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We analytically address disease outbreaks in large, random networks with heterogeneous infectivity and
susceptibility. The transmissibility Tuv �the probability that infection of u causes infection of v� depends on the
infectivity of u and the susceptibility of v. Initially, a single node is infected, following which a large-scale
epidemic may or may not occur. We use a generating function approach to study how heterogeneity affects the
probability that an epidemic occurs and, if one occurs, its attack rate �the fraction infected�. For fixed average
transmissibility, we find upper and lower bounds on these. An epidemic is most likely if infectivity is homo-
geneous and least likely if the variance of infectivity is maximized. Similarly, the attack rate is largest if
susceptibility is homogeneous and smallest if the variance is maximized. We further show that heterogeneity in
the infectious period is important, contrary to assumptions of previous studies. We confirm our theoretical
predictions by simulation. Our results have implications for control strategy design and identification of
populations at higher risk from an epidemic.
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The spread of infectious disease is a problem of great
interest. Much work has focused on how diseases spread in
networks of human, animal, or computer interactions �1–9�.
The transmissibility, the probability that an edge transmits
infection, has a network-dependent threshold, above which
epidemics may occur and below which epidemics are not
found. Ideally, interventions reduce the transmissibility or
modify the network so that epidemics cannot occur. Most
study has focused on determining the threshold value under
varying assumptions �6–11�, in order to design interventions.

For many diseases and networks, it is impractical to elimi-
nate the possibility of an epidemic. An intervention strategy
must therefore optimize competing goals: minimize social
cost, reduce the probability of an epidemic denoted P, and
reduce the attack rate �fraction infected� denoted A if an
epidemic does occur. Most researchers consider just A, but
recent investigations �2–4,12,13� have also considered P. No
studies systematically investigate the effect of heterogeneity
on P or A, although they can result from variations in the
application of interventions, or from natural effects such as
variation in recovery time. It is often assumed that the spe-
cial case of heterogeneous recovery time can be mapped
without loss of generality to recovery of all individuals after
a single time step �4,6–9,14�. However, it may be inferred
from �15� that this assumption is false. We have recently
become aware of independent work �16�, using techniques
similar to, but distinct from, our own, to show that recovery
time heterogeneity reduces P but has no effect on A. In this
study, we consider how generic heterogeneities affect P and
A, deriving sharp upper and lower bounds.

The epidemics we study spread on random networks of N
nodes with degree k distributed according to P�k�. We
modify the susceptible-infected-recovered model �1,17� to
include heterogeneities: nodes are classified as susceptible,
infectious, or recovered. The outbreak begins with a single

infection �the index case� which spreads to adjacent nodes.
An edge between an infectious node u with infectivity Iu and
a susceptible node v with susceptibility Sv has transmissibil-
ity Tuv=T�Iu ,Sv�, and so v is infected with probability Tuv.
Infectious nodes recover and are no longer susceptible. If an
epidemic occurs, the eventual number infected is O�N�, oth-
erwise the outbreak is localized. I and S can be arbitrary,
e.g., I may be a vector representing duration of infection,
level of virus shedding, frequency of handwashing, etc. The
form of T is also general: it need only be integrable and
bounded in �0,1�.

The spread of an epidemic on a network with heteroge-
neous infectivity and susceptibility is equivalent to a special
case of directed percolation for which the probability of re-
taining an edge depends on both the base and target nodes. In
this formalism, infection spreads to the out-component of the
index case �2,3�. If the disease has sufficiently high average
transmissibility, a single giant strongly connected component
Gscc exists �18�, occupying a fixed fraction of the network as
N→�. The set of nodes not in Gscc, but from which Gscc can
be reached, is denoted Gi, while the set of nodes not in Gscc,
but reachable from Gscc, is denoted Go �i for “in” and o for
“out”� as shown in Fig. 1. If the index case is in Gi�Gscc, an
epidemic occurs, infecting all of Go�Gscc and very few
other nodes. In the limit N→�, the probability that the index
case is in Gi�Gscc, is the probability of an epidemic, and the
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FIG. 1. Schematic representation of Gi, Gscc, and Go. All nodes
in Gscc can reach any other node in Gscc.
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fraction of nodes in Go�Gscc is the attack rate.1 We formally
define P=limN→��Gi�Gscc� /N and A=limN→��Go�Gscc� /
N. In general, the sizes of Gi and Go may differ, so P�A.
This contrasts with homogeneous transmissibility, which can
be mapped to undirected bond percolation �4,19,20�, so P
=A.

