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We study typical case properties of the 1-in-3 satisfiability problem, the Boolean satisfaction problem, where
a clause is satisfied by exactly one literal, in an enlarged random ensemble parametrized by average connec-
tivity and probability of negation of a variable in a clause. Random 1-in-3 satisfiability and exact 3-cover are
special cases of this ensemble. We interpolate between these cases from a region where satisfiability can be
typically decided for all connectivities in polynomial time to a region where deciding satisfiability is hard, in
some interval of connectivities. We derive several rigorous results in the first region and develop a one-step
replica-symmetry-breaking cavity analysis in the second one. We discuss the prediction for the transition
between the almost surely satisfiable and the almost surely unsatisfiable phase, and other structural properties

of the phase diagram, in light of cavity method results.
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I. INTRODUCTION AND MOTIVATION

Classification of the average-case computational com-
plexity of constraint satisfaction problems is a major task in
theoretical computer science. Many problems were success-
fully analyzed by rigorous probabilistic methods. However,
the average-case complexity remains an open question for
most well-known NP-complete problems [1,2]—for ex-
ample, K satisfiability, vertex coloring, and also 1-in-K
satisfiability—on the commonly studied random ensembles
(sparse random regular or Erdés-Rényi graphs).

In recent years heuristic methods from statistical physics
[3-5] have allowed us to understand some average-case
properties of large random instances [6]. The aim of these
studies was not to prove average NP completeness [7]; it was
rather to understand why the problems appear hard for some
local algorithms in some intervals of ensemble parametriza-
tion. These efforts culminated in designing a new polynomial
algorithm, survey propagation [8,9], which empirically out-
speeds all previously known heuristics. Rigorous understand-
ing of this algorithm is, however, still missing.

The fact that lies behind this success is the intrinsic simi-
larity of combinatorial optimization problems to physical
systems called spin glasses [10]. The organization of the so-
lutions is analogous to the structure of the free-energy land-
space of physical models. Several phases can be located in
parameter space, with abrupt transitions between the differ-
ent phases. An example is the SAT-UNSAT transition—i.e.,
the transition from the satisfiable (SAT) phase where almost
every instance is satisfiable (ground state of energy zero) to
the unsatisfiable (UNSAT) phase where almost every in-
stance is unsatisfiable (positive ground-state energy). An-
other is the glassy transition where the phase space splits into
many clusters and metastable states, and where many dy-
namical procedures (a physical dynamics or an algorithm)
are unable to find the ground state. This connection between
the structure of the solutions and the average algorithmic
performance was the main motivation for detailed studies of
the phase diagram of K satisfiability [5,8,9,11], vertex color-
ing [12,13], and many other problems.

1539-3755/2007/76(1)/011101(22)

011101-1

PACS number(s): 05.70.Fh, 75.10.Nr, 89.20.Ff, 02.50.—r

The present study of the phase diagram of the 1-in-K sat-
isfiability (sometimes called exact satisfiability [14]) prob-
lem adds one more item to this list. But prolonging a list is
not the main motivation for this work. 1-in-K SAT on the
symmetric ensemble (probability that a variable in a clause is
negated is 1/2) is one of the few NP-complete problem
which has been proven to be on average polynomial (easy)
[15]. On the other hand, for the positive ensemble (no nega-
tions, equivalent to exact cover) no such proof exists; nor is
there a heuristic algorithm with empirically polynomial time
performance in the vicinity of the SAT-UNSAT transition.
However, by analogy with K SAT and coloring, we may
expect polynomial time performance in this region using sur-
vey propagation.

Our main motivation is to interpolate between the sym-
metric and positive ensembles to show how the phase space
changes. For this reason we introduce a e-1-in-K SAT prob-
lem and study the phase diagram in parameters (7, €), where
€ stays for the probability that a variable in a clause is ne-
gated and vy is the average connectivity of a variable. We
generalize the rigorous probabilistic analysis to the general €
case. Then we use the replica-symmetric and one-step
replica-symmetry-breaking cavity methods [3,4] to under-
stand more features of the problem in the whole space of
parameters.

Our motivation is similar to the one which led to the
introduction of the (2+p)-SAT problem [16—-18], where the
instances are a mixture of 2-SAT and 3-SAT clauses on
Erdos-Rényi graphs. A parameter p interpolates between the
ensemble of random 3-SAT formulas, which are know to be
computationally hard [8,9], in a region including the SAT-
UNSAT transition, and random 2-SAT formulas, for which
an any-case polynomial algorithm exists. A statistical physics
approach has been applied to study the (2+p)-SAT problem;
however, only the replica-symmetric solution was investi-
gated. The analogical interpolation between P- and NP-
complete cases of some other problems has been investigated
in [19,20].
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A. Model

A factor graph G=(V,,V,;E) is a bipartite graph, where
the two species of vertices are called, respectively, variables
ieV, and clauses a € V.. It is a common graphical object
used in computer science in order to encode the geometrical
framework of a problem in combinatorial optimization, as it
often allows us to shorten and clarify the “rules of the game.”

This is the case also for 1-in-K SAT. Indeed, the cases of
both K SAT and 1-in-K SAT are example of Boolean satisfi-
ability problems and thus formally inscribed in a framework
of Boolean logic expressions: we deal with M Boolean
clauses over N variables, which should be simultaneously
satisfied (i.e., evaluated to true), in order to consider the
N-tuple of assignments to the variables a solution of the
problem instance. Each clause a involves K out of the 2N
literals x,,...,Xy, X|,...,Xy (not x; and X; simultaneously).
While a K-SAT clause is satisfied if at least one of the in-
volved literals is true, a 1-in-K-SAT clause is satisfied if
exactly one of the involved literals is true.

For both problems, a factor graph G (whose clause nodes
a have degree K) and a function J: E(G)— =1 fully encode
an instance: if clause a involves literal x; or X;, we will have
an edge (i,a) € E(G) and J,=+1 or —1, respectively. It is
customary to draw edges with J=+1 as solid lines and edges
with J=-1 as dashed lines.

If we use the common identification with “spin variables”
S,

x;=true < s;= + 1,

x;=false & s;,=-1,

the function Ey; 1(s) corresponding to a 1-in-K-SAT clause is

true si‘]ai+”'+si‘]ai =2—K,
E{Ja}<s>={ e ®'e ()

false otherwise,

and we say that s is a solution of the given instance if
/\ﬂE{J,,}(S) =true.

1-in-K SAT is polynomial in the case K=2 (coinciding
with 2-XOR SAT, or 2-coloring), while it is NP complete for
K=3, even in the restriction to all J’s positive (unlike K
SAT).

For what concerns average-case complexity, two Erdds-
Rényi-like random ensembles of instances are commonly
considered. In both cases we have N variables and every
possible clause is present with probability p such that the
average number of clauses is M=N+vy/K and variables have
Poissonian degree with average . Then we distinguish the
following.

Positive Poisson ensemble: The edge parameters J,; are
all +1. In this case we use a shorthand for the energy func-
tion Elu:(+,+,+)=Ea'

Symmetric Poisson ensemble: The edge parameters J,; are
random independent in {£1} with equal probability.

The positive version of the problem is the one which cor-
responds to exact cover, in the case of incidence matrices
whose columns have K nonzero entries.
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In this paper we study a generalization to the ensemble in
which the J’s are taking the value +1 independently, €
€[0,1/2] being the probability of having J=—1. We call this
generalization e-1-in-K SAT, in order not to confuse with the
1-in-K SAT by which is often meant only the symmetric
ensemble. We describe the phase diagram of this problem in
the parameters (e, ).

B. Main results and the paper organization

Throughout this paper we present methods and results rel-
evant to the problem of e-1-in-K SAT with K=3 only. Gen-
eralization to instances of larger clause length requires, in
most cases, only small changes in methodology.

In Sec. II and Appendixes A and B we derive algorithmic
and probabilistic bounds, both rigorous, for the SAT-UNSAT
threshold in the e-1-in-3-SAT problem. The most remarkable
result of those sections is that the bound is tight for e
€[0.2726,1/2], so in that interval the SAT-UNSAT thresh-
old is rigorously known. This generalizes the result of [15]
for the symmetric ensemble e=1/2.

In Sec. III we develop the replica-symmetric (RS) solu-
tion. First we write the replica-symmetric equations, Sec.
IIT A; then we discuss the zero-temperature limit, Sec. III B.
We analyze the hard-field solution in Sec. III C and the soft-
field solution in Sec. III D. However, as we show in Sec.
IIT E, this solution cannot be correct (ceases to be stable)
above a certain connectivity not larger than the expected
SAT-UNSAT transition. At this connectivity the belief propa-
gation algorithm would fail to converge. In fact, there even
exists a region in the phase diagram where the RS solution is
not stable, and yet the short clause heuristics (SCH) algo-
rithm is proven to work in polynomial time (on average). To
our knowledge this does not happen in any of the previously
studied models and is a point worth further investigation.

In Sec. IV we work out the one-step replica-symmetry-
breaking (IRSB) solution. In this case we assume the exis-
tence of many disconnected clusters of solutions and many
metastable states, which can actually trap most of the tradi-
tional algorithms. We write the general equations in Sec.
IV A; then, we concentrate on the zero-temperature zero-
energy case, Sec. IV B, which leads to the survey propaga-
tion equations. The zero-temperature positive-energy case is
studied in Appendix C. In Appendix D we check the local
stability of the 1RSB solution.

The main result of the IRSB analysis is the prediction for
the SAT-UNSAT threshold, Fig. 1. For €<0.07 the 1RSB
approach is stable around the SAT-UNSAT line, so the
threshold is likely to be exact, whereas for 0.07<<e
<<0.2726 the 1RSB result is unstable and a more involved
analysis would be required to locate exactly the SAT-UNSAT
threshold (the 1RSB result is expected to be an upper
bound). The presence of a nontrivial 1RSB solution in the
small-€ region suggests the presence of a hard-SAT region.
Details of these results are discussed in Sec. IV C.

II. RIGOROUS BOUNDS ON THE SAT-UNSAT
THRESHOLD
A. Unit-clause propagation analysis

Unit-clause (UC) algorithms are a class of randomized
algorithms for Boolean satisfiability problems, which when
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FIG. 1. The phase diagram of the e-1-in-3-SAT problem, for
what concerns the SAT-UNSAT transition. The parameters € and y
describe the probability of negations and the average variable con-
nectivity. For €>0.2726, the threshold is rigorously (e
=1/[4€(1-¢€)] (drawn as a solid line), since the unit-clause upper
bound and short-clause-heuristic lower bound coincide in that re-
gion. For €<0.2726, the dot-dashed, dashed, and dotted lines de-
note, respectively, the SCH lower bound and the UC and first-
moment-method (IMM) upper bounds. The solid line is our one-
step replica-symmetry-breaking (IRSB) prediction for the SAT-
UNSAT threshold. For 0=<<e<<0.07 the IRSB result is stable (gray
shading), and so the threshold is likely to be exact. For 0.07<e
<0.2726 the 1RSB result is unstable, and so the threshold is just
approximate (expected to be an upper bound).

applied to a specific instance seek a solution or a certificate
of unsatisfiability by assigning variables to =1 (or “true/
false”) while maximizing the amount of logical deductions
coming from uniquely determined constraints (unit clauses).
In the absence of immediate deductions, variables are fixed
by some heuristic rule and these free steps determine a
branching process on the space of feasible configurations.
Our analysis of unit-clause propagation is elucidated in Ap-
pendix A, while for a more general description consider [21].

Algorithms based on unit-clause propagation have been
already analyzed for the problems of symmetric and positive
1-in-K SAT. For the positive ensemble (e=0) the best known
lower bound to the SAT-UNSAT transition is y=1.638 [22]
and no upper bound is known from unit-clause algorithms.
For the symmetric ensemble (e=1/2), the method allows us
to determine that the exact SAT-UNSAT transition is y=1
[15]. Here we extend these results to compute the upper
bound v,.(e) and the lower bound 7,.(€) for the general
probability of negation, which describe regions that are al-
most surely (a.s.) easy SAT or easy UNSAT for an instance
of the e1-in-3 SAT, sampled from the random (e,7y) en-
semble (cf. Sec. T A).

