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Invaded cluster algorithm for a tricritical point in a diluted Potts model
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The invaded cluster approach is extended to the two-dimensional Potts model with annealed vacancies by
using the random-cluster representation. Geometrical arguments are used to propose the algorithm which
converges to the tricritical point in the two-dimensional parameter space spanned by temperature and the
chemical potential of the vacancies. The tricritical point is identified as a simultaneous onset of the percolation
of a Fortuin-Kasteleyn cluster and of a percolation of the “geometrical disorder cluster.” The location of the
tricritical point and the concentration of vacancies for g=1,2,3 are found to be in good agreement with the
best known results. Scaling properties of the percolating scaling cluster and related critical exponents are also

presented.
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I. INTRODUCTION

Detailed investigations of fractal properties related to
criticality were done some time ago for geometrical phase
transitions such as percolation [1]. The interest for similar
properties in the context of thermal phase transitions [2,3]
has been renewed recently [4-7]. Monte Carlo (MC) studies
of phase transitions in the last decade have given rise to
several cluster algorithms, based on the Fortuin-Kasteleyn
(FK) representation of the partition function [8]. In addition
to their principal task to reduce the critical slowing down
present in the local update algorithms, they have an advan-
tage to offer a better insight into geometrical aspects of phase
transitions and represent a natural tool for numerical studies
of these phenomena. An algorithm in which this geometrical
approach is used in a particular way is the invaded cluster
(IC) algorithm, defined by Machta er al. [9]. While in the
standard cluster approaches, such as the Swendsen-Wang
(SW) [10] or Wolff algorithm [11], the clusters are built for a
given temperature, the IC algorithm starts from some geo-
metrical property of the criticality that can be generated by a
random process and obtains the critical temperature as an
output. It was applied to Ising and Potts models and, later, in
a series of other studies, e.g., on the fully frustrated Ising
model [12], or the XY model [13]. It appears equally efficient
in both the second- and first-order phase transitions.

The tricritical point present in systems which exhibit the
changeover from the first-to second-order phase transitions is
difficult to access in numerical and finite-size scaling studies
due to crossover effects. Even the location of the tricritical
point appears to be a difficult task in many cases, from mod-
els with long-range interactions [14—16] to models with
quenched dilution [17]. Standard MC approaches identify
this point as the onset of a first-order transition, recognized
by two maxima in the free energy distribution that scale as
surface [18,19] and can be analyzed directly or from the
Binder’s fourth cumulant [20]. Some alternative numerical
approaches were also proposed, e.g., the microcanonical MC
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study of the tricritical point [21] in the Blume-Capel model.
In the present work we examine a different approach and
extend the IC algorithm by introducing an additional geo-
metrical condition. We present it on the example of a two-
dimensional (2D) Potts model with the annealed dilution.

The paper is organized as follows. In Sec. II we discuss
the model and its graphical expansion in the diluted case. In
Sec. III we present the extension of the IC approach to the
tricritical point and explain the algorithm. In Sec. IV we
discuss our results for the location of the tricritical point,
scaling properties of percolating cluster, and related critical
exponents. Section V contains the conclusion.

II. MODEL

We consider the ¢ state Potts model [22] with annealed
vacancies on a square lattice, described by the Hamiltonian

H==J2 (8, tit;= )+ G2 (5;= 1), (1)
(i.j) ’ i

where s; denotes the g-state Potts variable at the site 7 and the
variable #; takes the values O or 1 when the site i is empty or
occupied, respectively. The sum is taken over nearest neigh-
bors, J>0 is a ferromagnetic coupling, and G is the chemi-
cal potential of vacancies. The pure model, where a single
thermodynamic parameter—temperature—is governing a
transition, is recovered in the limit G — —oo.

In the pure model the transition is of the second order for
g=<4 and of the first order for ¢>4 [23]. The presence of
annealed vacancies induces the first-order phase transition,
so that for ¢<4 the transition line in the (7,G) parameter
space contains both regimes of the first- and second-order
phase transition, separated by a tricritical point.