We develop a generating function �21� approach to find P,
allowing both I and S to be heterogeneous. Generating func-
tions have been used to study disease spread in the body �22�
or in society �3,4�. Our approach is most similar to that of
�22�. We calculate P based on the distribution of I and S.
Then, holding the average transmissibility fixed, we use
Jensen’s inequality to find strict upper and lower bounds. Go
and Gi interchange roles under edge reversal, so A is calcu-
lated similarly. We confirm our predictions by simulation.

The infectivity Iu and susceptibility Su of node u are cho-
sen from independent distributions P�I� and P�S�. Given Iu,
the relation T�Iu ,Sv�, and the distribution P�S�, we define
the out-transmissibility of u as

To�u� =� T�Iu,Sv�P�Sv�dSv. �1�

P�I� and �1� determine the distribution Po�To�. We similarly
define the in-transmissibility Ti and its distribution Pi�Ti�. Po

and Pi must have the same average T* �some pairs Po and Pi
with the same average are inconsistent, but for each Po, a
consistent Pi exists, and vice versa�. Henceforth, we use Pi
�Ti� and Po�To� rather than P�S� and P�I�.

We choose the index case u0 uniformly from the popula-
tion. We classify an infected case by its generation, the
length of the shortest chain of infectious contacts between it
and u0 �generation 0�. Generations may overlap in time,
changing temporal dynamics, but leaving P and A un-
changed.

Our class of random networks is defined by the Molloy-
Reed algorithm �23�. Short cycles are rare. The neighbor-
hood of u0 is treelike on successively longer length scales as
N→�. Consequently, P equals the probability that the trans-
mission chains in an infinite tree are infinite.

We define a probability generating function f�x� for the
number of infected nodes in generation 1:

f�x� = p0 + p1x + ¯ + pjx
j + ¯ ,

where pj is the probability that the index case directly infects
j neighbors. The index case has degree k with probability
P�k�, and thus pj is given by

pj = �
k=j

�

P�k��
0

1

Bi�k, j,To�Po�To�dTo,

where Bi�k , j ,To� is the likelihood of j successful trials from
k attempts, each with probability To. Note that pj depends on
the distribution Po but not Pi.

In subsequent generations, the probability of infection is

proportional to degree. Early in the outbreak, an infected
node with degree k has k−1 susceptible neighbors �the
source of its infection cannot be reinfected�. The probability
that this individual infects j neighbors is

qj =
1

�k	 �
k=j+1

�

kP�k��
0

1

Bi�k − 1, j,To�Po�To�dTo,

where �·	 denotes the expected value. We let h�x�=�qjx
j be

the generating function for the number of new cases caused
by a nonindex case. The generating function for the number
of infections in generation g�0 is

f„hg−1�x�… ,

where hg−1 denotes composition of h with itself g−1 times.
For later use, we rearrange f and h as

f�x� = �
0

1

Po�To��
k=0

�

�1 + To�x − 1��kP�k�dTo, �2�

h�x� = �
0

1 Po�To�
�k	 �

k=1

�

�1 + To�x − 1��k−1kP�k�dTo. �3�

The extinction probability is limg→� f(hg−1�0�). To calcu-
late this, we find limg→� hg−1�0�, which is a solution to
x=h�x�. At most two solutions exist in the interval �0,1�, one
of which is x=1. If no other solution exists, then x=1 is a
stable fixed point, and P=0. Otherwise, the iteration con-
verges to x0�1 and

P = 1 − f�x0� .

Because f and h are independent of Pi, P is unaffected by
heterogeneities in susceptibility.

