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We study the susceptible-infected-recovered model of epidemics in the vicinity of the threshold infectivity.
We derive the distribution of total outbreak size in the limit of large population size N. This is accomplished
by mapping the problem to the first passage time of a random walker subject to a drift that increases linearly
with time. We recover the scaling results of Ben-Naim and Krapivsky that the effective maximal size of the
outbreak scales as N2/3, with the average scaling as N1/3, with an explicit form for the scaling function.
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Understanding the spread of an epidemic is, of course, of
major importance for the fight against infectious diseases. Of
particular importance is the case where novel pathogens,
such as the instigators of SARS, HIV, or avian flu, appear in
human populations and spread unchecked in the absence of
acquired immunity. Since many of the known infectious dis-
eases, both old and new, are strongly related to those already
existing in animals, the common hypothesis is that some mu-
tants of the wild type have crossed the barrier between their
natural reservoir and the human population �1�. This “zoono-
sis” scenario involves repeated transfer of subcritical patho-
gens from the animal reservoir to a human host, followed by
subsequent infections in the human population during which
a mutation eventually takes place, turning the disease super-
critical �2�. Thus, the study of infection models close to criti-
cality is extremely significant for a deeper understanding of
this process, aiming ultimately at the prevention of the
spread of new, often dangerous, diseases.

Recently, Ben-Naim and Krapivsky �3� �BN-K� studied
the statistics of the size of an epidemic in the susceptible-
infected-recovered �SIR� model �4–6� when the infectivity is
near its threshold value. When the infectivity is below
threshold, an outbreak quickly dies out, infecting some finite
number of individuals, essentially independent of the popu-
lation size. Above the threshold, the total average number of
affected individuals reaches a finite fraction of the popula-
tion. BN-K found that at threshold, the total average number
of affected individuals is proportional to N1/3, for large N,
and that there are essentially no outbreaks which infect more
than of order N2/3 victims. While presenting an argument
justifying these scaling laws, no analytic calculations for the
distribution of outbreak sizes was given. In this Rapid Com-
munication, we present an exact formula for this distribution,
in the limit of large population sizes, which exhibits the scal-
ing properties found by BN-K. This calculation involves
solving an auxiliary problem, namely, the first-passage time
statistics �7� for a random walker released at x=1 to be ab-
sorbed at the origin, given a small leftward drift, which in-
creases in magnitude linearly in time. This problem is one of
the few such problems with time-dependent forcing �8� for
which an analytic solution is available, and so is of indepen-
dent interest.

We begin with a description of the SIR model. The N
individuals in the population are divided into three sub-
classes: the susceptible pool, of size S; the infected �and
infectious� class, of size I; and those recovered �and no
longer infectible�, of size R, with N=S+ I+R. The disease is
transmitted from an infected individual to a susceptible one
with rate � /N, so that

�S,I,R� →
�SI/N

�S − 1,I + 1,R� . �1�

Infected individuals recover with a rate � as follows:

�S,I,R�→
�I

�S,I − 1,R + 1� . �2�

Of primary interest is the case where initially S=N−1, I=1,
R=0, so that the outbreak is sparked by a single infected
individual. The outbreak terminates when the last infected
individual recovers, and I returns to 0.

This stochastic process is traditionally approximated �for
large populations� by the classic SIR rate equations

Ṡ = −
�

N
SI ,

İ =
�

N
SI − �I ,

Ṙ = �I . �3�

Since S decreases monotonically, these equations are easiest
dealt with by eliminating the time and considering dI�S� /dS,
which is obtained by dividing the second rate equation by the
first as follows:

dI

dS
= − 1 +

N

R0S
, �4�

with the solution

I = N − S +
N

R0
ln�S/�N − 1�� , �5�

where we have introduced the traditional parameter R0
�� /�, equal to the mean number of primary infections
caused in a large population of susceptibles by an infected
individual. It is clear that if R0�N / �N−1��1, the rate equa-
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tion predicts that the number of infected individuals de-
creases monotonically in time �decreasing S�, whereas if R0
is greater than this threshold, the number of infected indi-
viduals first rises, and as S decreases, eventually N /S rises
above R0 and I falls until it hits 0 at Sf = �1−r�N, where the
fractional size of the epidemic satisfies

r + exp�− R0r� = 1. �6�

Thus at the classical level, R0=1 marks the threshold be-
tween an infection that infects a finite percentage of the
population and those that fail to spread.