For the pure 2D Potts model, the exact analytical expres-
sions exist both for the critical temperature and critical ex-
ponents [24]. For a diluted case, exact analytical expressions
for tricritical exponents are also available, from the confor-
mal theory [25] and Coulomb gas mapping [26], while for
the location of the tricritical point there are only good ap-
proximate results [27].

As shown by Fortuin and Kasteleyn [8], the pure Potts
model is equivalent to the random-cluster model, which may
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be understood as a generalized percolation model. The
random-cluster partition function is given by

Z=> pPA(1 = p)EbD ge )
yell

p=1-c?. (3)

The summation runs over the set of all the graphs on the
lattice I'. Each graph represents one choice of placing the
bonds on the lattice. The quantity p (where B is the Boltz-
mann factor) may be interpreted as the probability of pres-
ence of a bond on an edge, b(7y) is the number of bonds in
the graph v, E is the total number of edges (maximum num-
ber of bonds), which for the square lattice of the linear size L
is equal to 2L%. The entropy factor for each cluster is given
by ¢, and ¢(7y) is the number of connected components of a
graph. FK clusters have a physical meaning—the probability
that two spins separated by a distance r are in the same FK
cluster is proportional to the correlation function.

Graph expansion for diluted Potts model has already been
studied elsewhere [28,29] with a different choice of a Hamil-
tonian. It is easy to perform a graph expansion for the Hamil-
tonian (1) by proceeding along the same lines as in the pure
model. By using the equality

P10 il = [1+ (e? - 1)5si~5jtitj]’ (4)

the partition function can be expanded over all the possible
graphs on the lattice

Z= EEBJE E E H @_BGU’_I)H (EBJ_ 1)5s-,3-titj’ (5)

yel {sj {13 i (i.j) o

where {s;} and {r;} denote the summation over all the con-
figurations of s; and ¢, respectively. The structure of graphs
remains the same as in the pure model. In each graph vy one
may separate the summation over the configurations includ-
ing sites belonging to the clusters of sizes >1 from the sum-
mation over the “isolated sites” consisting of single spins and
vacancies. The summation over isolated sites may be seen as
a lattice gas of single spins and vacancies in the field and
gives

Mg

Tis Ny, =N, n;
2( )eﬁc s = (9 4 g)', (6)
n,

n,=0

where n;,(7y) is the number of isolated sites on the graph and
n,, is the number of vacancies. The partition function may be
written in a more condensed form

Z= > pPDI(1 = p)EPD T (BG4 gy (7)
yell

to be compared with the pure case Eq. (2). In the first three
factors we recover the same expression as for the pure model
except that ¢(7y) denotes only the number of connected clus-
ters and excludes single spins. In the limit G—— Eq. (7)
reduces to Eq. (2) for the pure case. The only change occurs
in the contribution to the entropy factor stemming from the
isolated sites in each graph. While in the pure case it was
equal to ¢"s, in the presence of dilution it corresponds to the
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one of a lattice gas, given by Eq. (6). The chemical potential
G, responsible for dilution, can be expressed through the
parameter

q

=" > 8
o (8)
which, according to Eq. (6), has the meaning of the a priori
probability to find a single spin on an isolated site on a

graph.

III. METHOD

In Swendsen-Wang and Wolff algorithms one uses the
knowledge of temperature to construct FK clusters by adding
bonds with probability p. Clusters can then be independently
flipped to another Potts state. The opposite happens in the IC
algorithm of Machta et al. FK clusters are grown by a pro-
cedure inspired by the invasion percolation [30]. Bonds are
placed at random between neighboring spins in equal states,
with probability 1, until a geometrical condition, imposed on
FK clusters (e.g., the bond percolation), is achieved. The
temperature is then deduced by equating the bond probability
p defined in Eq. (3) with the ratio of the number of bonds to
the number of satisfied neighbors. In particular, if the geo-
metrical condition is the onset of the percolating FK cluster,
the output temperature converges to the transition tempera-
ture in the thermodynamic limit. In the language of connec-
tivity the appearance of the percolating FK cluster on the
lattice corresponds to the state when the correlation length
reaches the system size.

