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Polymer translocation through a nanopore: A showcase of anomalous diffusion
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The translocation dynamics of a polymer chain through a nanopore in the absence of an external driving
force is analyzed by means of scaling arguments, fractional calculus, and computer simulations. The problem
at hand is mapped on a one-dimensional anomalous diffusion process in terms of the reaction coordinate s (i.e.,
the translocated number of segments at time ¢) and shown to be governed by a universal exponent a=2/(2v
+2-1v,), where v is the Flory exponent and v, is the surface exponent. Remarkably, it turns out that the value
of « is nearly the same in two and three dimensions. The process is described by a fractional diffusion equation
which is solved exactly in the interval 0 <s <N with appropriate boundary and initial conditions. The solution
gives the probability distribution of translocation times as well as the variation with time of the statistical
moments {s(r)) and (s*(r))—{s(¢))?, which provide a full description of the diffusion process. The comparison
of the analytic results with data derived from extensive Monte Carlo simulations reveals very good agreement
and proves that the diffusion dynamics of unbiased translocation through a nanopore is anomalous in its nature.
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The dynamics of polymer translocation through a pore has
recently received a lot of attention and appears highly rel-
evant in both chemical and biological processes [1]. The the-
oretical cosideration is usually based on the assumption
[2-4] that the problem can be mapped onto a one-
dimensional diffusion process. The so-called translocation
coordinate (i.e., reaction coordinate s) is considered as the
only relevant dynamic variable. The whole polymer chain of
length N is assumed to be in equilibrium with a correspond-
ing free energy F(s) of an entropic nature. The one-
dimensional (1D) dynamics of the translocation coordinate
then follows the conventional Brownian motion, and the one-
dimensional Smoluchowski equation [5] can be used with
the free energy F(s) playing the role of an external potential.
In the absence of external driving force (unbiased transloca-
tion), the corresponding average first-passage time follows
the law 7(N)<a’N?/D, where a is the length of a polymer
Kuhn segment and D stands for the proper diffusion coeffi-
cient. The question of the choice of the proper diffusion co-
efficient D, and the nature of the diffusion process, is con-
troversial. Some authors [2,3] adopt D=N~!, as for Rouse
diffusion, which yields 7 N* as for polymer reptation [8],
albeit the short pore constraint is less severe than that for a
tube of length N. In Ref. [4] it is assumed that D is not the
diffusion coefficient of the whole chain but rather that of the
monomer just passing through the pore. The unbiased trans-
location time is then predicted to vary as 7o<N2. The latter
assumption has been questioned [6,7] too. Indeed, on the one
hand, the mean translocation time scales [4] as 7~ N2, but on
the other hand the characteristic Rouse time (i.e., the time it
takes for a free polymer to diffuse a distance of the order of
its gyration radius) scales as Toue*N>"*!, where the Flory
exponent v=0.588 at d=3, and v=0.75 at d=2 [8]. Thus
TRouse > T, against common sense, given that the unimpeded
motion should be in any case faster than that of a constrained
chain. Moreover, the equilibration of the chain is question-
able when the expression for F(s) is to be used. The charac-
teristic equilibration time scales again as 7., N*"*! and is
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thus always larger than the translocation time, i.e., 7> T.
Again the internal consistency of the whole approach is in
doubt. It was found by Monte Carlo (MC) simulation [6,7]
that 7o< N2 for translocations in d=2. This indicates that the
translocation time scales in the same manner as the Rouse
time, albeit with a larger prefactor that depends on the size of
the nanopore. Kantor and Kardar argued that this finding
bears witness to the failure of the Brownian nature of the
translocation dynamics and suggested instead that anoma-
lous diffusion dynamics [9] should be more adequate. The
7 N?> scaling law has been corroborated by a further MC
study [10], as well as by MC simulations on a 3D lattice
[11], and it was shown that 7o N>46*0-03 The time variation
of the second statistical moment, (s?)—(s)? %, clearly indi-
cates an anomalous nature [11], since the measured exponent
@=0.81+0.01, while 7o N*®. Still missing is a proper theo-
retical analysis which could explain the physical origin of the
anomalous dynamics, and make it possible to solve the ap-
propriate fractional diffusion equation (or, in case of a biased
translocation, the fractional Fokker-Planck-Smoluchowski
equation) [9,12] governing this dynamics.

In this Rapid Communication, we suggest a unique physi-
cal picture that justifies the mapping of the 3D problem on a
1D reaction cooordinate s, and we show that the latter obeys
anomalous diffusion dynamics, described by a fractional dif-
fusion equation. We solve this equation exactly, subject to
the proper boundary conditions, and find a perfect agreement
with our scaling prediction. Eventually, we demonstrate that
the results of our 3D off-lattice MC simulations are in accord
with our analytical findings.