In Appendix A 1 we demonstrate the upper bound 7y,.(€)
to the connectivity above which an easy UNSAT phase ex-
ists. Whenever y> v,.(€), the instance is a.s. proven to be
UNSAT by a randomized linear-time decimation algorithm in
which one tests, for all variables i, if both fixing s;=+1 or
s;=—1 leads to contradictions through unit-clause implica-
tions alone. This line has the analytic form v,.(€)=1/[4€(1
—-e].

In Appendix A 2 we obtain the lower bound Y, (€) to the
connectivity below which an easy SAT phase exists. Now,
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we perform an extensive number of free choices, and thus we
should specify our heuristic rule. It turns out that, among
those tested, the SCH (assigning a variable in one of the
shortest clauses remaining) is the one attaining the best
bound on the whole interval of e. If y<<vy,(€), by fixing
variables according to SCH one can find a solution with
finite probability on any run. Restarting the procedure many
times allows us to find a solution in linear time (on average).
This extends the idea employed for exact cover in [22]. At all
€ we find lower bounds by numerical integration (see above
figure), including y,.,(0)=1.639, consistent with the analysis
of [22].

Finally in Appendix A 3 we prove analytically that on the
interval € € [0.2726,1/2] the curves vy,.(€) and y,(€) coin-
cide. The result includes the symmetric ensemble, for which
it was originally proven in [15]. This fact indicates that there
exists a region of the phase diagram in which typical in-
stances of the (€, y) ensemble are easily solved, except at the
exactly determined SAT-UNSAT transition line.

B. Upper bounds for small €

For é—0 we have y,.~ € ! and so we would like to find
a better upper bound by some different method. An improve-
ment is obtained through the first-moment method (IMM) on
the 2-core of the graph. Restriction to the 2-core makes the
bound tighter, as it reduces instance-to-instance fluctuations.
This provides a line y,,,(€), which is finite everywhere and
thus beats 7y, in some interval of small e (details are in
Appendix B 1). The best known upper bound for the positive
ensemble (€=0) is y=1.932, obtained by a refinement of the
first-moment method [23].

Still, the first-moment method is only probabilistic and
does not allow us to find a certificate in polynomial time for
a given instance. Such a task is achieved at finite v, also in
the region of small € and €=0, through the embedding of
1-in-3 SAT into an instance of 3-XOR SAT. While
E}™3(sy,5,,53) =true on the three configurations (s;,s,,s3)
=(+,-,-), (—,+,—), and (—,—,+), the function
EXXOR(s,5,,53) also allows for (sy,s5,53)=(+, +,+). So all
the constraints are linear relations, and the problem is for-
mally solved by Gaussian elimination. This gives an upper
bound for an “easy-UNSAT” phase, independently of € at
v=3a"=2.754 where o is the SAT-UNSAT threshold
(clause-to-variable ratio) in 3-XOR SAT [24,25] (cf. Appen-
dix B 2 for details). Note for comparison that in random
3-SAT at given finite a (however large) in the UNSAT phase,
there is no polynomial algorithm which can find a.s. a cer-
tificate for a typical instance, and intuition strongly suggests
that such an algorithm cannot exist [26].

III. RS CAVITY APPROACH

The cavity method is developed within a statistical me-
chanics formulation. For this purpose we choose an integer-
valued “energy function” for a single clause, Ej; (s), to be
associated with the original Boolean-valued function EB‘;‘;I(S)

in Eq. (1), just as Eg y(s)=0 or 1, respectively, if E?Jc:lf}ﬂ(s)
=true or false. We thus have a Hamiltonian
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H(s) = 2 2y ,(s), )

which counts (twice) the number of contradictions. The fac-
tor 2 is a useful convention, so that all the cavity parameters
to be introduced below (cavity fields and biases) will be in-
teger in the “zero-temperature” limit.

The introduction of the cost function above allows us to
define a Gibbs weight ¢ ") where S is some parameter
(inverse temperature), so that a single contradiction causes a
dump of a factor e># in the measure of the configuration. As
customary in statistical mechanics, one introduces a partition
function

Z2p) =2 e A3)

and a set of observables (say, probabilities of having patterns
A)

prob(A) = 77! > P, (4)

s: A happens

Within this framework the cavity method translates cer-
tain obvious recurrence relations for interaction structures on
a factorized graph (tree) to approximate self-consistent equa-
tions for local expectation values on a graph which is only
“locally treelike” (e.g., a sparse Erdos-Rényi graph at large
N, where loops are expected to arise at lengths of order In N).

The RS assumption is used at a certain point. It consists in
assuming that there is a single pure state describing the equi-
librium behavior of the ensemble. In turns, it will allow one
to neglect certain connected correlation functions. In this
section we develop a cavity method under this hypothesis,
while extensions are discussed in later sections.

We will not review in detail all the derivations of the
equations; instead, we just introduce, in Sec. III A, some
notations on the “easy” case of interaction on a tree and give
without proof further formulas which are valid in the various
contexts. A heuristic consideration of the complications aris-
ing on a random graph with long loops can be found in [3,4].

A. RS cavity equations

Consider a problem defined on a factor graph G, such
that, for a certain edge (i,a), G is composed of factorized
components attached to the vertices in a neighborhood of
radius 1 of (i,a). Call (di\a) the set of other clauses, besides
a, neighboring i and (da\i) the set of other variables, besides
i, neighboring a. This description motivates a factor graph of
the form of Fig. 2 left, where “gray bubbles” stands for some
other parts of the graph and there are no paths connecting
distinct bubbles, except through the explicitly drawn neigh-
borhood of (i,a).

For a variable je(da\i), call Z“ the quantity
Z-prob(s;=s) on the system consisting of the (gray-bubble)
subgraph attached to vertex j (see Fig. 2, right), Z being the
partition function of this subsystem. Similarly for a clause
b e (di\a), call Y>" the quantity Z-prob(s,=s) on the system
consisting on the subgraph attached to node i through edge
(b,i) (see Fig. 2, right). Then we have the composition rela-
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FIG. 2. Left: factor graph representing the 1-in-3-SAT problem,
in a neighborhood of an edge (i,a). Right: definition of the cavity
partition functions.

tions (say, da\i={j,k} for our clause of degree 3)

z, =11 v, (52)
! beaa
v S Wz A (o)
Sk

At this stage we note that, in rewriting the cavity partition
sums in terms of probabilities, the belief propagation equa-
tions [27,28], familiar to computer scientists, are attained.

As usual in physics we reparametrize the pairs Z,,Z_ as
different natural quantities, a free energy F=1/B1n(Z,+Z_)
and a magnetic field h=1/(2B)In(Z,/Z_), the field that, if
applied to the variable in substitution of the whole system,
would cause the same average magnetization. We define the
cavity fields and cavity biases in the following way:

Zi—»a Ya—>i
ezﬂhi‘?ﬂ = + e2Bua*>i = + - (6)
Zlﬁa ’ Ya*)l .

The recursion equations for 4 and u then follow from Eqgs.

(5):

hia= 2 Uy s (7a)
bedi\a

E exp{ﬁ[hj_»asj + oSk — 2E{Ja}(+ 1,Sj,Sk)]}

SjsSk

— In .
ZB 2 exp{ﬂ[h]—wlsj + hk—>ask - 2E{Ja}(_ l,Sj,S]()]}

$jsSk

Ugi=

(7b)

One can think of u’s and /’s as messages being attached to
the edges of the graph and oriented (the u’s towards the
variable, the /#’s towards the clause). Then, the update func-
tions (7) are represented on the variable and clause nodes, as
in the figure below:

hj*)a

JOEH

= ()i
kO 7 !
h

k—a
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Similarly, we handle the free energies. First define the acces-
sory quantities

Z=11 reois 1 ro, (8a)

aedi aedi
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vi= X PRz (8b)
i J

SiS oSk

Then we write the free-energy shift AF?Y% after adding a
clause a and connecting all its neighbors i € da and the free-
energy shift AF" after connecting all the components incident
on the variable i:

E exp{ﬂ[hiﬂasi + hjﬂasj + hkﬂask - ZE{JH}(Si’Sj’sk)]}

Ye 888

e—,BAFHUﬁaz — —_ ’ (93)
IT IT ey IT TI 2cosh(Bu,.)
i€da bedi\a ieda bedi\a
i 2 cosh(,B E uu_,,-)
e_BAFI _ aedi (Qb)

aedi

Finally, for the free energy F=1/81nZ(G) of a tree graph,
one gets

F(B)=> AF”U”“—E (d;— 1)AF', (10)

where d; is the degree of the variable i. Writing this in terms
of fields we note the cancellation of the factors
2 cosh(Bu,_,;) between the denominators of Egs. (9a) and
(9b). Furthermore, in the numerator of Eq. (9b), the combi-
nation h;:==2,_u,_,; appears. This is the “total field” pa-
rameter for the magnetization of the variable i in cavity ap-
proximation.

The free energy as a function of inverse temperature 8 on
a given graph allows us to determine, by Legendre trans-
form, the number exp[S(E)] of configurations of given en-
ergy E (number of violated clauses). Both S and E are
extensive—i.e., of order N—and corrections decreasing with
1/N are understood:

HBF(B))

B’
The main insight here is that we can think of the set of cavity
fields as a parametrization of the local “magnetizations” of
variables i (i.e., probability of being s;=+1, for two-state
variables), in a system in which the interaction of i with a
neighboring clause a has been modified (cavity system). If
the clause a has been “switched off,” the nodes in the neigh-
borhood of @ now become well separated on the graph which
effectively describes the cost function. An assumption of
decorrelation of variables, which is exactly true for variables
in disconnected components and approximately valid for
variables sufficiently far away on the graph, out of a critical
temperature and within a pure thermodynamic phase, pro-
vides us self-consistent equations for the cavity fields. The

E(B)= S(E) = (E-F)B(E). (11)

I er ) 11 2com(pn, )

aedi

equations are exactly the same as those we wrote for factor-
ized graphs and hold in the leading order in the system size
N, in particular Eq. (10); see [3]. The cavity assumption can
be self-consistently checked as we will describe in Sec. III E.

B. Zero-temperature limit: Hard and soft fields

In the limit of zero temperature, S— o, the update of
cavity biases (7) simplifies significantly to

hiﬂa = 2 Up—is (123)
bedi\a
1
U, .;i= E{max[hjﬁasj + hkﬁask - 2E{Ja}(+ l,Sj,Sk)]
S8k
- max[hjﬂasj + My Sk — ZE{Ja}(_ 1,Sj,Sk):|}-
Sk
(12b)

It is immediately seen that, as E{JH}(S) is evaluated over
{0, 1}, it is self-consistent to assume that heZ and
ue{-1,0,+1}.

In fact the only characteristic property of Ej ja}(s) we need
to have is that Ey; j(s)=0 if and only if s satisfies clause a
and that Eg (s1,52,53)—Eyy j(=51,55,53) €{-1,0,+1} (a
kind of discrete “Lipschitz” condition), which clearly holds
for our choice of Hamiltonian (2).

The only other choice of Hamiltonian for 1-in-3 SAT
sharing this property is

H'(s) =22 Ef (s), (13)
where E/(s) coincides with E,(s) except that on (+, +, +),

where it is valued E’'=2 instead of 1 (because 2 flips are
required in order to satisfy the clause).
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The fact being that h,u e 7 is much more than self-
consistent, it is necessary, even for the “true” cavity fields
(the ones that we would find from the evaluation of global
partition functions, instead of the ones being solution of the
cavity equations), and approximately true in a whole region
of large B (it suffices that 8>1n N). Let us concentrate first
on h;_,, and say that Z, “=3,g,(n)e ?P", where the integer
coefficients g,(n) count the configurations with n violated
clauses, in the proper cavity system labeled by (i— a). There
will be a certain value n, corresponding to the first nonvan-
ishing coefficient g, (n). Identical definitions are assumed for
+«——. Then we have

1z 1

—n+)+—1nM

g-(n)

+0(e7?P).