We now seek distributions Po to maximize or minimize P
subject to �T	=T*. In investigating heterogeneous recovery
times �16�, showed that identical recovery times maximize
P. We use a similar proof to generalize this to arbitrary het-
erogeneities. For notational convenience, we use �*�T� to
denote ��T−T*�, set

ĥ�T,x� =
1

�k	�k=1

�

�1 + T�x − 1��k−1kP�k� ,

and rewrite �3� to explicitly show that h depends on Po,

h�Po��x� = �
0

1

ĥ�To,x�Po�To�dTo.

We similarly define f �Po��x�. Because ĥ is a convex function
of T, Jensen’s inequality shows Po=�* minimizes h�Po��x�.
We denote the smallest root of x=h��*��x� by x1. For x�x1

and any Po, we have x�h��*��x��h�Po��x�. Thus the root x0

of x=h�Po��x� satisfies x1�x0, so x0 is minimized if Po=�*.
Similar calculations show that f ��*��x�� f �Po��x� for all

Po. Further, f ��*��x� is an increasing function of x. Thus the
extinction probability f �Po��x0� is minimized by Po=�*. So
homogeneous infectivity maximizes P.

In addition, we find a new lower bound. Jensen’s

1This statement is true for the probability at all N, but if the index
case is in Gi, nodes outside Go�Gscc are also infected, creating a
o�1� /N change to the attack rate.
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inequality also implies that fixing �T	=T* but increasing �T2	
reduces P. Consequently, P is minimized by Po�To�
= �1−T*���To�+T*��To−1�.

Thus we have shown that an epidemic is most likely if To
is homogeneous, and least likely if its variance is maximized.
Analogously, the attack rate is largest if Ti is homogeneous,
and smallest if its variance is maximized. It may be shown
that the upper bounds correspond to the relative size of the
giant component under bond percolation, while the lower
bounds correspond to its relative size under site percolation.

We now find the threshold value of �T	 above which epi-
demics can occur �x=h�x� has two roots�, and below which
they cannot. If we vary �T	 by continuously changing Po, the
fixed point x=1 of x=h�x� bifurcates into two when h��1�
=1. We find

h��1� = R0 
 �T	�k2 − k	/�k	 .

So the epidemic threshold is �T	= �k	 / �k2−k	, generalizing
�3,4�. R0 is frequently used in epidemiology �1�, representing
the average number of new infections an infection causes
early in an outbreak.

We confirm our predictions by comparison with simula-
tions on 100 000 node networks. We take an epidemic to
occur if over 500 nodes are infected. Our first comparison
investigates varying recovery time in an Erdős-Rényi net-
work with �k	=4. We discretize time and take different
models of recovery time given in the caption of Fig. 2. For
each time step, the probability of infecting a susceptible
neighbor is p, so an individual with recovery time � has
To=1− �1− p��. As a reference we take the case where recov-
ery occurs after exactly five time steps. We vary p to change
the average transmissibility T*. The fraction of nodes with
each recovery time is chosen so that �P����1− �1− p���
=1− �1− p�5=T*.

We show results in Fig. 2, with 10 000 simulations per
symbol. Theory and simulation agree well. The upper bound
for epidemic probability occurs when all infections last ex-
actly five time steps ���. The lower bound occurs when
some nodes remain infectious forever, infecting all neigh-
bors, while the rest infect no one ���. Susceptibility is ho-
mogeneous, so A is at the upper bound in all cases.

Our second comparison has both I and S heterogeneous.
Following �4�, we use a scale-free network with exponential
cutoff:2 P�k��k−2e−k/50. The giant component occupies about
85% of the network. We take Tuv=1−exp�−�IuSv� with
fixed distributions of scalar I and S but varying � to tune T*.
Figure 3 shows theory and simulation in agreement. The up-
per bounds are achieved for this particular form of Tuv. How-
ever, by analogy with site percolation, the lower bound of P
�A� occurs only if To=1 �Ti=1� for some nodes, while all
others have To=0 �Ti=0�. This is almost reached by the �

��� distribution at T*=0.7 �T*=0.5� �cf., the reinfection
threshold of �24��.