Mapping onto 1D dynamics. As indicated above, the as-
sumption that the whole polymer chain is in equilibrium and
the diffusion is governed by conventional Brownian dynam-
ics leads to contradictions. Instead, we assume now that only
a part of the whole chain may equilibrate between two suc-
cessive threadings. This part of the chain which adjoins the
membrane on the cis or trans side will be denoted as fold,
and we assume that it is much shorter than the whole chain
length N but is still long enough so that one can use the
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FIG. 1. (Color online) Schematic representation of a chain fold
of length s moving through a nanopore. The transition rate is
slowed down by an entropic barrier: (a) initially the fold is on the
cis side of the wall; (b) the fold entropy decreases during threading
because of the fold fragmentation.

principles of statistical physics. We also assume that the ex-
cluded volume interaction of a fold with the rest of the chain
is relatively weak, so that it could be treated as a subsystem
with a well-defined free energy. This latter assumption is
based on the observation that the chain on either of the two
sides may be seen as a polymeric “mushroom” whereby the
monomer density close to the membrane (or wall) is much
smaller than the density inside a single coil [see Fig. 4 and
Eq. (IL.4) in Ref. [13]]. Thus one can claim that there is a
depletion area near the membrane [14].

Figure 1 illustrates how a fold squeezes from the cis to the
trans side through a short nanopore (of length =a), which is
slightly wider than the chain itself. It is self-evident that, in
the absence of the external force, with the equal probability
folds from the trans side could go to the cis side. If the trans
part of the fold in Fig. 1 has length n then the corresponding
free energy function F'(n)/T=-nIn k—(y,—1)ln n, where «
is the connective constant and y; is the surface entropic ex-
ponent [15]. For the cis part of the fold, one has F°(n)/T
=—(s—n)In k—(y;—1)In(s—n) so that the total free energy is
F(n)/ T=-sIn k=(y,—1)In[n(s—n)]. One can, therefore, as-
cribe to the fold cis-trans transition a pretty broad barrier
given by F(n). The corresponding activation energy of the
fold can be calculated as AE(s)=F(s/2)-F(1)=(1
—vy)TIns.

How can we estimate the characteristic time for the fold
cis-trans translocation? In the absence of a separating mem-
brane this would be the pure Rouse time #g o s2*! [8]. The
membrane with a nanopore imposes an additional entropic
activation barrier AE(s), which slows down the transition
rate. The characteristic time, therefore, scales as #(s)
=tp(s)exp[AE(s)] = s>"*2>~", This makes it possible to esti-
mate the mean-squared displacement of the s coordinate:

<S2> oc IZ/(2V+2_Y]>. (1)
Hence, the mapping onto the s coordinate leads to an anoma-
lous diffusion law (s*) 1% where a=2/(2v+2—-1y,). Taking
into account the most accurate values of the exponents for
d=3, v=0.588, and y,=0.680 [16], we obtain @=0.801. In
turn, the average translocation time 7o N>®c N>4%_ Remark-
ably, in 2D, where v,5=0.75 and 7y, =0.945 [17], one finds
a=0.783 (i.e., a is almost unchanged). This explains why
the measured exponents in both 2D [6] and 3D [11] are so
close. The derivation of « is our central scaling prediction. It
also agrees well (see below) with our own MC data on the
translocation exponent.
Fractional diffusion equation. We now turn to the frac-
tional diffusion equation (FDE) that furnishes a natural
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framework for the study of anomalous diffusion [9,12]. Here
we make use of this method in a systematic way. Our FDE
reads

d P
—W(s,1) = (DK ,— W(s,1), 2
at(s)‘” aSz(s) (2)

where W(s,t) is the probability distribution function
(PDF) for having a segment s at time 7 in the pore, and
the fractional Riemann-Liouville operator D! *W(s,t)
=[1/T(a)](a/at) [odt W(s, ')/ (t=1')'=% In Eq. (2) T'(a) is
the Gamma function, and K, is the so-called generalized
diffusion constant. This constant could be defined as K,
=I(1+a)?/(272) in terms of the fold length / and the wait-
ing time scale 7, (see Chapter 3.4 in [9]). It should be men-
tioned that the constant K, is the only adjustable parameter
of our theory, and will be fixed below through the compari-
son with our MC data.