(14)

So at all orders in a purely algebraic expansion in powers of
1/, we only have two terms: a first one, (n_—n,), the hard
field, is constrained to be integer, and second, the coefficient

u,_;=—1:clause a tells variable i,
u,_;=0: clause a tells variable i,

u, ,;= + l:clause a tells variable i,

The analogous interpretation for fields 4 is
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in the second term, the soft field, being the logarithm of the
ratio of two (potentially large in N) integers, is simply taken
as a value over R.

In particular the ground-state energy, 8— o° limit of Eq.
(11), can be computed using only hard fields. On the other
hand, to compute the ground-state entropy soft fields are nec-
essary [the general relation follows from Eq. (11), but is
rather lengthy].

We will see in the next section that working only with the
hard fields has huge computational advantages; however, as
they do not contain all the information, we come back to the
soft fields in Sec. III D.

C. Hard-field analysis: Warning propagation

In this section we return to Egs. (12) and neglect for this
moment the 1/ part of the field. The corresponding equa-
tions are called warning propagation, and the discrete set of
possible values for the biases takes an interpretation in terms
of “kinds of warnings”™:

“I think you should be —1,”
“I can deal with any value you take,”
“I think you should be +1.”

h;_,, <0:variable i tells clause a, “I would prefer to be — 1,”
h;_,=0: variable i tells clause a, “I don’t have any strong preferences,”

h;_,, > 0:variable i tells clause a: “I would prefer be + 1,”

from which the prescriptions (12) on how to update the
“warnings” over the graph also become intuitive.

We now determine statistics over the ensemble of random
pairs (G,{J,}). It turns out that, although the fields % can take
infinite values, by virtue of the Poisson ensemble the equa-
tions are closed under a finite number of parameters: we
define probabilities p_/p,/p, that cavity fields h are
negative/positive/zero and similar probabilities g_/g,/q, that
biases u are —1/+1/0. Then, the statistical average of Egs.
(12), seen as defining a dynamics of time evolution for the
distributions of the fields, gives the following dynamical map
over q=(q,,q_) [the auxiliary vector p=(p,,p_) is also de-
fined]:

szq,s q’=(p3’2p+_2pi)9 (153-)

p=Mp', p'=((vq.vq).f(vq-.vq.)), (15b)
where we recall that vy is the mean degree of variable, while
the matrix M describes the probability of negations,

(1—6 € )
M = . (16)

Finally the function f(r,s) gives the probability that the dif-
ference of two Poissonian-distributed integers (respectively,
with rate r and s) is positive

7

f(r,s):= >, >, Poiss(n)Poiss,(m), Poiss,(n) = =

m=0 n=m+1 n!

(17)

The “paramagnetic” state q=0 is everywhere a solution of
Eqgs. (15). It is, however, numerically unstable above the line
Yue=1/[4€(1-€)] (coinciding with the unit-clause upper
bound). A nonparamagnetic q# 0 solution appears continu-
ously above this line and is stable. Conversely, for e< €, the
nonparamagnetic solution appears discontinuously at con-
nectivity ygs and is a stable local attractor.

The line yg(€) and even the “triple point” € at which
Yrs(€) touches . depend on the choice of Hamiltonian 7,
Eq. (2), or H', Eq. (13), and are plotted in Fig. 3. Since the
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FIG. 3. Results of the replica-symmetric cavity analysis and its
stability. The solid curves with no bullets are the rigorous bounds
left for comparison. The line with diamonds corresponds to the
replica-symmetric prediction for the SAT-UNSAT threshold derived
from the Hamiltonian H, with E,(+,+,+)=1, while the line with
triangles to the one derived from the Hamiltonian H’, with E(;(+,
+,+)=2. The dotted line is the soft-field instability of the replica-
symmetric solution; it separates the stable region (below) from the
unstable one (above). For €>0.33+0.02 the stability line seems to
coincide with the SAT-UNSAT threshold.

ground-state energy E(B8— ), Eq. (11), is zero if and only if
q=0, we conclude that the line ygg for e<e" and yyc for
€=¢€ is the replica-symmetric prediction for the SAT-
UNSAT threshold.

There are striking hints towards the badness of the
replica-symmetric solution. For example, the predicted criti-
cal value ygq(€=0) is different from the numerical one and
even larger than the rigorous upper bound. But there is also
an inconsistency internal to the method. It is not possible that
the satisfiability line in the phase diagram depends on the
finite-temperature Hamiltonian used in the cavity equations,
but the lines ygq coming from H and H' are different. An-
other argument comes from the cavity prediction of the
ground-state energy E,;,=E(8—c0) (11) which is zero if and
only if q=0. The discontinuous appearance of a new fixed
point leads to a discontinuity in y of E,;,(7y,€), but this is
impossible, as we have the Lipschitz condition

d 1
&yEmln(y’ € € [0,3} (18)
coming from the fact that adding randomly M’ clauses to an
instance whose minimum energy is E,.;, can only give an
instance with minimum energy in the range [E.in,Emin
+M']. In Sec. Il E we will explain in detail why and where
exactly the replica-symmetric solution breaks down.

D. Soft-field analysis

In the region of the phase diagram where the RS hard-
field analysis predicts zero ground-state energy (SAT region)
all hard fields and biases are zero [g,(0),g_(0)>0 in the
language of Eq. (14)]. We denote with capital letters U,_;
and H,_,, the soft fields—i.e.,

PHYSICAL REVIEW E 76, 011101 (2007)
U, H;_.
uaﬁi=0+$, hlﬂa=0+17a (19)

Their update is deduced analyzing the general cavity equa-
tions (7):

Hi_..= E Uy (20)
bedi\a
1
JU, i=— > In(e¥aitlj—a 4 e artlia) (21)

Defining ¢(U) and p(H) as the probability distributions of U
and H over the graph, we have the self-consistent equations

p(H)=(1-€)p(H) + ep(- H), (22)

© k k
p(H)=2 e—yf II [dUiq(U,-)]é(H— > U,-), (23)
k=0 i=1 i=1

k!

being the analog of Eq. (15b), while for Eq. (15a) one has

q(U)=(1-€q(U) + eq(- V) (24)

qU) = f dH; dH, P(Hj)P(Hk)5<U+ % In(e?i + eZHk)>‘
(25)

These equations are already beyond the possibilities of an
analytical treatment and can be solved only by a population-
dynamics technique [3].

In this “paramagnetic” region the expression for the RS
ground-state entropy (logarithm of the number of SAT con-
figurations) simplifies. Thus, knowing the distributions ¢(U)
and p(H) we can compute the average entropy. In Appendix
B 1 we compute the average number of solutions, (N) and
annealed entropy In({(\V)), whereas the RS computation leads
to a quenched average of the entropy (In V). The same quan-
tity may be computed for a given large sparse graph from the
message passing procedure (21). However, the result will be
valid only in the region where the RS assumption is valid;
see Sec. III E.

E. RS stability

The replica-symmetric solution will turn out to be incor-
rect if the assumption of having a single pure phase is proven
to fail. As we know, a necessary condition for this is that
fields incoming to a given node be uncorrelated. This prop-
erty can be tested on the RS solution: if the spin-glass sus-
ceptibility diverges, then all fields (and in particular the pairs
of incoming ones) are strongly cofluctuating and the RS as-
sumption is inconsistent. The (nonlinear) spin-glass suscep-
tibility is defined as [29,30]
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oo

Xsc(G) = N 2 G xso= 2 CYE(ssa)?).
ijeV(G) =0

(26)

On the left is the definition for a fixed graph G; (s;s;). is the
connected correlation function between nodes i and j. On the
right we consider the average over instances, in the thermo-
dynamic limit, where sites s, and s, are at distance d. The
factor (2)¢ stands for the average number of neighbors at
distance d, when d <In N. Assuming that the limit for large d
of the summands in Egs. (26) exists (with the limit N— oo
performed first), we relate it to the stability parameter:

A= 1lim (2y)[E((sosH)]". (27)
d—x

Then the series in Egs. (26) is essentially geometric and con-

verges if and only if A<1.

Using the fluctuation-dissipation theorem we relate the
correlation (sys,), to the variation of magnetization in s,
caused by an infinitesimal magnetic field in s, Then, one
relates this quantity to cavity fields, i.e., up to a factor C
independent from d,

2
JLf(<505d>) C 2 L[(gua_)d) } (28)
acad Up—0
bedd

Finally, using the fact that we perform the large-N limit first,
the variation above is dominated by the direct influence
through the length-d path between the two nodes, and this
induces a “chain” relation: if the path involves the clause and
variable nodes (ay,d,a,_;,d—1,...,ay,0), we have

d 2
E(<s0sd>§)=CE[H< Ha 0 ) ]
=1 \ Mg, -1

WeoiNat il T fu )

hja

a—1

me
{cedk~a} o

Inside the paramagnetic phase and in the zero-temperature
limit (but keeping the soft fields of Sec. I D), from Eq.
(21), we have for a path like the upper one in the above
figure

—J eZJ(L/H/—*a

aua—»i
Jai
iy,

aUu—»i

=Jai =2 H, 20 H, " (30)
anﬂj e“ajlj—a 4 o= akTk—a

Instead of directly computing the stability parameter X, it is

equivalent, and numerically easier, to associate every bias

u,_,; in the population-dynamics algorithm with a positive
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number v,_,;. We update this number together with the fields
according to

., ;i\’
UVgsi= 2 ( Y l) vb—>]+ 2 ( % l) Uesk

bedj\a ﬁub—n/ cedk\a auc—ﬂc

@31

(we recall that, when performing population-dynamics tech-
nique, the labels “a—1i” do not have any spatial meaning: the
population is just a collection, and messages are randomly
combined at each step). After equilibration, the numbers v

will change on average geometrically, with a factor \.
Numerically, we see that for a given e the stability param-

eter grows with connectivity . In Fig. 3 we see the line

above which the replica-symmetric solution is unstable (i.e.,

A>1). This line coincides with the unit-clause upper bound
within the errors from about €>0.33+0.02. In particular the
entire region where the RS results are contradictory is un-
stable. It is furthermore remarkable (and unexpected) that
there exists a region in which the RS solution is not stable
and yet the short clause heuristics a.s. finds a solution in
polynomial time.

IV. 1RSB CAVITY APPROACH AND ITS IMPLICATIONS
FOR THE PHASE DIAGRAM

The understanding of the role of ergodicity in the validity
of the replica-symmetric cavity assumption allows us to re-
cast the cavity method as a more powerful tool for the case in
which there are (exponentially) many phases. The assump-
tions underlying this process go under the jargon term
“IRSB” type of symmetry breaking [3,4]. In the 1RSB ap-
proach we assume that exponentially many pure thermody-
namical states (phases) exists and that the neighbors of a
node in the absence of this node are uncorrelated only within
each of these states. This happens because the cluster prop-
erty (the small correlation of observables far from each
other) holds only within a pure phase. The name replica sym-
metry breaking is due to historical reasons, since the mecha-
nism was first proposed by Parisi [31], while using the “rep-
lica trick” in analyzing a spin-glass model.

The necessary but conceptually impossible handling of
the multiplicity of pure phases may be replaced by a “sur-
vey” over these phases. The only memory of the original
structure is through the free energies F, of the various phases
a. As the phases have to be weighted with a Boltzmann
weight in F,, a reweighting term has to be introduced in the
“survey” equations, as we show in Sec. IV A. In the zero-
temperature limit the analysis leads to what are now called
survey propagation equations, which are developed fully in
Sec. IV B.

The solution to these equations is described in Sec.
IV C 1; in Sec. IV C 2 are results of the stability analysis of
this solution. Checking the validity of the 1RSB cavity as-
sumption (IRSB stability analysis) gives us a hint if this
solution could be the final correct one. This has been done
for the K-SAT [11,32] and coloring problems [12] on random
graphs. The results in those cases supported strongly the con-
clusion that the SAT-UNSAT thresholds computed with the
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1RSB cavity method were exact. The 1RSB stability analysis
is technically involved; we summarize the main steps in Ap-
pendix D.

A. General 1RSB cavity equations

We define a complexity function 2(F) as the logarithm of
number of states, and hence it is computable by the Legendre
transform

I2(F) _

= Bm®P(m, B) = — pmF(B) + %(F), F

Bm,
(32)

where the parameter m plays role of a second temperature,
for free energies of states instead of energies of configura-
tions, and is called the Parisi parameter of the replica sym-
metry breaking. The function ®(m, ) is called the “repli-
cated free energy.”

