of strong convergence is 0.5 for GWN and
PWSN, but 1.0 for DMN. In case of additive noise where g
in Eq. �1� does not depend on x, Eq. �17� is guaranteed to be
exact up to the first order in 
t for all cases of GWN, DMN,
and PWSN. More detailed discussion about the convergence
property of our scheme is presented in the Appendix.

For PWSN the random increment 
Xn can be expressed
by substituting Eq. �2� in Eq. �16�. This yields


Xn = �
tn��k	tn+1

zk − a
t . �18�

The sequence of random increments �
Xn� is defined on non-
overlapping time intervals of equal length. It therefore con-
sists of independent identically distributed random numbers
each of which is given by


X = �
k=1

n�
t�

zk − a
t . �19�

The numerical procedure of our method can be summa-
rized as follows. First determine the number of occurrences
of Poisson impulses n�
t�=m by using Eq. �3�. Next, draw m
random numbers zk from the distribution ��z� and determine

X by using Eq. �19�. Alternatively, if a closed expression
p�
X=w� is known for the jump height, which is accumu-
lated during the time step 
t, draw a random number 
X

from this distribution. Finally, update the value of x by using
Eq. �17�.

The distribution of the random increment p�
X� can be
expressed as the sum of products of two probabilities,

p�
X = w� = �
m=0

�

Prob�n�
t� = m�pm�w + a
t� , �20�

where pm�w�dw is the probability that the sum of �zk�k=1
m is

between w and w+dw, i.e.,

pm�w�dw = Prob�w 	 �
k=1

m

zk 	 w + dw
 �21�

for m
1 and p0�w�=��w�. A distribution of a sum of iden-
tically distributed independent random numbers pm�w� can
be represented as the m-fold convolution product of the
height distribution ��z�. If ��z� is a stable distribution then
pm�w� is a rescaled version of ��z� reading pm�w�
=��w /m� /m. For the exponential height distribution �4� one
obtains for pm�w� the Erlang distribution of order m,

pm�w� =
wm−1e−w/A

Am�m − 1�!
��w� . �22�

Then we obtain an analytical expression of the p�
X� from
Eqs. �3�, �20�, and �22� as follows:

p�
X = w� = e−�
t���w + a
t� + ��w + a
t�

� �
k=1

�
��
t�k�w + a
t�k−1e−�w+a
t�/A

�k − 1� ! k ! Ak 
 .

�23�

We give an alternative derivation of this result based on
the integral of the PWSN as a function of the upper integra-
tion limit

X�t� = 

0

t

��u�du . �24�

This process is Markovian. The probability density q�z , t� to
find X�t�=z satisfies the following integro-differential equa-
tion �7�:

�

�t
q�z,t� = a

�

�z
q�z,t� + �


−�

�

��y��q�z − y,t� − q�z,t��dy ,

�25�

with initial condition q�z ,0�=��z�. Since p�
X=w� is equal
to q�w ,
t�, we can obtain an analytical expression for p�
X�
by solving Eq. �25�. The characteristic function

q̃�u,t� = 

−�

�

q�z,t�eiuzdz �26�

satisfies the first-order differential equation
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�

�t
q̃�u,t� = �− iau + ���̃�u� − 1��q̃�u,t� , �27�

with initial condition q̃�u ,0�=1. Here �̃�u� denotes the char-
acteristic function of the height distribution

�̃�u� = 

−�

�

��z�eiuzdz . �28�

Equation �27� is readily solved for q̃�u , t� to yield �28�

q̃�u,t� = exp„�− iau + ���̃�u� − 1��t… . �29�

For the exponential height distribution �4�, q�z , t� becomes

q�z,t� = e−�t��z + at� + �
k=1

�
��t�ke−�t

k!

�z + at�k−1e−�z+at�/A

Ak�k − 1�!

���z + at� . �30�

Thus we retrieve the analytical expression of p�
X� obtained
from Eq. �23� above.

In the limit

� → � , A → 0 with �A2 = D fixed, �31�

PWSN approaches GWN, cf. Ref. �7�. Performing this limit
for q�z , t� in Eq. �30� we find the correct Gaussian distribu-
tion for the increments of the Wiener process with fixed time
step 
t, i.e.,

p�
X = w� =
1

�4�D
t
exp�−

w2

4D
t

 . �32�

Therefore, the integration scheme also reduces to the Euler
form �2,3� in the limit of GWN.