Recently the method of the generalized Langevin equa-
tion (GLE) has been used to describe anomalous conforma-
tional dynamics within single-molecule proteins [18]. In con-
trast to the FDE approach, which deals with the total
distribution function at particular boundary conditions (see
below), the GLE method treats only the first two moments
(or time-correlation functions, memory kernel, etc.). To the
best of our knowledge, at the present time it is not clear how
one can derive in a closed form a non-Markovian Fokker-
Planck equation for the distribution function [19] starting
from the GLE. On the other hand, the translocation time
distribution function (see below) is an entity of great impor-
tance because it could be directly measured in experiment
[1]. Therefore, we prefer to use the FDE approach for the
translocation problem.

Consider the boundary value problem for the FDE in the
interval 0<<s=<N. This problem has been discussed before in
the context of the even more general fractional Fokker-
Planck equation [20]. The boundary conditions correspond to
the reflecting-adsorbing case, i.e., (9/ds)W(s,1)|,.o=0 and
W(s=N,t)=0. The initial distribution is concentrated in s,
i.e., W(s,r=0)=8(s—s;). The full solution can be represented
as a sum over all eigenfunctions ¢,(s), ie., W(s,1)
=3 T,()¢,(s), where ¢,(s) obey the equations
K (d*1ds?) ¢,(5)+ N, o,(s)=0, and the eigenvalues \,, , can
be readily found from the foregoing boundary conditions; as
a result N, ,=(2n+1)*7°K,/(4N?). The temporal part T, ()
obeys the equation (d/df)T,(t)=—\, , (D} *T,(t). The solu-
tion of this equation is given by 7,(1)=T,(t=0)E (=N, o)
[9], where the Mittag-Leffler function E (x) is defined by the
series expansion E,(x)=3 x*/T'(1+ak). At a=1 it turns
back into a standard exponential function (normal diffusion).
Thus we arrive at the complete solution of Eq. (2):

W(s,t) = ]%2 cos((zn + UmO)cos( (2n+ l)ws>

prt 2N ON
2n+ 1)%a?
y Ea(_ @n+ 1Y Kt) )
4N’

First-passage time distribution. The distribution of trans-
location times (which could, in principle, be measured in
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experiment) is nothing but the first-passage time distribution
(FPTD) Q(sg,1), where s stands for the initial value of the
s coordinate. Knowing the probability distribution function
W(s,t), we can calculate the FPTD Q(sq,f). The relation
between the two functions is given as Q(sq,?)
=—(d/dr) [{W(s,t)ds [5]. This yields the FPTD as follows:

a-1 %
Qlso1) = WK:,; g (=1)"2n+ 1)005<%>
Qn+ 17
XEa,ar(— né‘_TKat ), (4)

where the generalized Mittag-Leffler function E, ,(x)
=37 /T (a+ka). The long time limits of Mittag-Leffler
functions in Egs. (3) and (4) follow an inverse power law
behavior, E (-\, %)< 1/T(1-a)\, % and E, (—\, %
xa/T(1-a)\, ** By making use of this in Eq. (4), the
long time tail of the FPTD then reads Q(f)*aN?/2I(1
—a)K 1'% This behavior is checked below in our MC in-
vestigation. It can be seen that the mean first-passage time,
defined simply as 7=[(rQ(t)dt, does not exist [21,22]. On
the other hand, in a laboratory experiment there always ex-
ists some upper time limit ¢*. Taking this into account, one
can show that an “experimental” first-passage time scales as
7~ N*®[21], which we observe in our MC simulation.

Statistical moments {(s) and {s*) vs time. The subdiffusive
behavior of the second moment {s%)—(s)?>c¢* is a hallmark
of anomalous diffusion. Starting from Eq. (3) we can imme-
diately calculate them. The calculation of the first moment
(s)=[NsW(s,t)ds/ [§W(s,t)ds yields

* 2
1 (_ (2n+1) ﬂ'zKat“)

wo_ s eyl B
N o (1) ( 2n+1)*7 a)'
Wg Qua) e\ anz K

Since E(t=0)=1, the initial value (s)(t=0)=0 (we put s,
=0), as it should be. In the opposite limit, 7— %, we can use
the asymptotic behavior E[-\, ,*]=1/T(1-a)\, 4
as well as the sum values =_1/(2n+1)*=7*/96 and
> o(=1)"/(2n+1)*=7>/32 in the numerator and denomina-
tor, respectively. After that (s)(t—)=N/3, i.e., the function
goes to a plateau.