The tricritical point is determined by two parameters, the
tricritical temperature 7, and field G,, so the algorithm must
include an additional condition besides the percolation of an
FK cluster in order to converge to it. In the present 2D case
we set the additional condition to be the percolation thresh-
old of a “geometrical disorder cluster” defined as a cluster
consisting of vacancies and single spins. That cluster is geo-
metrical in the sense that two adjacent sites containing either
a vacancy or a single spin are considered to belong to the
same disorder cluster with probability 1. This choice of the
disorder cluster is justified because single spins behave in the
same way as vacancies as far as correlations are concerned.
It is supported by the picture obtained from the real-space
renormalization group where the single spins take part in the
renormalization of vacancies [31].

One can also explain the second condition for the tricriti-
cal point in terms of the persistence length £ [32,33]. At the
line of second-order transitions the correlation length & di-
verges, but in the case of a tricritical point, there is another
length scale in the system, E, which is related to the size of
disorder clusters [32]. The length £ is finite on the line of
second-order transitions but it diverges at the tricritical point
and remains infinite on the line of first-order transitions. Our
algorithm generates finite system configurations in which &
e E o« [, since the percolation of a geometrical disorder clus-
ter can be interpreted as greaching the size L.

Algorithm. An algorithm that is meant for locating the
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tricritical point should find the percolation of the FK and
geometrical disorder clusters at the same time. In this respect
we notice that in 2D the simultaneous percolation of two
clusters is topologically obstructed unless it occurs in only
one direction. Such anisotropic cases occur in a finite lattice
and will be facilitated by a diverging persistence length,
which occurs when approaching a first-order transition re-
gime.

Let us outline the basic steps to be explained in detail
below. We start the MC iterations with random configuration
of spins and randomly distributed vacancies with some initial
concentration. Each MC iteration includes three steps: (i) the
formation the FK clusters in the same way as the IC algo-
rithm of Machta et al. [9], (ii) identification of disordered
clusters including a check for the percolation, (iii) random-
ization of FK clusters and vacancies (keeping the concentra-
tion unchanged). The removing or adding of vacancies, nec-
essary to achieve the percolation threshold of the geometrical
disorder cluster, is performed in more spaced intervals of
MC iterations, and by imposing limitations on the number of
vacancies created (destroyed) as described in Sec. IIIA4.
Namely, when the number of spins does not change, both the
mean temperature and the field self-regulate to the transition
line. By changing the number of single spins sufficiently
slowly it can be driven along the transition line to the perco-
lation threshold of the geometrical disorder cluster.

(1) Formation of FK clusters. The simulation starts with
some configuration of the Potts spins and vacancies on the
lattice. Bonds are placed randomly, between the Potts spins
in equal states. When percolation is achieved, or all the edges
have been probed, the procedure is terminated giving a graph
consisting of FK clusters. If percolation is achieved, this
means that a quasicritical configuration has been found for a
given number of vacancies.

There are several ways to characterize the onset of a per-
colating cluster during simulations. Two examples are (a)
winding of a cluster around a lattice with periodic boundary
conditions and (b) the span of a cluster becomes equal to the
lattice size. The first characterization, termed a topological
percolation, will be used in this work—from now on, when
percolation on a finite lattice is mentioned it is meant in the
sense of (a). The percolation of an FK cluster is determined
by a procedure that uses the connecting vectors, described in
Ref. [9].

(2) Identification of geometrical disorder clusters. Identi-
fication of geometrical disorder clusters is similar to the for-
mation of FK clusters. The edges are probed and adjacent
isolated sites are connected by imaginary bonds in order to
identify all the geometrical disorder clusters. The disorder
bonds are said to be imaginary in the sense that they do not
have a physical meaning. The formation of geometrical dis-
order clusters terminates when all the edges have been
probed. Percolation is detected in the same way as for the FK
clusters.

(3) Randomization. Regardless of whether the quasitric-
ritical configuration was found or not, after the two cluster
formation steps we randomize the configuration and iterate
the procedure. The FK clusters in the configuration are ran-
domized by flipping each of them into a new randomly cho-
sen Potts state. The single spins and vacancies are random-
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ized by exchanging their positions with probability 1. This
procedure conserves the number of spins in the system.