We note that scale-free networks are questionable models
of networks on which most diseases spread, because true
scale-free networks have R0=�, while even emergent dis-
eases have R0 of only 2–3 �25,26�. Some networks �e.g.,
sexual networks �27�� may be scale-free but have high assor-
tativity, which is not in this model. Assortativity plays an
important role in explaining the anomalous early U.S. HIV
epidemic growth �28�. Consequently, the model developed
here cannot adequately predict epidemic properties for these
networks.

We have shown that a wide class of heterogeneities in
infectivity and susceptibility can be studied with generating
functions to calculate the epidemic probability P and attack
rate A. We find that P and A may differ substantially. In
particular, heterogeneity in recovery time has a significant
effect on P and cannot be ignored.

For fixed average transmissibility we have found upper
and lower bounds for both P and A. Further, we have found
distributions realizing these bounds. For fixed average trans-
missibility, increasing the variance of To decreases P, and
increasing the variance of Ti decreases A.

These results can be used to assist in designing control
strategies. For example, if choosing between a strategy that
reduces infectivity or susceptibility by half for all of the
population or one that reduces infectivity or susceptibility
completely for half the population, it is better to choose the
latter. As another example, consider a strategy that locates

2Without the cutoff, R0 diverges for any positive value of T*, so
the epidemic threshold would be T*=0.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P

T ∗

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

A

T ∗

FIG. 2. �Color online� Comparison of theory �curves� with
simulation �symbols�. For the different distributions of infectivity
�with susceptibility constant�, P changes, but A does not. The the-
oretical bounds are in dashed bold. We use constant recovery time
�=5 ���, �=0 or � ���, �=2 or 8 ���, �=1 or 10 ���, and finally
exponentially distributed recovery time �	�.
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FIG. 3. �Color online� Comparison of theory �curves� with
simulation �symbols� for Tuv=1−exp�−�IuSv�. The theoretical
bounds are in dashed bold. The distributions are �, P�I�
=��I−1�, P�S�=0.5��S−0.001�+0.5��S−1�; 	, P�I�
=0.5��I−0.1�+0.5��I−1�, P�S�=0.2��S−0.1�+0.8��S−1�; �,
P�I�=0.5��I−0.1�+0.5��I−1�, P�S�=0.8��S−0.01�+0.2��S−1�;
�, P�I�=0.3��I−0.001�+0.7��I−1�, P�S�=��S−1�.
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and isolates infecteds compared with a strategy that provides
susceptible individuals with protection. Both will be affected
by inability to reach everyone. The first strategy has a het-
erogeneous impact on infectivity, while the second strategy
has a heterogeneous impact on susceptibility. If the strategies
have the same average impact on T, then the first reduces the
probability of an epidemic more while the second reduces its
size more. Which strategy is optimal depends on the particu-
lar case, and may change with time.

Our results can also be used to identify populations most
at risk from epidemics. Populations with low genetic diver-
sity are already known to be at particularly high risk from an
outbreak, because the lack of heterogeneity allows the aver-
age transmissibility to be higher. However, our results show
that, even for a fixed average transmissibility, a population
with lower genetic variation will be more severely affected
by a disease.

For heterogeneous infectivity but homogeneous suscepti-
bility, Newman �4� anticipated that A follows from the for-
mulas derived under the assumption of homogeneous T. He
did not address the effect on P. We have shown that A is
independent of heterogeneity in infectivity, and so for this
special case the prediction is valid. However, it fails if sus-
ceptibility is also heterogeneous.

The theory developed here can be generalized in a num-
ber of ways. Most simply, we can introduce edge weights to
represent some details of the contact between u and v. The

same theory will hold, but the calculation of To and Ti as in
�1� must incorporate the edge weight distribution. We can
also introduce correlations between the distributions of I, S,
and k in an individual without significant theoretical difficul-
ties, though the conclusions may change. It is more compli-
cated to introduce correlations of I, S, or k between neigh-
bors.

We have considered networks with few short cycles, but
true social networks have significant clustering. However, at
high transmissibilities, if any neighbors are infected, an epi-
demic is very likely, so P is close to the probability that the
index case infects any neighbors, and loops may be ignored.
At low transmissibilities, loops are not traced out by the
infection, and again may be neglected. Loops affect our re-
sults only at intermediate transmissibilities. The generating
function approach becomes difficult because, even early in
an outbreak, infected nodes may have multiple infected
neighbors.