To study the stochastic process at large N, we adopt a
similar strategy and eliminate time, focusing solely on the
transitions between states. We characterize the system by the
number of transitions the system has undergone. In each
transition the number of infected individuals either rises or
falls by one, so that I undergoes a kind of random walk.
After T transitions, S and R are completely specified by T
and I, with, for example,

S = N −
1

2
�T + I + 1� . �7�

The probability of an upward transition is p+=R0S /
�R0S+N�, whereas the probability of a downward transition
is p−=1− p+. These probabilities are unequal and depend on
I and T, so that the walk is biased, with a “time-” and space-
dependent drift. �From here on, we will colloquially refer to
T as time, and trust this will not lead to confusion�. The form
of these probabilities simplify at threshold, R0=1, where as
we shall see, N−S and I are both much smaller than N. Then,

p± �
1

2
�

1

8N
�T + I� , �8�

where T is assumed large enough that we can ignore the 1.
Thus, the drift at threshold is very weak.

This formulation immediately gives the well-known an-
swer for an infinite population, where the bias term vanishes
and we have a simple random walk starting at 1 with a trap at
the origin. The distribution of first-passage times is �7�

P�T = 2k + 1� = 2−2k−1��2k

k
	 − � 2k

k + 1
	
 , �9�

which for large T becomes

P�T = 2k + 1� �
1

�4�k3
. �10�

We now study how the bias, resulting from the reduction of
the susceptible pool with time, modifies this answer.

It is straightforward to generate the discrete-time master
equation for our biased random walk. Since the bias is very
weak, however, it is only effective at large times, and we are
justified in passing to the Fokker-Planck equation for the
distribution P�I� as follows:

�

�T
P�I,T� =

1

2

�2

�I2 P +
1

4N

�

�I
��T + I�P� . �11�

One final simplification is to realize that the time-dependent
drift is more effective than the spatially dependent drift, and
so the latter may be dropped. The argument is straightfor-
ward: The typically “length” scale I is proportional to
T1/2. Thus, the time-dependent drift is relevant when
T−1�T1/2 /N, or T�N2/3. The spatially dependent drift be-
come effective only when T−1�1/N or T�N, much later
than the time-dependent drift and so can be neglected.

Thus the equation we need to solve is

�P

�T
=

1

2

�2P

�I2 +
T

4N

�P

�I
. �12�

This equation is difficult to treat in its current form, since it
is not separable, but becomes so if we define

P � e−IT/4N−T3/�96N2�� , �13�

so that

��

�T
=

1

2

�2�

�I2 +
I

4N
� , �14�

with the boundary conditions ��0,T�=0, ��I ,0�=��I−1�.
We can eliminate N from the equation by the scaling

T�2a2T̃, I�aĨ, with a= �2N�1/3, resulting in �after dropping
the tildes�

��

�T
=

�2�

�I2 + I� , �15�

with ��I ,0�=��I−1/a� /a. The operator on the right-hand
side has an spectrum unbounded from above, so we need to
regularize the problem by imposing an absorbing wall at
some large L, which we will remove to infinity at the end.
Clearly, introducing such a wall in the original equation for
P has no significant effect, so it cannot materially affect our
calculation in terms of �. With this regularization, the right-
hand operator has a well-defined discrete spectrum, with ei-
genvalues En and normalized eigenfunctions 	n. In terms of
this, the flux of � to the trap at the origin is given by