(4) Adding (removing) vacancies and thermalization. As
far as temperature is concerned, the IC algorithm is self-
regulating, as is easily understood in the pure model. If it
starts with a configuration corresponding to 7<<T, the FK
clusters are expected to percolate after a relatively small
amount of bonds has been placed, because there is a small
number of obstacles for the formation of a percolating clus-
ter. They are caused by the boundaries between the geometri-
cal Potts clusters. The configuration thus generated will cor-
respond to a temperature higher than the starting one. When
applied to a configuration corresponding to 7>T7., with
small clusters, in different Potts states, the IC algorithm
meets a lot of obstacles. The number of bonds that need to be
placed is quite large, corresponding to a temperature which is
lower than the starting one.

Despite the additional obstacles caused by vacancies, the
temperature self-regulation remains in the present algorithm.
However, we were not able to find a similarly elegant way to
self-regulate the formation of the disorder cluster. Namely,
the fact that the concentration of vacancies at the tricritical
point is far below the site percolation threshold, indicates
that the percolation of geometrical disorder cluster is not
random, but strongly correlated. Consequently, the thermali-
zation procedure is important. In order to keep the number of
vacancies just at the minimum necessary for the percolation
of the geometrical disorder cluster, the system has to be al-
lowed to relax each time that the number of vacancies is
changed.

To this purpose we introduce the intervals of 7 MC steps
during which the concentration of vacancies may vary by
limited, very small amount. For each interval 7 we record the
number of times b that the geometrical disorder cluster has
percolated together with an FK cluster. Further, we set a
condition on the fraction b of simultaneous percolation
events during the 7 MC steps, to be less than certain small
value b,. To obtain the threshold of disorder cluster percola-
tion, the fraction b, needs to tend to O, but for numerical
reasons we set it to a small value of the order of 1073 to 1072,

If b>b, after 7 MC steps, a small, limited number of
vacancies are removed and replaced by spins during the next
7 steps. If b is 0 after 7 MC steps the same limited number of
single spins are switched into vacancies during this period. If
b=<b,, the number of spins remain unchanged for the next 7
MC steps. The number of spins that are added or removed
has to be small enough not to disturb the effective correlation
established between vacancies in geometrical disorder clus-
ters of the tricritical point.

(5) Geometrical parameters. When quasitricritical condi-
tion is fulfilled, all the relevant data are recorded and used
for statistics; if quasitricritical configuration has not been
found, no record is made. The thermodynamic parameters T
and G are calculated from the geometrical quantities. As in
the pure case, the temperature is calculated from the bond
probability defined in Eq. (3), which can be expressed by the
ratio
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FIG. 1. (Color online) Plot of {t); vs 1/L for different values of
g. Plain lines denote the nonlinear fits to the power law form (r);
=(t),+bL™".

p=— )
nSS
where n,;, denotes the number of bonds on the lattice and ng,
the number of neighboring pairs in the same state.

The chemical potential G is expressed through the a priori
probability z defined by Eq. (8). It can thus also be expressed
as the average fraction of single spins (n,) in the “lattice gas”
of isolated sites consisting of vacancies and single spins

g

nd+nv

(10)

We calculate the averages (p) and (z), where (- --) is taken
over the ensemble generated by the algorithm. The distribu-
tion of variables generated by the algorithm is not canonical,
but is sharply peaked around tricritical values since it has a
feedback mechanism that adjusts both parameters to the tri-
critical point. This was already pointed out earlier [9,34] in
the case of IC algorithm for the pure Potts case.

IV. RESULTS

We have considered the dilute Potts model described by
the Hamiltonian (1) in three different cases, g=1, 2, and 3.
The calculations included lattices of linear sizes 24<L
<240 for the cases g=1 and 2, and 24 < L <120 for the case
g=3. The statistics used was 3 X 10° MC steps for smaller
and up to 5 X 10* MC steps for larger lattices. The statistics
was also reduced to 10* MC steps in the case g=3.

The intervals 7 described in Sec. III, item (3), are chosen
to be from 5 X 10 to 10°> MC steps and the allowed fraction
by of the order of 1072. This value of b, was found suffi-
ciently small not to produce systematic shift towards the
first-order transition, which would exceed statistical error
bars.