The result for the second moment {s?)
=[1s?W(s,0)ds/ [{W(s,t)ds can be cast in the following
form:

_ 1\ 2
RV (_ 2n+1) #Kata>

2 — 2n+1)>7¢ 4N?
S n_i(’:+>) o N
— 1" n+1
“@, (2n+1)E“(_ 4N? K"t)

Again, it can be readily shown that (s>)(0)—(s)?(0)=0. In
the long time limit, in the same way as before and taking
into account that 2 (—=1)"/(2n+1)°=57/1536, we find
(s2)(1—0)=(5)*(1—0)=N*/9 [23].

Monte Carlo data vs theory. We have carried out exten-
sive MC simulations in order to check the main predictions
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FIG. 2. (Color online) Translocation time distribution function
Q(1). (a) Scaling plot of the theoretical predictions calculated from
Eq. (4) for different chain lengths N. Dashed line denotes the long
time asymptotic tail with slope —1.8. The inset shows Q(z) for N
=256 in normal coordinates. (b) The FPDT Q(¢) from the MC simu-
lation for N=64,128. The inset shows the expected (7) vs chain
length N dependence, and the straight line is a best fit with slope
~2.52+0.04.

of the foregoing analytical theory. We use a dynamic bead-
spring model which has been described before [24]; therefore
we mention only the salient features here. Each chain con-
tains N effective monomers (beads), connected by anhar-
monic finitely extensible nonlinear elastic springs, and the
nonbonded segments interact by a Morse potential. An el-
ementary MC move is performed by picking an effective
monomer at random and trying to displace it from its posi-
tion to a new one chosen at random. These trial moves are
accepted as new configurations if they pass the standard Me-
tropolis acceptance test. It is well established that such a MC
algorithm, based on local moves, realizes Rouse model dy-
namics for the polymer chain. In the course of the simulation
we perform successive run for chain lengths N
=16,32,64,128,256, whereby a run starts with a configura-
tion with only a few segmens on the trans side. Each run is
stopped, once the entire chain moves to the frans side. Com-
plete retracting of the chain back to the cis side is prohibited.
During each run we record the translocation time 7 and the
translocation coordinate s(z). Then we average all data over
typically 10* runs. In principle, the pore may apply a drag
force on the threading chain due to a chemical potential gra-
dient; however, in the present work we consider only unbi-
ased diffusion. In Fig. 2(a) we show a master plot of the
translocation time distribution Q(¢) derived from Eq. (4) for
different chain lengths N=16,32,64,128,256. For the calcu-
lation of data we have used MATHEMATICA with a special
package for computation of Mittag-Leffler functions [25].
Evidently, all curves collapse on a single one when time is
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FIG. 3. (Color online) Variation of the first and second moments
of the PDF W(s,r) with time for chain lengths N
=16,32,64,128,256. (a) Log-log plot of the first moment (s) vs
time 7 from a MC simulation (big symbols) and from Eq. (5) (small
symbols). The dashed line denotes > with a slope of 0.4. (b) The
same as in (a) but for (s?)—(s)%. Analytical data are obtained from
Eq. (6). The dashed line has a slope of 0.8.

scaled as toN?“ with the predicted @=0.8. The long time
tail for this value of «a should exhibit a slope of —1.8. The
inset in Fig. 2(a) reveals the long tail of Q(z) for large times.
A comparison with Fig. 2(b) demonstrates good agreement

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 76, 010801(R) (2007)

with the simulation data despite some scatter in the FPDF
even after averaging over 10 000 runs. As shown in the inset,
the mean translocation time scales as (7)*<N>° in good
agreement with the predicted a=0.8. An inspection of Fig. 3,
where the time variations of the PDF W(s,f) moments are
compared, demonstrates again that data from the numeric
experiment and the analytic theory agree well within the lim-
its of statistical accuracy (which is worse for N=256). Not
surprisingly, the time scale of the MC results does not coin-
cide with that of Egs. (5) and (6) since in the latter we have
set K,, which fixes the time scale, equal to unity. Closer
examination of Fig. 3 shows that the resetting of the gener-
alized diffusion coefficient as K,=(80)"%=33.3 enables to
superimpose the results of theoretical calculation and MC
data.

In summary, we have shown unambiguously that the
translocation dynamics of a polymer chain threading through
a nanopore is anomalous in its nature. We have succeeded in
calculating the anomalous exponent a=2/(2v+2-1y,) from
simple scaling arguments, and embedded it in the fractional
diffusion formalism. We derived exact analytic expressions
for the translocation time probability distribution as well as
for the moments of the translocation coordinates, which are
shown to agree well with our MC simulation data. The
present treatment can be readily generalized to account for a
drag force on the chain, and results for this case will be
reported in a separate presentation.
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