Instead of one field and one bias on every edge, now we
need to keep one field and one bias for every edge and every
state—or, equivalently, as we assumed that there is a huge
number of states, a distribution of fields and biases on every
edge. The self-consistent equation for this distribution is
[3.4]

1—[ dubﬂjpb_}](ubaj)

bedj\a

Pa_)i(uaei) = Z;Li f

X IT duy P ) Su,
beda
= Fup— 3 {up—}))exp(— BmAF*™).
(33)

The function F is the single-phase update of biases given by
Eqgs. (7), and the last term is the reweighting of states, where
AF“~1is the free-energy shift after adding clause a and all its
neighbors except i. Referring to our calculations in Eq. (9a),
this free-energy shift is

B Yo ey
b—j bh—sj
IT IT o2+

jeda\i bedj\a

E CXP{,B[thaSj +hy oSk — E{]a}(sivsjask)]}

_SiSjsSk

IT II 2coshpu,_.)

jeda\i bedj\a

(34)

Then, in analogy with Eq. (10), the replicated free energy ®
is calculated as

D(m, B) = >, ADV% _ ' (d;— 1)AD, (35)

where d; is the degree of the node i. The replicated free-
energy shifts are
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alda Uda i i
e—ﬁmA(I) — f e—ﬁmAF“ , e—BmAlD :J e—,BmAF )

(36)

The integrals make an average over the distributions of the
fields incoming to the cavity, similarly as in Eq. (33)—i.e.,
Ifuy, ... ’uk):fdulp(l)(ul)' : 'fdukp(k)(uk)f(ul s Ug).

Since we are interested mainly in the ground-state prop-
erties of the e-1-in-3-SAT problem, we need to take the zero-
temperature limit. There are two standard ways of doing this.

(i) The energetic T—O0 limit [4]. We take the limit B
— o, m— 0 with y=8m fixed and finite. Then,

- y®(y) =-yE+3(E). (37)

Here we neglected the entropic contribution and we can ob-
tain complexity as a function of energy. This is the 1RSB
analog of the RS analysis with hard fields (warnings).

(ii) The entropic T— 0 limit [33]. We take the limit B
— o at energy fixed to zero, E=0. Then,

m®(m) =mS + 3(S), (38)

where —B®D(B,m) — ®(m). Here we are fixed to zero energy,
but on the other hand we can compute complexity (number
of states) as a function of the state internal entropy. This is
the 1RSB analog of the RS analysis with soft fields (beliefs).

In this paper we work out only the simpler energetic limit,
the same as in [9] for the K-SAT or [13] coloring problem.
We will see how this analysis alone already gives us a large
amount of information about the phase diagram.

The reweighting (34) becomes in the zero-temperature en-
ergetic limit

AE == max o8+ oSk = Eyy (53,551 ]
i8Sk

+ 2 |ub—>j|+ 2 |Mb~>k|' (39)

bedja bedk\a

Since the fields & and biases u are integers, by relations (12),
AE“" also takes non-negative integer values. In fact it
counts the number of contradictions in one warning-
propagation update.

We want to determine whether a typical e-1-in-3-SAT in-
stance has any satisfying configuration. We do this in Sec.
IV B by taking the y—oc limit. The reweighting term
exp(—yAE®") then guarantees that we keep only the cases
without contradictions, AE“~=0). Conversely, in order to
compute the ground-state energy in the UNSAT region, or
the complexity at energies higher than zero, we need to keep
y finite. We undertake this in Appendix C.

B. Zero-energy case, survey propagation

In the limit y — o we fix the energy to be zero. The energy
shift AE“~" is zero if and only if (a) the {u,_},c 4, are all
non-negative or all nonpositive, (b) the {u,_;})ca0q are all
non-negative or all nonpositive, and (c¢) the terms
JajZp e gpattp—; and J 2y ¢ gl are not both positive.

We begin by simplifying the form of Eq. (33). In the
zero-temperature energetic limit we can write the distribution
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of fields and biases over states on every edge as
Pa*)l(uaﬂl) qli4”5(uaﬂl + 1) + qa%lg(ua*’l )
+ qoﬁlé‘(ua—u‘) s (40)

,Pi*}a(hi%a) leu/'L (h,*}a) + pl*}uluﬁ(hz—»a) + pl%ag(hiﬂa)’

(41)

a—i a—i a—i l"[l i—a i—a

where ¢* '+ +q5 '=p T+ p T+ py ‘=1 and u.(h) are
normalized measures with support over Z*.

So to every oriented edge we associate a triple of numbers
q=(q_-,q0,q,) or a triple p=(p_,pg,p.) (respectively, if ori-
ented towards the variable or the clause). In analogy with the
self-consistent equations (7) for fields and biases we can
write self-consistent equations for probabilities (surveys) g
and p:

i
{c€edk~a}

Considering only the combinations with AE“~=0, the sur-
veys of fields are given by incoming surveys of biases as

Pt ph = NI @+ 57, (42a)
bedi\a

Pl aph = NI @+, (42b)
bedi\a

py =N IT a6, (42¢)

bedi\a

where N,_,, is the normalization factor (in the update, we
have three equations for three independent unknowns p, and
N). And the surveys of biases are given by the incoming
surveys of fields:

g5, =N PP (43a)
371 - Na*}l[[]]*)a(l ‘}a) + (1 IHa)pJ*)a]
(43Db)
q(aJ—ﬂ — a_ﬂ(pj;mp{c)—m + —>a Ii?: + 0—>apk—>a ,
(43¢)

where NV, _,; is the normalization factor and the lower indexes
of ¢’s and p’s are multiplied by —1 when variable is negated
in the clause.

These equations describe survey propagation [9] and can
be used inside an algorithm to find a solution to a typical
instance of e-1-in-3 SAT, hopefully also in a region of pa-
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rameters (€,7y) where short-clause-like heuristics or belief-
propagation methods fail. They might also be used to com-
pute quantities averaged over instances in our random
ensemble, particularly the complexity function which deter-
mines the SAT-UNSAT transition.

In the zero-temperature limit, the replicated free energy
(35) becomes

—yb(y) =2 1n<f e‘yAEaUﬁa> -2 (di- l)ln<f e—yAE">’

(44)
where from Egs. (9) and (36) we get the energy shifts

AE™% = — max [ ,8;+ hj_48;+ .5 —Eyy (siss;.50]
i8Sk
+ 2 E |ub~>i 5 (45)
ieda bedi\a
2 Ugi| + E |ua~>[; (46)
aedi aedi

again, both these energy shifts are non-negative integers.
Furthermore, in the y—o0 limit, we distinguish only if

AE=0, then exp(—yAE)=1, or if AE>0, then exp(-yAE)

=0. From Eq. (44) we get for the complexity at zero energy

S(E=0)= D, In[prob(AE*Y% = 0)]
- > (d;- DIn[prob(AE'=0)],  (47)

where, calling 73’6:: ae&lqg_” and 73’ Haeal(q“_”+q8_'i),

prob(AE'=0) =P, + P. - P}, (48a)
prob(AEaUﬁazo) H ( zaa 1~>a ,onﬁa)
ieda
_ H (Pl*}a zpzﬂa
ieda
_ H (PlHa Plﬂa
ieda
_ 2 l~>a H (P/Ha
ieda ]e&a\l
(48b)

The second equation collects the contributions from all com-
binations of arriving fields except the “contradictory” ones
(+,+,+), (=,—,—), (+,+,0), and (+,+,—) (plus permuta-
tions of the latter). Note at this point that all these equations
(42)—(48) correctly do not depend on the choice of Hamil-
tonian (2) or (13).

C. 1RSB results for the phase diagram

In this section we give results of RSB cavity analysis for
the e-1-in-3-SAT problem. In the first two subsections we
concentrate on the positive 1-in-3 SAT (e=0). In the third
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FIG. 4. Average complexity density (logarithm of number of
states divided by size of the graph) as a function of mean degree y
for the positive 1-in-3-SAT problem. At y,,=1.822 a nontrivial so-
lution of survey propagation equations appears, with positive com-
plexity. At y=v"=1.8789+0.0002 the complexity becomes nega-
tive: this is the SAT-UNSAT transition. At y,=1.992 the solution at
zero energy ceases to exist. The inset magnifies the region where
the complexity crosses zero, together with the error bar for the
SAT-UNSAT transition.

one Sec. IV C 3, we show results for general probability of
negation.

1. Complexity as a function of connectivity

To compute numerically the average value of complexity
from Eq. (47) we first need to find a fixed point of the survey
propagation equations (42) and (43). We do that using the
population-dynamics algorithm [3]. The result is given in
Fig. 4.

Below mean degree y,,=1.822+0.001 the survey propa-
gation equations (42) and (43) have only the trivial paramag-
netic solution, with py=g,=1 and ¢g,=p. =0 for all edges. At
Ysp & solution of survey propagation equations with positive
complexity appears discontinuously. The emergence of this
transition far below the numerically known SAT-UNSAT
threshold suggests that, in a whole interval of parameters
near to the threshold, the phase space restricted to solutions
is clustered into many pure states: a hard-SAT phase [9] ex-
ists. Furthermore, in that interval, there are also many meta-
stable states, entropically relevant, and local minima with
positive energy cost separated by macroscopic barriers. This
means that local algorithms, like decimation heuristics or
variants of annealed Monte Carlo dynamics, get trapped and
are unable to find any ground state in polynomial time.
Nonetheless, a decimation procedure based on the stationary
distribution of survey propagation equations is expected to
work beyond this threshold.

Note that 1y, is referred to as a “dynamical threshold” in
[9,13]; we stress that it is not this point which is connected to
a real dynamical transition [34]. Neither is it the point where
the local algorithm ceases to work in polynomial time. We
come back to comment about this point in the discussion,
Sec. V.

At mean degree y'=1.8789+0.0002 the complexity be-
comes negative. Instead of having a.s. in each instance an
exponential number of clusters which contain at least one
solution, the fraction of instances having any cluster which
contains at least one solution (i.e., the fraction of SAT in-
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stances) becomes exponentially small. So this point identifies
the SAT-UNSAT transition.

We are aware of two works where results from numerical
simulation for this SAT-UNSAT threshold are given. In [22]
they conclude that the value of the threshold is 7y
=1.86+0.03. In [23] they give ¥ =1.875+0.015. In fact, the
latter do not give an error bar, so we guessed it from their
Fig. 4. Our result agrees with these estimations, and as it is
based on an analytical method we reduce the error bar by one
order of magnitude with a very small numerical effort.

At mean degree ,=1.992+0.001 the solution at zero en-
ergy ceases to exist. In the y —cc limit the population dynam-
ics converges to a solution which shows a finite fraction of
surveys of type (p.,py,p=)=(0,0,1). Then, with finite prob-
ability we would find two such surveys creating a contradic-
tion; the normalization in Egs. (43) then would be zero. We
call this situation a ‘“hard contradiction.”

Note that such a phenomenon does not occur in the
K-SAT or coloring problems. Cavity equations deal with the
messages incoming to a clause from all neighbors but one. In
both K-SAT and coloring problems (and in many other prob-
lems, like NAE-K-SAT, vertex covering, and so on), there is
no way of making a clause unsatisfied if one of the neigh-
boring variables is not restricted, and indeed a Yp threshold
has never appeared in the cavity analysis for these systems.

In order to obtain a nonsingular solution above connectiv-
ity ,, we need to work with the equations at finite y, which
is able to account for the positive energy contributions. The
results of the finite y analysis are shown in Appendix C 1.

2. Stability analysis

In Appendix D we introduce two stability parameters uy,
Eq. (D9), and uy, Eq. (D3). Their meaning is analogous to
that of the replica-symmetric stability parameter X, Eq. (27).
The 1RSB solution is stable if and only if both u;<1 and
M <l.