III. NUMERICAL EXAMPLE

To check the accuracy and the efficiency of our method,
we performed a numerical simulation for a system composed
of an ensemble of noninteracting particles, each of which is
driven by PWSN in a spatially periodic potential �14,15�. We
calculated the stationary probability distribution and the
probability current with periodic boundary conditions, as
well as the effective drift and the effective diffusion coeffi-
cient with natural boundary conditions. The simulated results
were compared with the numerical results obtained from the
analytical expressions. We further demonstrate that our
method also works in the opposite asymptotic limits of
Gaussian white noise and strong collisions.

The dynamics of the system is described by a Langevin
equation with additive noise of the form

ẋ�t� = − V��x� + ��t� , �33�

where V�x� is a spatially periodic potential with period L,
i.e., V�x+L�=V�x�. The specific form of the potential for the
numerical simulation is assumed as

V�x� = �x� if −
1

2
L � x 	

1

2
L . �34�

The random force ��t� is the PWSN as defined in Eq. �2�
with exponentially distributed weights obeying Eq. �4�. Thus
the deterministic compensator is given as

a = �A �35�

and the noise strength as

D = �A2. �36�

If we use D and � as noise parameters, a is given as �D� and
A as �D /�.

Two stochastic processes which differ by their respective
boundary conditions were considered: One process, x�t�, sat-
isfies natural boundary conditions, and the other one, x̂�t�,
fulfills periodic boundary conditions. With natural boundary
conditions the state space of the process x�t� evolving ac-
cording to Eq. �33� is the whole real axis. In this case the
numerical scheme discussed in the preceding section can be
implemented without modification. For periodic boundary
conditions, the process x̂�t� is restricted to a unit cell of the
potential V�x�, i.e., to the interval I= �−L /2 ,L /2�,

−
1

2
L � x̂�t� 	

1

2
L . �37�

Once the process leaves this interval through either boundary
it is reset into the interval through the other boundary. Within
the numerical scheme one must control after each integration
step whether the process has left the interval. If this is the
case, an integral multiple of L must be added or subtracted
such that the resulting value lies in I.

The process with natural boundaries is nonstationary. It is
characterized by an effective drift and an effective diffusion
coefficient, which are defined as

Ueff = lim
t→�

�x�t�	
t

�38�

and

Deff = lim
t→�

�x2�t�	 − �x�t�	2

2t
, �39�

respectively. In contrast to the process with natural boundary
conditions, the process with periodic boundary conditions
becomes stationary in the limit of long times. The corre-

sponding stationary probability density pst
ˆ is defined as

p̂st�x� = lim
t→�

��„x − x̂�t�…	 . �40�

In general, this stationary state carries a probability current
Jst, which is independent of the position x� I and related to
the velocity in this stationary state

�ẋ̂	st = LJst. �41�

The stationary probability density and current satisfy the fol-
lowing differential equation, which was obtained by Łuczka
et al. �14�:

KIM et al. PHYSICAL REVIEW E 76, 011109 �2007�

011109-4



A��V��x� + �A�p̂st�x��� + V��x�p̂st�x� + Jst = 0. �42�

The value of Jst is determined by the periodic boundary con-
dition p̂�−L /2�= p̂�L /2� and normalization �−L/2

L/2 dxp̂�x�=1.
The analytical forms of the solutions p̂st and Jst for the case
of a piecewise linear potential covering the entire range of
the noise parameter space �D ,�� have been presented in Ref.
�15�.

The above-mentioned characteristic quantities of the two
processes x�t� and x̂�t� were determined from respective N
trajectories in the following way. The numerical values of
Ueff and Deff were obtained from estimates of the moments
�x�t�	 and �x2�t�	, respectively, by using Eqs. �38� and �39�.
The stationary distribution p̂st�x� was estimated from a his-
togram of the values which the N simulated trajectories x̂�t�
take at the final time T. The stationary current was deter-
mined from the numbers nR and nL which count how often
the right and left boundaries, respectively, were crossed.
Jumps to the nth next period within one time step increase
either nR or nL by n depending on the direction of the jump to
the right or to the left, respectively. The probability current
finally is given by

Jst =
nR − nL

NT
. �43�

Throughout the numerical simulations, the length of one
period of the periodic potential and the integration time step

were fixed as L=2 and 
t=0.01, respectively. The number of
samples N and the length of the time T were chosen suffi-
ciently large to get statistically reliable results. For the cal-
culation of Ueff and Deff, a number of 106 trajectories of x�t�
was generated with fixed T=10. For the calculation of pst�x�
and the probability current Jst, the same number of sample
trajectories of lengths T=102 and T=103, respectively, was
simulated. For comparison, numerical integrations by using
the previous method were performed under the same condi-
tions. The Euler method was employed to integrate the de-
terministic equation �11�. The grid points were chosen as the
union of the set of the Poissonian times ��k� and the equidis-
tant times �tn=n
t�. If the next integration point is one of the
Poissonian times, an update of the trajectory due to the im-
pulse �see Eq. �12�� follows the Euler integration.