The number of vacancies allowed to be changed after 7
MC steps is chosen to be L/24 for g=1 and 2 and L/12 for
g=3. The choice is arbitrary but allows the runs to be made
on smaller lattices such as defined above and give reasonable
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FIG. 2. (Color online) Double logarithmic plot of |p(L)—p,| vs L
for different values of g. The best known values for 7, are given in
Ref. [6] and values p, can be calculated to be 0.8284271,
0.820168(1), and 0.807931(6) for g=1, 2, 3, respectively.

accuracy. Also notice that the ratio of the number of single
spins to be changed to the average number of single spins in
the system tends to zero as 1/L, so the nonequilibrium ef-
fects decrease as L increases.

We first present the finite-size results and their extrapola-
tions for the concentration () and parameters p and z at the
tricritical point. Further, we give the analysis of the scaling
properties related to the percolating clusters and evaluate
several tricritical exponents. The error bars of Monte Carlo
statistics in presented figures are less than symbol sizes. The
results for tricritical exponents are compared to the exact
values known from the conformal theory [25,35] and Cou-
lomb gas map [26], while the tricritical values of parameters
are compared to very accurate results obtained by the trans-
fer matrix technique [6].

A. The concentration
The quantity for which we have obtained the best preci-
sion is the tricritical concentration of spins (#),. The finite-
size values (f); are displayed in Fig. 1 as a function of the
system size L. Simple fits to the power-law form (r); =(r),
+bL™" were sufficient to obtain the extrapolations to L— 0,

which agree to the third digit with the best known results, as
shown in Table I.

B. Tricritical parameters

The temperature and chemical potential are expressed
here in terms of the geometrical parameters, the probabilities

TABLE 1. Extrapolated values obtained for the tricritical
concentration.

q ) ®*
1 0.49920.001 1/2
2 0.579+0.002 0.57979(1)
3 0.652+0.005 0.65423(4)

“Best known results from Ref. [6].
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FIG. 3. (Color online) Double logarithmic plot of |z(L)~z,| vs L
for different values of g. The best known values for G, are given in
Ref. [6] and values z, can be calculated to be 0.02859548,
0.064220(5), and 0.113695(5) for g=1, 2, 3, respectively.

p and z of the random-cluster expansion (7), and are calcu-
lated using Egs. (9) and (10). In Figs. 2 and 3 we display all
the three sets of finite-size results for p and z, respectively.
They are presented in the form of difference of finite-size
results and the expected tricritical values calculated using the
parameters given in Ref. [6].

The accuracy of any extrapolations is lower by an order of
magnitude compared to the one for the particle concentra-
tion. The reason for larger discrepancy may be attributed to
the fact that these parameters exhibit much larger oscillations
than concentration does during simulations and are more sus-
ceptible to the thermalization effects. This can be improved
by a simple increase of statistics.

As may be observed in Figs. 2 and 3, the convergence of
parameters p; and z; can be approximated rather well by a
simple power-law form, which can be related to one of the
critical exponents.

The results for the convergence exponent x,, defined as
the leading correction for the parameter p, [p(L)—p, o L™]
are presented in Table II for different number of states g.
They agree well with the values of the subleading critical
exponent y}.

Notice that, in contrast to the ordinary critical point,
where the convergence of the critical parameter at criticality
is governed by the only relevant critical exponent y,, in the
tricritical case there are two relevant exponents, which both
contribute to finite-size corrections of the critical parameters.
In the asymptotic regime the dominant contribution will
come from the subleading one and not from y/.

TABLE II. Obtained values for the subleading tricritical expo-
nent y, compared with exact values.

ra

q Xp Y2
1 1.020.05 1
2 0.69+0.07 :
3 0.54+0.03 :

#Exact results from Ref. [26].
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FIG. 4. (Color online) Double logarithmic plot of percolating
FK cluster size sy, (L) vs L for different values of g.