The results for stability parameter of the second kind gy,
Eq. (D3), for positive 1-in-3 SAT are shown in Fig. 5 (left)
for finite d. Extrapolation to d— o is done by a linear fit,
which looks reasonable from the data points. So our criterion
is that, if the slope in the logarithmic plot is positive, the
limit value uy is larger than 1 and vice versa. We estimate
that 1RSB is “type-II" stable for y> y;=1.838+0.002.

More directly, for the stability parameter of the first kind
1 Eq. (9), the results are shown in Fig. 5, right. So we get
that IRSB is “type-I" stable for y<<y=1.948+0.002 (the
generous error estimate is due to potential biases caused by
finite population sizes).

The 1RSB solution may be correct only if both stability
parameters are smaller than 1. For positive 1-in-3 SAT this
happens for connectivities in the range 1.838 = yy<y<wy
=1.948. So, in particular, the SAT-UNSAT threshold y" is in
the range of stability and its value is to be considered exact.
Note that such a situation, in which the SAT-UNSAT thresh-
old falls into a narrow stability region, is quite common, and
it has been seen also in the K-SAT [11] and coloring [12]
problems.

3. IRSB results for general probability of negation

We applied the techniques of Sec. IV C to the problem at
finite €. As expected, all the critical connectivities describe
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FIG. 5. The stability parameter of the second kind In[ uy(d)], Eq. (D3), for positive 1-in-3 SAT for different connectivities as a function
of length of the chain d. When the slope is negative, the 1RSB at this connectivity is stable against bug proliferation and vice versa. This
happens for y> y;=1.838+0.002. Right: the stability parameter of the first kind w;, Eq. (D9), as a function of connectivity for positive
1-in-3 SAT. The stability parameter is smaller than 1 for y<<y=1.948+0.002; for these connectivities the IRSB equations are stable against

noise propagation.

curves which are continuous at e=0. We thus show, in Fig. 6
(left), the curves y'(e), ¥sp(€), and y,(€) and, in the magni-
fication on the right of Fig. 6, also y;(€) and yy(e).

As € approaches about 0.20, the interesting interval 7,
<y<'1, becomes very narrow (Fig. 6, right) and the com-
plexity value very small, 3~ 107>, three orders of magnitude
smaller than the analogous values for e=0. Above €=0.20
we do not have sufficient numerical resolution to examine
this region at all.

In Fig. 6 (right) we plot the four curves y,(€), ¥,(€),
vi(€), and yy(€), shifted by the curve y"(e), which is used as
a reference. This allows us to appreciate that the differences
(¥ = ¥p)(€) and (y,—7")(e) seem to vanish linearly at about
€,=0.21x0.01, these two linear fits extrapolating to the same
value of e with reasonable confidence.

Above €,, as soon as a nontrivial solution of (energetic
finite-y) 1RSB cavity equations exists, it has immediately a

,y v =€)
138
e Easy UNSAT
*=1.8789
%p_1.8122 j

Ysch=1.639 —.
1.6

1.2

complexity 3(E) of the qualitative shape for the connectivi-
ties above 7,, (for example, see Fig. 8 in Appendix C). We
are thus led to conclude that in this interval the line y,(€)
should be taken as the 1RSB prediction for the SAT-UNSAT
line y'(e). At about €=0.26x0.01 the curve 7,(e) joints the
unit-clause upper bound.

We should add that, above €=0.07, both stability criteria
fail along the curve y"(€) [and then, along y,(€), for €>¢,],
so that the 1RSB prediction for the SAT-UNSAT transition is
not expected to be exact, but only an upper bound, in the
range 0.07 < €<0.2726 [35,36].

V. DISCUSSION AND CONCLUSIONS

We studied the average-case behavior of 1-in-3 SAT in the
random e-1-in-3-SAT ensemble, where e€e[0,1/2] is the
probability of negation. This generalizes the random (sym-

| \
0.059.g7 0.1

FIG. 6. Left: plot of the three curves y(e), ¥sp(€), and y,(€) described in the text. We left for comparison the SCH lower bound
(dot-dashed curve) and the RS instability line (dotted curve with stars data points). Right: the same data, with connectivity plotted with
respect to the SAT-UNSAT threshold prediction y*(€). Also the stability lines y,(€) and yy(€) are shown, and the interval of stability for the
SAT-UNSAT curve is e € [0,0.07+0.01]. In the inset, all the error bars are approximately as large as the point size.
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metric) 1-in-3-SAT problem (e=1/2) and random positive
1-in-3-SAT problem (e=0), which is a special ensemble of
exact cover.

Our main result is the phase diagram in Fig. 1 and, mag-
nified, in Fig. 6 above. It fills the conceptual gap between the
symmetric problem, of polynomial average-case complexity
both in the SAT and UNSAT regions, and the positive prob-
lem, which shows a hard-complexity phase around the SAT-
UNSAT threshold.

Concerning the SAT-UNSAT transition curve y'(€), we
computed upper bounds coming from the (UC) technique
and from first moment method with restriction to the 2-core
(IMM) and the lower bound coming from SCH. The UC and
SCH bounds have been proven to coincide on the interval
€€[0.2726,1/2] and thus determine the corresponding por-
tion of the SAT-UNSAT line rigorously.

All the other results are obtained with the nonrigorous
cavity method. The results of the replica-symmetric calcula-
tions do not give us a better result for the SAT-UNSAT
threshold than the UC and SCH bounds, since its predictions
have to be rejected above the RS stability line ygg, Fig. 3.

It is remarkable that a region of the phase diagram exists
where the replica symmetry is broken, while the short clause
heuristics is proven to succeed a.s. in polynomial time. For
what we know, such a feature has not been proven in any of
the previously studied models, while it has been often ob-
served empirically that some local algorithms—e.g., the
Walk SAT [37-40]—works in linear time inside a phase with
replica-symmetry breaking. We are tempted to say that this
result actually proves that the onset of a nontrivial replica-
symmetry-broken solution does not imply to the onset of
computational hardness (unfortunately the cavity results are
not rigorous and the term “computational hardness” would
have to be defined properly to be allowed to speak about a
proof). However, we hope that this could be used to study in
a new way the nature of the replica-symmetry-broken phase.
On the other hand, and as claimed before, we are persuaded
that a stable 1RSB solution suggests the existence of a hard-
SAT phase near to the SAT-UNSAT transition (nearer than
the stability threshold). For quantitative study of this point
for the coloring problem see [41]. The analysis of [41]
should be repeated for the 1-in-K-SAT problem in future
works.

Our main insight for the region with €<<0.2726 comes
from the one-step replica-symmetry-breaking calculations by
analysis of the energetic zero-temperature limit of the IRSB
cavity equations (33), in which we keep only the weights of
the hard fields instead of whole probability distribution.

For €<0.21 we can locate, on the curves for the zero-
energy complexity function %(7y), Fig. 4, the connectivities
v'(e) at which 3 vanishes, this corresponding to the SAT-
UNSAT transition. The same computation shows the exis-
tence of a nontrivial solution above y,,(€) < y'(e), thus pre-
dicting a whole interval of hard-SAT phases with many pure
states. However, for the exact location of the “dynamical
transition” we would need to keep the information about the
soft fields and compute when a nontrivial solution of Eq.
(33) appears for the entropically dominating clusters; see
[34]. Note here also that the inequality yy, < ygg for small €
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is due to the discontinuity of the transition towards nontrivial
1RSB phase, which cannot be seen by the local RS stability
analysis. The analysis of [34] would also show that a non-
trivial 1RSB solution exists everywhere in the region of y
> yrs- This analysis for 1-in-K SAT might be a direction for
future work.

Above the line y,(€), Fig. 6, the system shows a transition
to a phase where the 1RSB solution at zero energy ceases to
exist, while it still exists above some value E;,(y, €). This is
due to the presence of hard contradictions, a phenomenon
specific to strongly constrained problems, like 1-in-K SAT,
and to our knowledge it is a newly observed fact. An inter-
pretation of this transition may be that the SAT formulas start
to be subexponentially rare at the connectivity 7,,.

For €>0.21 the nontrivial 1RSB solution at zero energy
never exists and we can trace only the curve 7,. This would
be the 1RSB prediction for the SAT-UNSAT transition. This
result suggests that for €>0.21 a hard-SAT region might
actually be absent. Specifying what sort of replica-
symmetry-broken solution is connected to the breakdown of
local algorithms, like decimation heuristics or variants of an-
nealed Monte Carlo dynamics, is an important direction of
future research.

We have checked the local stability of the 1RSB solution
towards 2RSB. The result is that IRSB is stable only in a
small region between lines y; and 7y in Fig. 6. This means,
among other things, that the 1RSB location of the SAT-
UNSAT transition for €<<0.07 is likely to be exact. In par-
ticular, this is true for the positive 1-in-3-SAT threshold 'y*
=1.8789. For 0.07 < €e<0.2726 the 1RSB result is unstable,
so the exact location of the SAT-UNSAT transition in that
region remains an open question. We can only conjecture
that our 1RSB result is an upper bound, in analogy with
proofs for other models in [35,36].

Furthermore, it would be interesting to compare our re-
sults with the behavior of the structurally affine (2+p)-SAT
problem [16,17] for which a 1RSB analysis is still missing.

Finally, as we mentioned in several places above, the
IRSB cavity approach allows for algorithmic implementa-
tions. We have also started studying this aspect together with
Elitza Maneva and Talya Meltzer, and the results will be
published elsewhere.
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APPENDIX A: UPPER AND LOWER BOUNDS FROM
UNIT-CLAUSE PROPAGATION AND DECIMATION
HEURISTICS

Consider an instance drawn from an appropriate ensemble
and subject to a decimation algorithm whereby in each time
set a variable is set to =1. Call X the discrete decimation time
(number of variables set, among the N total) and C;(X) the
number of clauses remaining of length i=2. Thus the initial
conditions for the instance are X=0 and C;(X)=N35;3. As-
sume for now these quantities are sufficient to describe the
instance in the absence of clauses of “length 17 (unir
clauses). If we assume that a variable is fixed (decimated)
from such an instance, the remaining instance involves a
smaller number of literals, so it is simplified in some respect.
More importantly, some of the clauses are shortened and may
even be reduced to unit clauses. The unit clauses, being only
1 literal, allow no ambiguity in the values taken by variables
must be taken in order for the instance to be SAT. The initial
fixing of one variable by this process forces the value of
some other variables, which may again propagate—i.e., a
branching process. So a single binary choice could decrease
the number of variables by a considerable amount, as a result
of a cascade of these unit-clause implications.

The justification in considering the instance at all times
described by {C;(X)} and X is the following. For sufficiently
simple decimation rules, the distribution of the remaining
variables within clauses will be uniform and random at all X,
and if N is sufficiently large, the values of Ci(X) are self-
averaging. Furthermore, at fixed clause length, the fraction of
clauses with a given number of negations is the one expected
from an independent Bernoulli process: among clauses of
length i, at all times there is a fraction ( ;L)eh(l —€)™" of
clauses with i negations. All these elements are necessary to
allow a sufficiently concise dynamical description to make
the progress in the following sections. Among the various
possible heuristics—which determine the values set in the
absence of unit clauses—one typically is interested in the
(suboptimal) subset of heuristics which preserve these deco-
rrelation properties of the Poissonian ensemble, so that a
statistical analysis is achievable.

It is useful to consider the algorithm as partitioned into
rounds, which consist of a single application of the heuristic
rule (free step), followed by the cascade of unit-clause propa-
gations (forced steps). In expectation, the number of vari-
ables fixed throughout a round of unit-clause propagation is
described by a transition matrix depending on the clause dis-
tribution {C;(X)}, which are constant to leading order during
any “subcritical” round (defined below). The unit clauses
generated in the first free step go on to generate other unit
clauses and so forth; this can be described by a geometric
series in the transition matrix M(X). Calling p=(py,pr) and
m=(my,my), respectively, the expectations for the numbers
of variables fixed to (true, false) at the first level of the cas-
cade (p) and on the whole cascade (m), we have

m=p+ Mxp+M(x)p+ - =[I-Mx]'p.
(A1)

The matrix inverse above is justified from the fact that, for
consistency of the approximations, we require the round to
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be subcritical; thus, we must consider the range of param-
eters where the modulus of the largest eigenvalue of M is
smaller than 1. This is also responsible for the approximation
that M (x) remains invariant (up to order ﬁ) during the cas-
cade.