Figure 1 shows the stationary distributions of a Brownian
particle whose dynamics is governed by Eq. �33�. The nu-
merical results obtained by our method and the analytical
solution of Ref. �15� are depicted as histograms and as solid
lines, respectively. In this comparison, the noise strength was
fixed at D=1, while four different values of � were em-
ployed to observe the change of the stationary distribution as
the system transits from a nondiffusive to a diffusive regime
�15�. Although a transition over a barrier of the periodic po-
tential to the positive direction is always possible due to the
positive � spikes of the shot noise, the backward movement
is possible only when the deterministic compensator a is
large enough to overcome the barrier. If the noise activates
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FIG. 1. Stationary distributions p̂st�x� for the process x̂�t�. The numerical results obtained by using our numerical method are represented
as histograms and the analytical results are depicted as solid lines. The noise strength is set to D=1 and four values of � are used: �a� �
=0.5 �nondiffusive regime�, �b� �=1 �transition point�, �c� �=2 �diffusive regime�, and �d� �=100 �near the GWN limit�. The dashed line in
�d� represents the stationary distribution in the GWN limit.
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movements over the barriers in both directions, the system is
referred to as being in the diffusive, otherwise in the nondif-
fusive regime. In the nondiffusive regime, p̂st�x� contains a
�-peak at the local minimum of the potential, because the
Brownian particle stays there waiting for the next � spike
with finite probability. The numerical results in Fig. 1 show
excellent agreement with the analytical results. They clearly
exhibit the transition from the nondiffusive to the diffusive
regime as the value of � changes. In the limit of the GWN
�see Eq. �31��, p̂st�x� approaches the equilibrium Boltzmann
distribution,

p̂st�x� = Z−1e−V�x�/D, �44�

where Z−1 is a normalization constant. This limiting behavior
is shown in Fig. 1 for comparison.

The accuracy of our numerical method was tested by
comparing the numerically obtained stationary currents with
the analytical results for a wide range of � values �15�. The
errors of the numerical values of the stationary currents com-
puted by our method and by the previous method are com-
pared in Fig. 2. The previous method allows for the finite
jumps in x at exactly the times when the � pulses take place,
whereas our method approximates the impacts by the accu-
mulated effect of a sequence of pulses during a given time
interval. So one would expect that the previous method gen-
erated more accurate results. Still, the two methods produce
nearly the same size of error, cf. Fig. 2. The errors of both

methods grow as � increases, because then the system be-
comes more stiff. The computation times needed for the two
methods are compared in Fig. 3 for the same time step 
t
=0.01. In both cases, they depend on the value of � but not
on the value of D. For small values �	1, both methods
require almost the same amount of computation times, which
are almost insensitive to the value of �. Only if � increases
above the value of 1, then both methods require more com-
putation times. The previous method though slows down
more drastically. At �=100 the previous method requires
about 2 times as much computation time.

Figure 4 presents a comparison of the velocities Ueff and

�ẋ̂	st, together with analytical results based on the stationary
probability current �15� for various values of � ranging from
10−2 to 102 with three values of D=0.1, 0.5, and 1. The
figure corroborates that our method provides reasonably ac-
curate numerical results over a wide range of � and D. From
the figure, the effective drift Ueff and the stationary velocity

�ẋ̂	st apparently coincide with each other within the graphical
resolution. Thus the following relation can be conjectured:

Ueff = LJeff. �45�

This can be confirmed by the following arguments, cf. also
Ref. �33�. If the two processes x�t� and x̂�t� start from the
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FIG. 3. The computation time needed for 106 trajectories of
length T=102 as a function of the Poisson parameter � is depicted
for the previous method and our method. For large values of � our
method becomes faster than the previous one.
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same value, they remain related to each other by an integer
multiple of the period L,

x̂�t� = x�t� − Ln�t� , �46�

where n�t� is an integer such that x̂� I, i.e., n�t� is the integer
which is next to x�t� /L. Thus, n�t� indicates the net number
of the period boundaries that the particle has crossed in for-
ward direction up to the time t. If we substitute Eq. �46� into
Eq. �38� and use Eq. �37�, we have

Ueff = L lim
t→�

�n�t�	
t

. �47�

On the other hand, the stationary probability current Jst
equals the averaged net number of periods the process pro-
ceeds per time, i.e.,

Jst = lim
t→�

�n�t�	
t

. �48�

We note that Eq. �43� is based on an estimate of the mean
value �n�t�	 entering Eq. �48�. From Eqs. �47� and �48�, Eq.
�45� is obtained.