C. Scaling of FK clusters

The fractal dimension of the percolating FK cluster is
directly related to the anomalous dimension of the order pa-
rameter and equal to the magnetic critical exponent y;. Its
value at the tricritical point should be different from the one
at the second-order transition line, while in the first-order
transition regime it is simply equal to the embedding dimen-
sion.

In Fig. 4 we present the log-log plots of the mass of the
percolating FK clusters versus the lattice size. In Table III we
present the obtained values for y, compared to the exact
critical and tricritical values. However, in all three cases con-
sidered here, the differences between critical and tricritical
values are rather small and of the order of the error bars of
our calculations. We can only remark that the results show a
tendency to converge to higher values when only higher
sizes are taken into account, which suggests that the consid-
ered percolation clusters are indeed tricritical.

More conclusive information, whether the point in the
parameter space produced by our algorithm indeed corre-
sponds to the tricritical point and not to a point on the
second-order transition line, can be obtained by examining
the scaling of the red bonds of the percolating FK cluster.

D. Red bonds

Red bonds are defined as the bonds which, when broken,
divide the whole cluster to which they belong into two parts

TABLE III. Obtained values for the magnetic exponent y}, com-
pared with exact values for the critical and tricritical cases.

q i " i v

91 187
1 1.89+0.01 1.89+0.02 2 18
2 1.88+0.02 1.90+0.02 g %
3 1.84+0.03 1.88+0.02 % %

“Magnetic exponent obtained with all values of L.

bMagnetic exponent obtained with L>72 for g=1 and 2 and L
>48 for g=3.

“Exact results from Ref. [3].
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FIG. 5. (Color online) Number of red bonds on the percolating
FK cluster vs L.

[36]. While at the second-order transition point the red bonds
of the percolating FK cluster have some nontrivial fractal
dimensionality, at the tricritical point they scale with a nega-
tive exponent, announcing the formation of compact clusters
in the neighboring first-order transition regime. The red
bonds corresponding to the ordinary critical point of the
Hamiltonian (1) are known to have fractal dimensions of
3/4, 13/24, and 7/20 for g=1, 2, and 3, respectively.

Our finite-size results presented in Fig. 5, when fitted to a
simple power-law form, give the values cited in Table IV. As
should be expected for relatively small sizes considered in
this study, the finite-size effects are still too strong to allow
the calculation of negative exponents with sufficient preci-
sion, but the results clearly show negative exponents in all
the tree cases.

V. CONCLUSION

We have extended the invaded cluster algorithm to the
calculation of the tricritical point. The algorithm is self-

PHYSICAL REVIEW E 76, 011103 (2007)

TABLE IV. The red bond exponent at the tricritical point com-
pared with exact values.

a b t c
q XRB XRB ARB
1 -0.40+0.06 -0.50+0.08 -3
2 -0.47+0.04 -0.51+£0.07 —%
3 -0.11+£0.07 -0.20+£0.08 -

14
©

Extrapolated from the complete set of values L.

bExtrapolated from values L>72 for g=1 and 2 and L>48 for ¢
=3.

“Exact results Ref. [4].

adjusting and locates the position of the tricritical point as
the point of a simultaneous onset of the two percolating clus-
ters describing the percolation of order and percolation of
disorder due to vacancies. While in the temperature variable
the algorithm is completely self-adjusting, such as for the
simple criticality, in the parameter conjugate to the vacancy
concentration the algorithm needs additional fine tuning, in
order to insure that the percolation threshold of the disorder
cluster is achieved with minimum concentration of vacan-
cies.

The algorithm was illustrated on the example of a dilute
Potts model for three different values of g. It produced the
tricritical concentration with a good precision, and gave rea-
sonably accurate results for the two tricritical parameters.
The analysis of the scaling properties of the obtained perco-
lating clusters showed the characteristics proper to the tric-
ritical point. The critical exponents were found in agreement
with the tricritical exponents of the considered model.

Let us mention, in the end, that the presented geometrical
condition is not the only stopping rule within this invaded
cluster procedure that might be constructed for locating the
tricritical point. In future, it would be of interest to examine
other possibilities (involving, e.g., the red bonds), which
could be applicable equally to higher dimensions, where the
geometrical condition presented here, for topological reasons
would not apply.
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