The transition matrix has two components. A first one
comes from K-clauses which are “broken” into a bunch of
K—1 unit clauses, because the fixed variable already satisfies
the original one and all other K—1 variables thus should take
the value not satisfying the clause. A second one comes from
2-clauses (if any) which were just “shortened” because al-
though the fixed variables are not satisfying them, the left-
over variables must, by definition, create unit clauses. Since
there are C;(x) clauses of length i and N-X variables left in
the instance, these two terms are combined in the expression

M —L[CX 3CX<€(1_E) < )
(x)_N—X [Ca(X) +3C3(X)] (1_6)2 e(1-e)

el-e (1 —6)2)}

i Cz(X)( é e(l-¢ (A2)

Here we identify that the unit-clause cascades on a large
graph are a simple uncorrelated process, governed by the
spectrum of a certain finite-size “transition matrix” (in our
case, 2 X 2). If all the eigenvalues have |\,| <1, the process is
subcritical: the typical size of the cascades is ~1/min;(1
—|\,]), and their average size concentrates. Conversely, when
the gap 1—|\, vanishes, a single cascade could visit a finite
fraction of a graph even in the large-N limit and thus could
lead to a contradiction.

Also note that both the upper- and lower-bound arguments
later derived are complemented by an analysis of the concen-
tration properties of the process [21] and by a nonrigorous
argument on the approximate decorrelation of distinct ran-
dom restarts on a fixed instance. The vulgate version reads:
“If a random algorithm succeeds with finite probability p on
its first run, after ~n independent runs the probability of
success will be ~1—exp[-n In(1-p)+---],” where the ellip-
sis stands for some function of the correlations, small in n/N,
caused by working with a fixed finite instance. We do not
discuss here these complex technical points.

1. Upper bound

If, for a variable i selected randomly from the initial in-
stance, both the cascades initiated by s(i)=+1 and s(i)=-1
percolate, there is a finite probability that they result in a
certificate of contradiction.

Thus the upper bound for the SAT-UNSAT transition
comes from the requirement that the cascades be on the edge
of criticality already at time X=0. At this point we have C,

=0 and C3=Nv/3, so that we get
dim9 < ) (hho) = (ye(l - 9,0)
(1-% el-g) T 0HPTEYEITOD:

(A3)

M(0) =2'y<

From this we see that a random instance is a.s. (randomized
linear time) provable to be unsatisfiable for 7y larger than the
percolation threshold:

011101-14



PHASE DIAGRAM OF THE 1-IN-3 SATISFIABILITY...

yuc(E) = 4 ( 1 (A4)

el-¢’

2. Lower bound

The differential equations studied here are a generaliza-
tion of those found by Kalapala and Moore [22] for the case
of positive 1-in-K SAT.

The heuristic determines the nature of the free step in our
rounds. The two rules examined here in are the random heu-
ristic (RH[p]) and short-clause heuristic (SCH). In RH[p] a
variable is chosen at random, with uniform probability, from
the remaining unassigned variables and set to true with prob-
ability p. In SCH, a random 2-clause is selected (if any ex-
ists) and a random literal set to satisfy the clause (hence the
other literal is set to not satisfy it). If at some time no
2-clauses exist, a RH choice is performed, but this fact will
not be relevant in our statistical analysis: criticality of the
cascade process will always arise after a time interval
throughout which an extensive number of short-length
clauses have been present [except at X=0(1)].

If, at some time X, py variables are set to true and py to
false in expectation, then C; changes accordingly. If an
i-clause contains the variable just fixed, it is reduced to an
(i—1)-clause, and similarly an (i+1)-clause can be reduced
to an i-clause. Call e=(e,1—¢€), p=(ps,pr), and 1=(1,1).
Still, in expectation,

i

Ci(X+ 1-p)= [Ci(X) - aﬁi,z(l - 5C2(X),o)]<1 - m(l P))

i+1
N—X(e‘p)CH’l(X)’

+ (A5)

where a=0 or 1, respectively, in the case of RH[p] and SCH.
The two heuristics are distinguished in that to initiate the
cascades for RH[p] we have pry,=(p,1-p) and for SCH
we have pgep=(1,1). The SCH value can be understood
since setting one random literal in a 2-clause implies setting
the other to the opposite value; thus, setting variables to ei-
ther 1 is equally likely in expectation.

A round can be described by incorporating the variables
set in the forced steps. Suppose that during a subcritical
round my variables are set to true and my to false in expec-
tation (including the free step), and call m the vector
(my,mp). To leading order in N—X the variation is

C(X+1-m)=[C(X) - 055,2(1 - 5c2(x),0)]

i i+1
X(l— (1-m)>+
N-X N-X

(e- m)Ci+1(X) .
(A6)

A final simplification in the clause dynamics is to summarize
the behavior by continuous variables x=X/N and ¢;=C;/N.
In the hypothesis of subcriticality, m/N is infinitesimal, and
we attain a differential equation description
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fwmo=—a@2mgu»<—l—>+—1—(—wwﬂ+u+n
dx ’ 1-m —-x

1
X<%>Ci+1()€)>-

For both RH[p] and SCH rules, the equation for c;(x) gives

(A7)

es() = 21 -0, (A8)
Instead, for c,(x) the equation is nonlinear. Indeed we get
that (my) and (mg) are given by the combination of Egs.
(A1), (A2), and (A8) and thus depend on the unknown func-
tion ¢,(x) (besides, of course, x, €, and vy). Using this expres-
sion within Eq. (A7) allows us to determine c,(x) by numeri-
cal integration, and thence N\, (x).

The best choice for the parameter p in RH[p] is the one
which creates the smallest cascades—i.e., the one “more or-
thogonal” to the principal eigenvalue €=(€,1-¢€), but com-
patible with the probabilistic interpretation of p. Thus, in the
whole interval € € [0,1/2], the choice p=1 is optimal.

Here we thus show the results for RH[1] and SCH. The
latter is always at least as good as the former and gives a
lower bound of 7,,=1.6393, while RH[1] attains 7,
=1.6031 for the case e=0. Kalapala and Moore calculated
these quantities for positive 1-in-K SAT, with compatible re-
sults for the K=3 case (up to maybe a misprint exchanging
RH[p] with RH[1-p]).

3. Exact SAT-UNSAT threshold for €>0.2726

This section proves the coincidence of the curves 7y, (€)
and 7y, (€) for €>0.2726. It was shown in the previous sec-
tion that whenever the cascades remain subcritical we are in
the easy-SAT phase. The criterion for the cascades to be
subcritical at x=0 is precisely y<1,.(€). It thus suffices to
show that the maximum (over the decimation time x) of the
max;|\,(x)| is attained for x=0. This is indeed what happens
in the interval € € [0.2726,1/2].

Building on the previous section we will see that, for
e-1-in-3 SAT and our heuristics, \(x) is a concave function.
So the interval on which 7y,.(€) and y(€) coincide is the
one in which

d\(x;e€, Y= ’yuc(e))
dx x=0

<0, (A9)

the end point being determined by the corresponding equal-
ity.

It is possible to calculate the characteristic polynomial
(and differentiate with respect to x). The expressions thereby
found can, however, only be evaluated exactly at x=0. At
this value we have expressions for ¢;(x) and there derivatives
in terms of the initial conditions and m.

As we increase connectivity towards the critical limit,
4ve(1-€)=1, a further simplification is in the eigenvectors
of M which become € and its orthogonal, the latter having
null eigenvalue. Regardless of p (which must have a compo-
nent along € in order to have positive components), we have
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FIG. 7. On the left, profiles of A(x) along decimation time x, for RH[1], at various € and at the corresponding critical value of . In all
the cases, the functions \(x) are concave [up to the limit value e=1/2, where \(x)=1-x]. For € larger or smaller than the tricritical value
€ =0.272633, the maximum of \(x) is achieved, respectively, at x=0 or at x>0. On the right, critical curves ¥c;(€) and ygy1](€), obtained
through short-clause (SCH) and random heuristics at optimal parameter p=1 (RH[1]). For a comparison with other values and curves here

out of range, cf. Figs. 1 and 3

€-m €€

Flx,€) = , F0,e)=——=1-2¢€(1-¢).
1-m 1-€
(A10)
Finally, the condition (A9) becomes
1 1-€\2
1+—< € +—6) [1-2e(1-¢)]-2=<0,
4\1-€ €
(A11)

so that finally, after the change of variable x=2€(1-¢€), one
gets the equation for the end point of the interval:

23— 2x%+3x-1=0, (A12)

whose only real solution gives €=0.272 633, or its symmet-
ric point.

To show that the properties at x=0 are sufficient to deter-
mine 7y, it is necessary to show that whenever criterion
(A11) is met and A(0) <1, the algorithm is subcritical at all
x. If we want a true analytic proof, besides the numerical

evidence of Fig. 7 (left), a method is to find a function N(x)
such that

Ax) < Nx) < \0), (A13)

hence establishing the result.
Since we find that N(x) is a monotonically increasing
function of c¢,(x), an upper bound é,(x) >c,(x) implies an

upper bound in A(x) also which we take to be ):(x). The
bound function ¢, is defined by replacing the complicated
function F(x, €) by the constant value F(0, €) in expression
(A7), which are then exactly solvable for all x as

é(x) = yx(1 = x)2F(0,€) = yx(1 —x)’[1 - 2¢€(1 - €)].
(A14)

For RH[%] and certain other heuristics this approximation
can be shown to produce an upper bound for ¢,(x) and yet be

exact at x=0 in both absolute value and derivative.
) ) dN(x) )
This then allows an exact expression for — — to be writ-

ten in terms of x. Though the dependence on x remains com-
plicated it can be established that

d\ .
ﬂ<O and N0) <1,

I (A15)

exactly in the same interval of € in which (A11) holds. These
fact proves that our “local” analysis at x=0 was sufficient for
the purpose of identifying the maximum over x of A(x) in
this interval.

As a final remark we note that the proof of this exact
bound is indirectly reliant on the convexity of the curves for
all € (Fig. 7, left). Interestingly we found that for e-1-in-3
SAT with k>3 the curves are not convex for some €; the
gradient at x=0 may be negative and yet the global maxi-
mum in N appears at x>0. On first inspection a rigorous
bound appears more challenging to obtain in these cases.

APPENDIX B: OTHER BOUNDS

1. Upper bound from the first moment method

Here we obtain the statistical properties of the 2-core of
random bipartite graphs, in the Erdos-Rényi ensemble de-
scribed in Sec. I A, with K=3. Assuming y>1/2, the perco-
lation transition, we solve self-consistently for the probabil-
ity that a given branch of the graph is not percolating.

We use “giant” or “small” for synonymous of “of size of
order N” or “of size of order 1,” respectively. Indeed, for
graphs in our ensemble, a.s. there is a single giant 2-core
component. Each edge is either attached on both sides to a
small tree, is attached to a small tree on one of the two
extrema and to the giant 2-core on the other one (i.e., it is in
the leaf part of the giant component), or is connected to the
2-core through both extrema. Only in this last case is it in the
2-core of the graph.

Consider an incoming edge from a clause on the original
graph. Call ¢ the probability that the part of the graph
“downstream” is a tree. The edge will be attached to a vari-
able, participating in k other clauses (k Poissonian distributed
of rate ). For each clause there will be two incoming edges,
which must also be connected to finite trees. Self-consistency
will thus require that
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g=> e—vzq% — 14"

> e (B1)

The two functions ¢g(y) and y(g), inverse of each other, are
both monotonic in our domains g [0,1] and ye[1/2,
+). In particular, y(g) has an algebraic form

Ing
1—q2’

Ng)=- (B2)

so that using ¢ as a parameter instead of y will simplify our
equations.

The probability that an incoming branch from a variable
is connected to a tree is ¢, as it is the probability that both
outgoing branches from the neighboring clause are con-
nected to a tree. Thus, the average number of variables of
coordination k=2, (N,), is proportional to a Poissonian with
rate Y(1—-g*)=-Inq. Then, there will be (M;)=(1-¢g)’M
clauses remaining of degree 3 and (M,)=3¢(1—-¢)>M clauses
reducing to 2-sat clauses, all the others being decimated by
the leaf removal. The number of edges is E=2kN;=3M;
+2M,, so on average (E)=N(-Ing)(1—g). All these aver-
aged quantities are concentrated.