We also examined the accuracy of our method in the lim-
its of large and small parameters a with the constant D=aA
fixed. In the first case, a→�, the PWSN approaches GWN
as stated in Eq. �31�. In this limit the symmetry of detailed
balance which is a characteristic feature of an equilibrium
state is restored with the consequence that the probability
current vanishes. The current approaches this limit inversely
proportional to a, cf. Ref. �14�,

Jst�a → � � =
e1/D

2aD2�e1/D − 1�2 + O�1/a2� . �49�

In Fig. 5, the current Jst is plotted against the inverse of the
deterministic compensator a for two different values of the
noise intensity D=0.5 and 1. As the value of a becomes
large, our numerical results approach the asymptotic behav-
ior which is predicted by Eq. �49�.

In the other limiting case a approaches zero with D fixed.
This strong collision limit is obtained by taking �→0 and

A→� simultaneously. In this limit, the occurrences of �
pulses become very rare, while the average value of the pulse
amplitudes becomes very large. As the amplitude of the �
pulses becomes much larger compared to the spatial period
of the potential, i.e., L�A, the influence of the potential on
the motion of the particle becomes negligible. Therefore, the
motion of the particle can be well described by the following
simple equation:

ẋ�t� = �̃�t� , �50�

where �̃�t� is the PWSN described as

�̃�t� = �
k=1

n�t�

zk��t − �k� , �51�

which is without the deterministic compensator term. Then,
the motion is strictly biased to the positive direction. In this
limit the average and the variance of x�t� are given by

�x�t�	 = at , �52�

�x2�t�	 − �x�t�	2 = 2Aat . �53�

From Eqs. �38�, �45�, and �52�, the stationary current in this
limit becomes simply

Jst�a → 0� �
a

L
. �54�

In Fig. 6 the current Jst is depicted as a function of a for
three different values of the noise intensity D=0.1, 0.5, and
1, together with the asymptote given in Eq. �54�. While the
asymptote itself is independent of the noise strength D, the
region where the current follows the asymptotic behavior
shrinks with decreasing noise strength D. Since the mean
amplitude A is proportional to the noise strength D for fixed
value of a, cf. Eqs. �35� and �36�, a particle with larger D is
expected to perform wider jumps. Accordingly, the current
approaches the asymptotic behavior �54� provided the condi-
tion L�A is satisfied.
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FIG. 5. Plots of the stationary current Jst versus the inverse of
deterministic compensator a for large values of a. The numerical
results for D=0.5 and 1 are depicted as diagonal crosses and up-
right crosses, respectively. The asymptotes are also plotted as
dashed lines.
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Figure 7 represents the effective diffusion coefficient Deff
as a function of the logarithm of the Poisson parameter �
ranging from 10−2 to 102 for three different values of the
noise intensity D=0.1, 0.5, and 1. The asymptotic values of
Deff for the cases where � goes to 0 or infinity are indicated
by the arrows in Fig. 7. In the GWN limit, Deff can be given
as �34,35�

Deff =
e1/D

D�1 − e1/D�2 . �55�

On the other hand, it follows from Eqs. �39� and �53�, that
for �→0, Deff becomes

Deff = D . �56�

IV. CONCLUSION

In this paper, we presented a numerical integration
method for solving stochastic differential equations with
PWSN. In contrast to the previous method, which is based
on the simulation of Poisson sequences of pulses, our
method introduces a random increment 
X which samples
the effect of all random pulses acting within a fixed time step

t, cf. Eq. �16�. The analytical form of the probability dis-
tribution of 
X was obtained for exponentially distributed
pulse strengths. We also demonstrated that our numerical
scheme approaches the Euler scheme for the GWN limit in a
smooth manner. To examine the accuracy and efficiency of
our method, we investigated the motion of an overdamped
particle in a piecewise linear periodic potential driven by
PWSN with natural and periodic boundary conditions. For
this model analytic results are known in the literature. We
compared the stationary probability density in the presence
of periodic boundary conditions as well as the average ve-
locity and the effective diffusion constant obtained with our
method both with analytical results and numerical simula-
tions performed with the previous method. We observed that
our method maintains reasonably good accuracy over a wide

parameter range, regardless of whether the system is in the
diffusive or nondiffusive regime, and shows a higher effi-
ciency than the previous method especially when the value
of � becomes large. Our method also faithfully reproduces
the known asymptotic behavior both in the GWN limit and
in the strong collision limit.
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APPENDIX