F� =
1

2
 ��

�I


I=0
=

1

2a
�

n

	n��0�	n��1

a
	eEnT

�
1

2a2�
n

„	n��0�…2eEnT. �16�

The eigenfunctions 	n are given by

	n�I� = An Ai�− x + En� + Bn Bi�− x + En� . �17�

The condition 	n�0�=0 implies that

Bn = − An Ai�En�/Bi�En� , �18�

and so, given that the Wronskian of Ai and Bi is 1 /�,

	n��0� = − An/„�Bi�En�… . �19�

The normalization condition is
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1 = �
0

L

	n
2�I�dI = �	n�

2 + �x − E�	n
2�0

L

= �„	n��L�…2 − „	n��0�…2� �
�An

2 + Bn
2�L1/2

�
,

�20�

where we have used the fact that L is large to approximate Ai
and Bi by their asymptotic expansions for large negative ar-
guments �9�. The density of states is easily calculated from
these expansions to be

dn

dE
�

L1/2

�
. �21�

We thus have, taking away the cutoff,

F� �
1

2�2a2�
−



 dE

Ai2�E� + Bi2�E�
eET. �22�

Translating back to the original units and P, this gives our
major result for the probability density of extinction of the
epidemic at transition T, with S=N−T /2 susceptible indi-
viduals left, so that n=T /2 individuals in all have been in-
fected, as follows:

P�n� =
e−n3/�12N2�

�2a3 �
−



 dE

Ai2�E� + Bi2�E�
eEn/a2

. �23�

The first point to note is that this result satisfies the scaling
behavior claimed by BN-K, namely, P�n�=N−1f�n /N2/3�, so
that, in particular, the average epidemic size scales as
n̄�N1/3. To understand our result in more depth, we compute
its asymptotic behavior, first for small n. In this limit, the
integral is dominated by the integrand at large negative E, so
that

P�n� �
1

�2a3�
−


0

��− E�1/2eEn/�a2� =
1

�4�n3
, �24�

as it should, since the drift is not relevant for small n. For
large n, the integral is dominated by positive E’s of order n2.
There Bi is exponentially larger than Ai, and the integral
becomes

P�n� �
1

�2a3�
−





�E1/2e−4/3E3/2+En/a2
dE

�
1

8��N2
n3/2e−n3/�16N2�. �25�

Thus, P�n� is sharply cut off for n�O�N2/3� in accord with
the simulations of BN-K. In Fig. 1, we graph P�n�, together
with the asymptotic formulas for small and large T. Also
displayed is the exact solution of the full master equation for
N=103. We see that indeed the finite systems converge nicely
to the scaling limit, with slower convergence at very small n,
where the discreteness of n is relevant, and at the largest n,
where our dropped spatially dependent bias plays a detect-
able role.

It is straightforward to extend our solution to the near-
threshold case, where R0=1+�, �� � 1. This introduces an

additional constant bias to the problem. Equation �14� re-
mains unchanged, where now � is related to P by

P � e−�I�T−2�N�/4N�−���T − 2�N�3−�2�N�3�/96N2�� , �26�

so that the probability distribution for outbreak size is

P�n;�� = e1/4�n2�/N−n�2�P�n;� = 0� . �27�

The appropriate scale for � is O�T /N�, i.e., N−1/3 as noted by
BN-K. In Fig. 2 we show the size distribution for various
values of the scaled parameter ���N1/3. We see that for
��0 there is a second peak in addition to the peak at small
n. It is interesting to consider the average outbreak size as a
function of �. The scaling with N of P�n� implies that the
average outbreak n̄ scales as N1/3. While n̄��� is given by a
double integral, and must be computed numerically, the
asymptotic behavior for large positive and negative values of
� is accessible.