Consider the ensemble of configurations s, in “spin” no-
tation as in the rest of the paper. Call x; the fraction of
variables of degree k which take value +1: the space of con-
figurations is thus described by the infinite vector {x;};=»,
with each x in [0, 1], and a vector {x;} comes with an entropy

Sva.r(f) = 2 Nkh(-xk) B (B3)
k

where we use the common two-state entropy function A(x)
=—xInx—(1-x)In(1-x). Denote by x the fraction of incom-
ing edges from variables assigned value +1,

1
x= =2 kN, (B4)
E k

and by p the fraction of edges (ai) such that J,;s;=+1, and
hence p=(1-€)x+e(l1—x)=€+(1-2€)x.

The probability that a 1-in-3-clause is satisfied is thus
3p(1-p)?, and the probability that a 2-SAT clause is satisfied
is 1—p>. So we get for the entropy term coming from clauses

Sea(p(¥)) = M3 In[3p(1 = p)*1+ M, In(1 - p?).  (BS)

The upper bound on the SAT-UNSAT transition is achieved
by the line in the (g, €) plane (with range [0,1]X[0,1/2])
where the total (intensive) entropy S(g, €) vanishes:

ﬂ%d=?§5m£ih S(g, €:%) = Sy(X) + Seia(p(X)) .
Xk

(B6)
This variational problem is infinite dimensional, thus at first

sight intractable. Instead, stationarity with respect to x; pro-
duces
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1 Xk
—1In
k l—xk

(1-¢9) 1-3p g 2 )
31+g)p(l-p) l+gl-p?
(B7)

=(1 —26)(

=:y(p).

Remarkably, a single parameter y describes the family of
possibly stationary vectors {x;}, this being a residue of the
original independence of the Poisson ensemble:

1
1+

x(y) = (B8)

Then, we can get self-consistently p from y, through the x;’s,

1 1
p(y)=€+(1- 26)5% kaTe_ky
g < (hg* 1
:e+ﬂ—261_q§: 0 1oy (B9

So the expression for the entropy S(g,€) is given by the

function
i (_lnq)k( 1 ) (-Ing)(1-gq)
S(q,E)—qzk: X h 1469 * 3(1+q)

X{(1 = ¢)In[3p(1 = p)*1+ 3¢ In(1 - p*)},
(B10)

where the values of p and y are determined by the (only)
solution of the nonlinear system of two equations (B7) and
(B9). The set of points (€, y(g)) where the function S(g, €)
vanishes describes a curve which appears in Figs. 1 and 3.

Finally, we remark that a better upper bound can be
achieved if one realizes that a further removal procedure is
allowed: if a variable is connected only to 2-SAT clauses and
with edges all of the same sign, then one can safely fix it,
satisfying all the neighboring clauses. The new reduced in-
stance is SAT if and only if the original one is, but the num-
ber of solutions is potentially smaller: as this decreases fluc-
tuations, the bound is improved.

For the case €=0, this program is achieved in [23], al-
though with the restriction to the variational space of x; all
being equal, and leads in that case to the (better) bound v,
=1.932.

2. Algorithmic upper bound through embedding into 3-XOR
SAT

An instance of 1-in-3 SAT is SAT only if the correspond-
ing 3-XOR SAT instance is SAT, where 3-XOR clauses al-
low also for the extra “spurious” configuration
(J101,J202,J303)=(+, +, +).

Random Erdos-Rényi graphs with K=3 have a finite core
(under hypergraph leaf removal: if a variable has degree 1,
one removes it together with the incident clause) beyond a
“dynamical” threshold a;=0.818. In a range a;<a<a,
=0.918 there is an exponential number of solutions in the
XOR-SAT problem, even if restricted to the core. However,
beyond the critical value «, there are no longer solutions
(other than the single trivial one, with all ;= +1, in the case
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of “positive” instances with all J;=+1). These results can be
found, for example, in [24,25].

The last situation can be detected in polynomial time, by
Gaussian elimination on the adjacency matrix: if the rank
equals the number of variables [more generally, if it is
smaller by at most O(In N)], the solutions on the core can be
checked in polynomial time. As a.s. all variables are forced
to be +1, a fraction of order 1 of the clauses in the core will
be proven to be satisfiable only by the “spurious” configura-
tion (+,+,+). This provides a certificate of unsatisfiability
for the original instance in the random e-1-in-3-SAT en-
semble.

So at all €, for y>3a,=2.754, one gets a.s. a certificate of
unsatisfiability in randomized cubic time (an upper bound for
matrix triangulation). This proves that the easy-UNSAT
phase starts from a finite y at all e.

The method strongly relies on the fact that a XOR-SAT
core exists in the instance. Unfortunately, this is not the case
for the customary reductions of SAT to e-1-in-K SAT, even at
large « (as the former constraints are much more sloppy than
the latter, the reduction makes use of auxiliary leaf struc-
tures), so the method does not extend to a randomized
polynomial-time algorithm for finding a certificate in large-«
3-SAT instances, in agreement with the widespread conjec-
ture that such an algorithm cannot exist [26].

APPENDIX C: 1RSB AT POSITIVE ENERGY (FINITE y)

In this appendix we describe the 1RSB solution in the
energetic zero-temperature limit, but at finite value of param-
eter y. That allows us to compute the dependence of com-
plexity 3 on energy E for a given probability of negation e
and connectivity 7.

The survey propagation equations (42) and (43) at finite y
become

P =N B
,

prob(AEH" =r, 2w = 0)] ;

bedi\a

(Cla)
pi_ﬂa l*?tl —Nl_>a|:2 e
Prob(AEH" =r, 2 U< 0)] ;

bedi\a

(C1b)
e —Nl_,a[z e” prob(AEH“ =r, 2 .= 0)]
bedi\a

(Clc)

where A ., is the normalization factor and AE¢
=3, c sialttp—il = |Zp < siattp—i|. When using Hamiltonian H as
in Eq. (2) (as we did), the probabilities of biases are given by
the incoming probabilities of fields as

j—a k—a

LHZ Naﬂlp P-4 (C2a)
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g% =Nl (=Pl + (1= p) ) ],

(C2b)
qgﬁl_ u‘)l[ j_7aplé~>u+ i—a k~>a+ Oﬁapkﬂa
+P/JH ) ka e”], (C2c¢)

where N,,_,; is again the normalization. If we were using H’
of Eq. (13) instead, the last summand in Eq. (C2c), propor-
tional to ™, would have appeared in Eq. (C2b).

Similarly, for the replicated free energy and energy we
have

—yd(y) =2 ln<2 ™" prob(AE* % = r))

- 2 (d;- l)ln(z e prob(AE' = r)),

(C3)
> re™" prob(AE“V% = 1)
F)= 2 E ™" prob(AE™% = r)
E re™" prob(AE = r)
- E (d; - (C4)

E e prob(AE = r)

The probabilities prob(AE=r) have to be computed algorith-
mically (sum over all combinations). We found closed for-
mulas only when r=0 (no contradictions), Eqs. (42) and
(48).

1. Complexity as a function of energy

Again with the population-dynamics algorithm we solve
Egs. (C1)—(C4) and from the solution obtain the replicated
potential ®(y), Eq. (C3). The function X (E), plotted in Fig.
8, is obtained by fitting function ®(y) and computing the
Legendre transform (37) of the fit:

IP())
E(y)=—""""1,
ay
A nonparamagnetic solution of Egs. (C1) and (C2) exists
only above a value y.(vy), which decreases monotonically,
from its asymptotics y., — +% for y™\ ¥, to ye—0 for y
— o0, The function X(E) is parametrically identified from the
two X(y) and E(y) above. Assuming the latter are regular
functions and noting that J%(E)/JE=y, one also finds that
3.(E) is regular and convex or concave, respectively, if the
parameter y grows towards right or left, up to (possibly)
special points where the curve changes concavity (furning
points). Note that only the concave parts have a physical
meaning, while the convex parts are the “nonphysical” por-
tion of the formal solution.
It turns out that, for y,,<y< 7, there is a single turning
point, from convex at small y to concave at large y, the

0P
2 () .

() = (C5)
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FIG. 8. Complexity as a function of energy for positive 1-in-3 SAT for several different connectivities. y=1.850 is in the SAT region,
y=1.879 is near the SAT-UNSAT transition, 1.900=< y=<1.970 is in the UNSAT region, and 2.000=< y=<2.200 is in the UNSAT region where

a solution at zero energy does not exists.

values E, . and y,,, labeling the values of E and y at this
point. Instead, for y> Yps & second turning point, from con-
cave to convex, arises at higher values of y, thus defining the
values E;, and v,

The labels of “max” and “min” stand for the fact that
there exist phases with energy E (a number approximately
exp[2(E)], if 2(E)>0, or in a fraction of instances of order
exp[2(E)], if 2(E)<0), only for energies in a range Ey;,
<E<Eq, (where E;,=0 for y<y,), while we should in-
terpret that there are no pure phases with energy E out of the
range above, up to a subexponential fraction of instances.

We find that, for all y, X(E,,) >0, while for y>1y,,
S(Ein) <0. An intermediate value Erin <E g <Epx, corre-
sponding to the one at which the complexity vanishes, exists
for all y>+v". It is the value of minimum energy of a con-
figuration in a typical instance sampled from the correspond-
ing ensemble, so it is important for the statistical properties
of the “optimization” problem in the UNSAT phase (see Fig.
9).

In Table I we show the numerical values of the quantities
described above, for a range of relevant y’s, obtained by
population dynamics.

Let us mention that, in our interpretation, the possibility
of hard contradictions, peculiar to 1-in-3 SAT and other
highly constrained NP-complete problems and absent in the
more intensively studied K-SAT and coloring problems, is
responsible also for the existence of the second turning point
and the second unphysical branch at high values of y, which
is indeed a new feature of this system.

APPENDIX D: STABILITY OF 1RSB

In this appendix we describe how to check the self-
consistency (stability) of the 1RSB solution, with a treatment

similar to the one in Sec. III E, for the replica-symmetric
solution. We do it only for the solution at zero energy, y
—o0: as we will see, this is sufficient to determine the SAT-
UNSAT transition line in an interval of € near €=0, thus
complementing the information we already have for the
neighborhood of e=1/2.

The stability analysis of the replica-symmetric solution
investigates if the replica-symmetric state tends to split into
exponentially many states. In the case of 1RSB we have two
stability conditions to test this. The type-I stability condition
determines the tendency of 1RSB states to aggregate, and the
type-1I condition determines the tendency of the states to
split. The names “type I and “type II” come from [11,29]. In
the case that the 1RSB solution is not stable—i.e., the states
tend to split or aggregate—we would deduce instability to-
wards the 2-step of replica symmetry breaking (2RSB).

E/N
0.014

0.012 |
0.010 |
0.008 |
0.006 |
0.004

0.002

0
S2Te22 L9 50 71 W)
TR 1 879 yp=1.992 v

FIG. 9. The values of Ey.(y), Egs(y), and Ep,(y) and a qua-
dratic fit which extrapolates t0 Epyx(¥sp) = Egs(¥) =Epmin(7,) =0.
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TABLE 1. Values at special points in the complexity vs energy curves of Fig. 8. The parametrizations E(y) and 2(y) at various exist for
Y=y () (the estimate is an upper bound, being the first value for which a nonparamagnetic RS solution emerged). All energies E and
complexities 2, are extensive, and the factors 1/N in the table entries are understood. The triplets (y,E,>) . and (if any) (y,E,>) i, are the
two turning points, while (y,E ,EzO)gs is the point where the complexity vanishes, along the physical branch of the curve. In the column for
3 min» the first five values are instead 3(E=0), as E,;,=0 without turning point in that case.