This work was carried out under the auspices of the Na-
tional Nuclear Security Administration of the U.S. Depart-
ment of Energy at Los Alamos National Laboratory under
Contract No. DE-AC52-06NA25396. The author thanks
Lindi Wahl, J. Mac Hyman, Anja C. Slim, Luís M. A. Betten-
court, Eduardo López, Shweta Bansal, and Lauren A. Meyers
for useful discussions.

�1� R. M. Anderson and R. M. May, Infectious Diseases of Hu-
mans �Oxford Science Publications, Oxford, 1991�.

�2� L. A. Meyers, M. Newman, and B. Pourbohloul, J. Theor. Biol.
240, 400 �2006�.

�3� L. A. Meyers, Bull., New Ser., Am. Math. Soc. 44, 63 �2007�.
�4� M. E. J. Newman, Phys. Rev. E 66, 016128 �2002�.
�5� R. R. Kao, L. Danon, D. M. Green, and I. Z. Kiss, Proc. R.

Soc. London, Ser. B 274, 1999 �2006�.
�6� N. Madar, T. Kalisky, R. Cohen, D. ben Avraham, and S. Hav-

lin, Eur. Phys. J. B 38, 269 �2004�.
�7� M. A. Serrano and M. Boguñá, Phys. Rev. Lett. 97, 088701

�2006�.
�8� M. Boguñá, R. Pastor-Satorras, and A. Vespignani, Phys. Rev.

Lett. 90, 028701 �2003�.
�9� R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86,

3200 �2001�.
�10� P. S. Dodds and D. J. Watts, Phys. Rev. Lett. 92, 218701

�2004�.
�11� P. S. Dodds and D. J. Watts, J. Theor. Biol. 232, 587 �2005�.
�12� L. A. Meyers, B. Pourbohloul, M. E. J. Newman, D. M. Skow-

ronski, and R. C. Brunham, J. Theor. Biol. 232, 71 �2005�.
�13� M. E. J. Newman, Phys. Rev. Lett. 95, 108701 �2005�.
�14� M. E. J. Newman, SIAM Rev. 45, 167 �2003�.
�15� M. B. Hastings, Phys. Rev. Lett. 96, 148701 �2006�.
�16� E. Kenah and J. Robins, e-print arXiv:q-bio/0610057v3.

�17� W. O. Kermack and A. G. McKendrick, Proc. R. Soc. London,
Ser. A 115, 700 �1927�.

�18� A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajago-
palan, R. Stata, A. Tomkins, and J. Wiener, Comput. Netw. 33,
309 �2000�.

�19� P. Grassberger, Math. Biosci. 63, 157 �1983�.
�20� J. L. Cardy and P. Grassberger, J. Phys. A 18, L267 �1985�.
�21� H. S. Wilf, generatingfunctionology, 3rd ed. �A. K. Peters,

Wellesley, MA, 2005�.
�22� J. E. Hubbarde, G. Wild, and L. M. Wahl, Genetics �to be

published�.
�23� M. Molloy and B. Reed, Random Struct. Algorithms 6, 161

�1995�.
�24� M. G. M. Gomes, A. O. Franco, M. C. Gomes, and G. F.

Medley, Proc. R. Soc. London, Ser. B 271, 617 �2004�.
�25� G. Chowell, H. Nishiura, and L. M. A. Bettencourt, J. R. Soc.,

Interface 4, 155 �2007�.
�26� G. Chowell, C. Castillo-Chavez, P. W. Fenimor, C. Kribs-

Zaleta, L. Arriola, and J. M. Hyman, Emerg. Infect. Dis. 10,
1258 �2004�.

�27� F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and
Y. Åberg, Nature �London� 411, 907 �2001�.

�28� S. A. Colgate, E. A. Stanley, J. M. Hyman, S. P. Layne, and C.
Qualls, Proc. Natl. Acad. Sci. U.S.A. 86, 4793 �1989�.

JOEL C. MILLER PHYSICAL REVIEW E 76, 010101�R� �2007�

RAPID COMMUNICATIONS

010101-4