For large positive �, large n’s dominate in the integral
over n, with a sharp peak at n=2�N2/3 �the deterministic
value, as we presently explain� giving
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FIG. 1. �Color online� Scaled large-N probability density NP�n�
for outbreaks of total size n, versus the scaled outbreak size n /N2/3,
from Eq. �22�, together with the small-n �Eq. �24�� and large-n �Eq.
�25�� asymptotics. Also displayed is the exact results for N=1000.
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FIG. 2. �Color online� Scaled probability distribution of epi-
demic sizes NP�n /N2/3� for ���R0−1�N1/3=−1, 0, 1, and 4.
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n̄ � 2�2N1/3 = 2�2N . �28�

This is exactly what is needed to match on to the supercriti-
cal regime. For R0−1�N−1/3, on average a finite fraction of
the entire population is infected before the epidemic runs its
course. The probability that the epidemic survives to macro-
scopic proportions is 1−1/R0, in which case the determinis-
tic prediction of the epidemic size rN �see Eq. �6�� is reliable
�10�. Thus the average outbreak is of size

n̄ =
R0 − 1

R0
rN . �29�

The exact results from the master equation for the supercriti-
cal regime are in excellent agreement with this result, except
in the threshold region R0�1 �data not shown�. In the over-
lap region where � is large and � small, the supercritical
result Eq. �29� indeed reduces to Eq. �28�.

For large negative �, on the other hand, small n’s pre-
dominate, and

n̄ � �
0




dnne−n�2/4 1

2��n3/2
=

1

�− ��
. �30�

This in turn matches on to the subcritical result
n̄�1/ �1−R0� as R0 approaches one from below. Thus, the
near threshold regime interpolates smoothly between the
sub- and super-threshold domains. In the former, the prob-
ability distribution is sharply peaked at 0, whereas in the
latter there are two peaks, one at zero and a second at the
deterministic value of n. It is in the near-threshold regime
that this second peak is born and splits off from the first. In
Fig. 3, we plot n̄��� obtained from a numerical integration of
our formula, together with the results for N=103, 104, and
105. We see that the agreement is excellent for small ���,
where the results have converged. Convergence is slower, as
expected, for large ���.

The results presented here for the subcritical and the su-
percritical case shed new light on the evolutionary process of
zoogenic pathogens in human population. While in infinite
population the transition is quite sharp at �=0, for a finite
population of reasonable size �say, N�103–104 persons in a
typical village or town, exposed to the animal reservoir� the
average size of an outbreak at criticality does not yield a
good indication for the typical case. While most of the epi-
demics at criticality are O�1�, there is still a slight chance,

scaling with N−1/3, to find an O�N2/3� �say, about 100 in-
fected people� outbreak. Clearly, the chance for mutation of
the pathogen, or the likelihood of a sick individual to migrate
and spread the disease in a big city, are determined almost
solely by these rare events. As seen in Fig. 2, this is actually
true even slightly above criticality, where �=0.1. Only way
beyond criticality ��=0.4, Fig. 2� does one find a relatively
sharp peak of the distribution function close to the predicted
average. Studies of these questions must then take into con-
sideration the finiteness of the susceptible population pool.

Note added in proof. After the paper went to press, we
were informed that many of the results contained herein were
previously obtained by A. Martin-Löf �11�. We thank H.
Andersson for bringing this reference to our attention. In
particular, A. Martin-Löf maps the near-threshold problem to
a random walk with a time-dependent boundary, which is
equivalent to our formulation of the problem as a random
walk with fixed boundary and a time-dependent drift. His
final expression for the probability distribution P�n�, reduces
to our Eq. �27� combined with Eq. �23� for the case treated
herein where the infection starts with a single infected indi-
vidual, and he exhibits a figure equivalent to Fig. 2.
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FIG. 3. �Color online� n̄ /N1/3 as a function of the scaled thresh-
old parameter �= �R0−1�N1/3 for N=103, 104, and 105, together
with a numerical calculation based on our large-N analytic formula
for P�n�, Eq. �27�.
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