Y Yex Vimax Emax S max Vs E, Yin Epmin 2 i
1.850 2.9 3.35 0.000410 0.00414 0 (+0.00247)
1.879 2.1 2.83 0.000969 0.00441 0 (~0.00015)
1.900 1.6 2.64 0.00143 0.00471 531 0.000282 (-0.00215)
1.935 1.0 2.40 0.00236 0.00480 431 0.000939 (~0.00570)
1.970 0.6 2.25 0.00336 0.00517 3.83 0.00176 (~0.00954)
2.000 0.4 2.09 0.00428 0.00534 3.60 0.00255 7.37 0.000149 -0.0111
2.050 0.1 2.04 0.00573 0.00611 3.27 0.00406 6.37 0.00107 -0.0121
2.100 0.1 1.94 0.00613 0.00815 3.04 0.00580 5.76 0.00232 -0.0130
2.150 0.1 1.86 0.00766 0.0104 2.88 0.00632 5.27 0.00377 -0.0138
2.200 0.1 1.67 0.00993 0.0126 2.72 0.00674 532 0.00549 -0.0155

However, this is not expected to be the correct picture, while
what more probably occurs is what is called full-RSB [31],
or something else still unknown.

The method for computing these stabilities for models on
random graphs was introduced in [29] and applied to K SAT
[11,32] and later to many other problems. For both types of
1RSB stability there exist several equivalent analyses.

For the stability of type II we choose the bug prolifera-
tion. This is developed concisely in Sec. D 1 for the 1RSB
solution of zero energy (y— ). For more theoretical back-
ground for this method see papers [29,30,32].

For type-I instability it is possible to consider the conver-
gence of survey propagation equations (42) and (43) on a  Define the six-dimensional transition matrix, in the index
single graph. However, we choose to consider the noise pairs (u,u’) and (w,w’), pairs of distinct elements in
propagation method, which uses a population-dynamics {0, +1}%
technique similar to that used for stability of the replica-
symmetric solution, Eq. (31). Again we give just the formu-
las and results in Sec. D 2; for a general explanation, see

[29,30,32]. 1 o o ,
2 ’ —_—— *).,--- Cn*)‘/ < *}k.-- Cm*}k
- N 2 qui qun qull qvm
uy,...,u,€{0,£1}
1. Stability of the second kind, bug proliferation V1V {051}
Suppose that, in a neighborhood of edge (a,i), with j and X 5f“*"(u,u2,...,v,,l),w‘sf“ﬂ"(u’,uz,‘..,vm),w’

k being the other two variables incident on a, an incomin

ne . & X ONBa—i(u" uy,. . 0,).0¢ (D2)
warning u,,_,; is changed from the value u to another value "
u'. Assume also that there are n—1 other clauses c,,...,c,
(besides a and b) incoming to node j, the warnings having ~ The quantity P(w—w'|u—u’) is proportional to the prob-
values, respectively, u,, ...,u,, and that there are m other  ability that the change u—u’ in warning u,_,; has induced a
clauses ¢y, ...,c,, (besides a) incoming to node k, the warn- ~ change ~w—w’ in  the warming u, ;.  Here
ings having values, respectively, vy, ...,v,,. Conditioned to Faiub=d w27 un™ wr =k ufnk) implements
the existence of the path ((bj),(ja),(ai)), the other coordina-  the cavity equations at zero energy (12), with the appropriate
tions m and n—1 are decorrelated and Poissonian distributed,  disorder parameters (J,;,J,;,J4), s0 the &'s force this value
with rate y. Denote by 7 the set of parameters describing the to be equal to ', in the two cases (u®/=u, u*~'=w) and
characteristics of the graph in this neighborhood (uP~i=u’, u®'=w’). The & in the energy shift is the residual

of the reweightening factor exp(-yAE“~’) in the limit
j= (n_17m;Ja[7Jaj’Jak)' (Dl) g g p( y ) y

— oo [note that it only appears on the pair (u’,w’) of biases
The labels w and w' will describe the value of the output  along the chain]. Normalizations N=N,_ N, N, _, are
warning, u,_;, under u,_,;=u and u’, respectively: those from Egs. (42) and (43).
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The transition matrix defined above determines if a small
fluctuation in the equilibrium distribution of the fields is re-
inforced through the cavity iterations, thus leading to an in-
stability. After d iterations, the modulus of the fluctuation
changes on average by some factor (27y)¢ Tr(P 7,---Pg), be-
cause there are on average (27)? chains of length d ending on
a given edge, and the trace of a “chain” of transition matrices
estimates the influence of changing a bias at an edge at dis-
tance d upstream. So we define the (finite-d and d— o)
type-II stability parameters

'LLH(d) = 2‘)/ Tr<Pj1 T de>l/d’ M= (}im MH(d) s

(D3)

where the average is over the connectivity distribution and
the disorder in negations—i.e., the parameters globally iden-
tified above with the letter 7. The various J’s refers to the
different segments of the chain and thus are independent.
Again, the stability condition reads

< 1. (D4)
The matrix P for the e-1-in-3-SAT problem is six dimen-
sional, and we computed it for general realizations of nega-
tion and connectivities. It has a block-triangular form (a
change 0 — +1 never induces changes other than 0 — +1 and
a change =1 — 0 never induces =1 — ¥ 1). Moreover, two of
the three 2 X 2 blocks on the diagonal, B, are equal and have
elements always larger than those of the third block B':

0—+1 +1—0 +1—F1

0—+1 B 0 0

Pw — w'u—u'):
+1-0 * B 0

+1-F1] % % B’

So in the large-d limit we need to analyze only the 2X?2
block B of elements, propagating the “bug” 0« =1. For
J=(n=1,m:J,;,J4.J ), the block elements take the form
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a3 o)) ol )

(D5)

n m n

a=1layIlah, B=T1(a5+4; )[1abh,  (D6)
j=2

=1 j=2 (=1

and triplets (gg.q¢,q%) for different edges are independently
sampled from the stationary distribution.
Results for the type-II stability are presented in Fig. 5.

2. Stability of the first kind, the noise propagation

In a similar way to bug proliferation, we write a sort of
transfer matrix 7:

a—i
.
b—j/o, T b—j>
.5

o,7e{+,-}. (D7)

The dependence of ¢“~ on ¢”~/ is given by the survey
propagation equations (42) and (43).

We perform a population-dynamics analysis, where to ev-
ery edge in the population is associated a triple for the sur-
veys, (¢_,q0,9.), updated with the cavity equations (42) and
(43), and a pair of noise parameters, v=(v,,v_), which are
updated according to

>q—si _ —i >h—j —i 2c—k
i 3 T S Tt

cedk\a

(D8)

bedj\a

The motivation is to compute whether a small change in the
equilibrated incoming survey ¢”~/ is dumped under cavity
iterations.

The analysis goes in complete analogy with the one in
Sec. III E. We initialize the noise parameters with an arbi-
trary random procedure and wait for equilibration of the dis-
tribution, up to a scaling overall, |[v]|;:==,([v¢|+|v°|) where ¢
denotes the iteration time and the sum is over the population.
The stability parameter is now, for some time ¢ larger than

equilibration,
_ < ||v||,+1>
M1 = s
loll

and the stability condition is u;<<1.

(D9)

[1] S. Cook, in Proceedings of the 3rd Annual ACM Symposium on
Theory of Computing (ACM, New York, 1971), p. 151.

[2] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness (Freeman, New
York, 1979).

[3] M. Mézard and G. Parisi, Eur. Phys. J. B 20, 217 (2001).

[4] M. Mézard and G. Parisi, J. Stat. Phys. 111, 1 (2003).

[5] G. Biroli, R. Monasson, and M. Weigt, Eur. Phys. J. B 14, 551
(2000).

[6] Special Issue on NP Hardness and Phase Transitions [Theor.
Comput. Sci. 265 (2001)].

[7] L. A. Levin, SIAM J. Comput. 15, 285 (1986).
[8] M. Mézard, G. Parisi, and R. Zecchina, Science 297, 812
(2002).
[9] M. Mézard and R. Zecchina, Phys. Rev. E 66, 056126 (2002).
[10] M. Mézard, G. Parisi, and M. A. Virasoro, Spin-glass Theory
and Beyond, Vol. 9 of Lecture Notes in Physics (World Scien-
tific, Singapore, 1987).
[11] A. Montanari, G. Parisi, and F. Ricci-Tersenghi, J. Phys. A 37,
2073 (2004).
[12] F. Krzakata, A. Pagnani, and M. Weigt, Phys. Rev. E 70,
046705 (2004).

011101-21



RAYMOND, SPORTIELLO, AND ZDEBOROVA

[13] R. Mulet, A. Pagnani, M. Weigt, and R. Zecchina, Phys. Rev.
Lett. 89, 268701 (2002).

[14] J. W. Rosenthal, R. Speckenmeyer, and R. Kemp, Ann. Math.
Artif. Intell. 6, 185 (1992).

[15] D. Achlioptas, A. D. Chtcherba, G. Istrate, and C. Moore, in
Proceedings of the 12th Annual ACM-SIAM Symposium on
Discrete Algorithms (ACM, New York, 2001), p. 721.

[16] R. Monasson and R. Zecchina, J. Phys. A 31, 9209 (1998).

[17] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L.
Troyansky, Nature (London) 400, 133 (1999).

[18] D. Achlioptas, L. M. Kirousis, E. Kranakis, and D. Krinzanc,
Theor. Comput. Sci. 265, 109 (2001).

[19] T. Walsh, From P to NP: COL, XOR, NAE, I-in-k, and Horn
SAT, Proceedings of AAAI-2002 (AAAI Press, Seattle, WA,
2002).

[20] T. Walsh, 2+p-COL, Proceedings of the Computational Sym-
posium on Graph Coloring and its Generalizations, CP-2002
(Cornell, New York, 2002), p. 314.

[21] C. Deroulers and R. Monasson, Eur. Phys. J. B 49, 339 (2006).

[22] V. Kalapala and C. Moore, e-print arXiv:cs/0508037.

[23] S. Knysh, V. N. Smelyanskiy, and E. R. Morris, e-print
arXiv:cond-mat/0403416.

[24] F. Ricci-Tersenghi, M. Weigt, and R. Zecchina, Phys. Rev. E
63, 026702 (2001).

[25] M. Mézard, F. Ricci-Tersenghi, and R. Zecchina, J. Stat. Phys.
111, 505 (2003).

[26] V. Chvital and E. Szemerédi, J. ACM 35, 759 (1988).

[27] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Net-

PHYSICAL REVIEW E 76, 011101 (2007)

works of Plausible Inference, 2nd ed. (Morgan Kaufmann, San
Francisco, 1988).

[28]J. S. Yedidia, W. T. Freeman, and Y. Weiss, IEEE Trans. Inf.
Theory 51, 2282 (2005).

[29] A. Montanari and F. Ricci-Tersenghi, Eur. Phys. J. B 33, 339
(2003).

[30] O. Rivoire, G. Biroli, O. C. Martin, and M. Mézard, Eur. Phys.
1. B 37,55 (2004).

[31] G. Parisi, J. Phys. A 13, L115 (1980).

[32] S. Mertens, M. Mézard, and R. Zecchina, Random Struct. Al-
gorithms 28, 340 (2006).

[33] M. Mézard, M. Palassini, and O. Rivoire, Phys. Rev. Lett. 95,
200202 (2005).

[34] F. Krzakata, A. Montanari, F. Ricci-Tersenghi, G. Semerjian,
and L. Zdeborova, Proc. Natl. Acad. Sci. U.S.A. 104, 10318
(2007).

[35] S. Franz and M. Leone, J. Stat. Phys. 111, 535 (2003).

[36] S. Franz, M. Leone, and F. L. Toninelli, J. Phys. A 36, 10967
(2003).

[37] B. Selman, H. A. Kautz, and B. Cohen, Proceedings AAAI-94
(AAAI Press, Seattle, WA, 1994), p. 337.

[38] S. Seitz and P. Orponen, Electronic Notes in Discrete Math-
ematics (Elsevier, Amsterdam, 2003), Vol. 16.

[39] S. Seitz, M. Alava, and P. Orponen, J. Stat. Mech.: Theory
Exp. (2005) P06006.

[40] J. Ardelius and E. Aurell, Phys. Rev. E 74, 037702 (2006).

[41] L. Zdeborova and F. Krzakata, e-print arXiv:0704.1269v2.

011101-22