Equation �1� can be written as follows:

dx�t� = f̃�x,t�dt + g�x,t�dNt, �A1�

where

f̃�x,t� = f�x,t� − ag�x,t� . �A2�

Here Nt is the compound Poissonian process defined as

Nt = �
k=1

n�t�

zk��t − �k� �A3�

and dNt is the infinitesimal increment defined as

dNt = Nt+dt − Nt. �A4�

The Ito formula applied to Eq. �A1� can be written in the
differential form as follows �5,32�:

dh„x�t�,t… = �ḣ„x�t�,t… + h�„x�t�,t… f̃„x�t�,t…�dt

+ �h�x�t� + g„x�t�,t…dNt,t� − h„x�t�,t…� ,

�A5�

where an overdot denotes a partial differentiation with re-
spect to time and a prime denotes differentiation with respect
to the state variable x. Equation �A5� is equivalent to the
following integrated form:

h„x�t�,t…

= h„x�s�,s… + 

s

t

�ḣ„x�u�,u… + h�„x�u�,u… f̃„x�u�,u…�du

+ �
s��k	t

�h�x��k
−� + zkg„x��k

−�,�k…,�k� − h„x��k
−�,�k…� .

�A6�

By applying Eq. �A6� to Eq. �14�, Eq. �15� is recovered if
the remainder is ignored. Successive application of the Ito
formula to this remainder develops systematically higher-
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FIG. 7. Plots of the effective diffusion coefficient Deff versus the
logarithm of �. The numerical results are represented by asterisks,
diagonal crosses, and upright crosses for the noise intensity D
=0.1, 0.5, and 1, respectively, together with dotted lines as a guide
for the eyes. The arrows on the left-hand and right-hand side of the
graph point to the values in the asymptotic limit of Deff as �→0
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order approximation forms. Hence, it forms a hierarchical
set, and Eq. �15� corresponds to the first order in the set.

To examine the convergence property of our numerical
scheme, let us consider the root-mean-square error between
the sample path of the process x�t� and the approximation
y�t� at the final time T,

� = ��x�T� − y�T��2	1/2. �A7�

Then, the rate of the convergence � can be estimated from
the following inequality which determines the behavior of
��
t� as a function of time step 
t:

��
t� = ��x�T� − y
t�T��2	1/2 � C�
t��, �A8�

where C is a constant, and y
t�t� is the approximation of x�T�
for a finite time step 
t.

From Eqs. �14� and �17�, we have

x�tn� − yn = x�tn−1� − yn−1 + In
�1� + In

�2� + In
�3� + In

�4�, �A9�

where

In
�1� = 


tn−1

tn

�f„x�s�,s… − f„x�tn−1�,tn−1…�ds , �A10�

In
�2� = 


tn−1

tn

�g„x�s�,s… − g„x�tn−1�, tn−1…���s�ds , �A11�

In
�3� = �f„x�tn−1�,tn−1… − f�yn−1,tn−1��
t , �A12�

In
�4� = �g„x�tn−1�,tn−1… − g�yn−1,tn−1��
Xn−1. �A13�

From Eq. �A9�, the difference between x�t� and y�t� at the
final time T= tM is expressed as follows:

x�tM� − yM = �
n=1

M

�In
�1� + In

�2� + In
�3� + In

�4�� . �A14�

Hence, the root-mean-square error � is expressed in terms of
In

�k�. Under the Lipshitz conditions and the linear growth con-
ditions, which are generally assumed to hold for the func-
tions f and g in Eq. �1�, the stochastic differential equation
admits a unique solution �32�. Then the expectations of In

�k�Im
�j�

can be estimated by applying the Ito formula and the rate of
convergence � in this case is known as 0.5. When the noise
is additive, i.e., g�x , t�=g�t�, the rate increases up to �=1. A
rigorous mathematical proof for the convergence problems in
general is given in Ref. �36�.

We present results of numerical studies of the root-mean-
square errors for the following two linear stochastic differ-
ential equations:

x1̇�t� = x1�t���t� , �A15�

x2̇�t� = − x2�t� + ��t� , �A16�

where ��t� is the PWSN defined in Eq. �2�. Then the analytic
solutions are available for both x1�t� and x2�t�.

The root-mean-square errors � were calculated for various
time steps ranging from 10−2 to 10−4 with T=0.01. The mean
height of impulses was set as A=1 and the Poisson parameter
� was chosen as 1 and 10. Total number of 109 sample tra-
jectories were generated for each simulation. Figure 8 shows
a log-log plot of error � versus time step 
t. The slopes for
process x1�t� and process x2�t� were observed to be 0.5 and 1,
respectively, which confirm the theoretical predictions.
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