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Onset of spatiotemporal chaos in a nonlinear system
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We describe the onset of spatiotemporal chaos in a spatially extended nonlinear dynamical system as a result
of the loss of transversal stability of an invariant manifold representing a spatially homogeneous and tempo-
rally chaotic state. The onset of spatiotemporal chaos is characterized by the switching between spatially
homogeneous and nonhomogeneous states with statistical properties of on-off intermittency.

DOI: 10.1103/PhysRevE.75.067202

Describing the onset of spatiotemporal chaos in fluids,
plasmas, and other spatially extended dynamical systems is
an outstanding problem in theoretical physics [1]. An exten-
sively investigated model characterizes the onset of spa-
tiotemporal chaos as a result of a sequence of Hopf bifurca-
tions [2]. While this route has been verified by experiments
in fluids, plasmas, and electronic circuits [3], there are situ-
ations for which the onset of spatiotemporal chaos is thought
to be caused by other mechanisms [4]. On the other hand,
purely temporal chaotic behavior in low-dimensional sys-
tems is better understood, such that we might ask to what
extent it would be possible to use our understanding of low-
dimensional chaotic systems to interpret the onset of spa-
tiotemporal chaos in terms of the excitation of a few spatial
modes drawing energy from a purely temporal chaotic mode
[5].

In this paper we propose that the onset of spatiotemporal
chaos in a class of nonlinear systems can be explained from
the loss of transversal stability of a spatially homogeneous
chaotic state, a mechanism not directly related to the breakup
of some high-dimensional torus [6]. In order to support this
claim, we present numerical results obtained from a physical
model consisting of three waves undergoing nonlinear inter-
actions. Such systems occur in a plethora of problems in
fluid dynamics [7], plasma physics [8], and nonlinear optics
[9]. Three-wave interactions are mathematically described by
a system of coupled-mode nonlinear partial differential equa-
tions which exhibit complex behavior [10]. The nonlinear
three-wave model describes the exchange of energy among a
high-frequency (parent) wave and its sideband (daughters)
with quadratic interactions, as well as with a spatial diffusion
term. This system is known to present a spatiotemporal chaos
for certain parameter intervals [12,14], and we claim that
such a scenario can be regarded as stemming from the
spatial-mode instability of an invariant manifold for which
the dynamics is temporally chaotic but spatially homoge-
neous. Moreover, this instability causes, just after the transi-
tion to spatiotemporal chaos, an intermittent switching be-
tween the spatially homogeneous and nonhomogeneous
states with the same statistical properties of the so-called
on-off intermittency [15].

We used (complex) amplitudes A,, a=1,2,3, to describe
monochromatic waves propagating along the x direction,
where A, stands for the parent wave amplitude, A, and Aj
being the corresponding quantities for the faster and slower
daughter waves, respectively. Their wave numbers and fre-
quencies must satisfy matching conditions for the triplet,
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k;=k;+k, and Qk3=le—Qk2—5, where 6 is a small mis-
match. Supposing that the nonlinearities are sufficiently
weak, such that only quadratic terms in the wave amplitudes
need to be considered, the equations of the three-wave
model, with energy injection, dissipation, and a diffusive
term, read [10,12]
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where each wave is assumed to have a constant group veloc-
ity vga:dﬂka/dka, given by the dispersion relation of the
specific wave to be considered, such that v, >v,; >v,3 [10].
The coefficients y>0 and v<<0 are introduced phenomeno-
logically to represent energy injection (through wave 1) and
dissipation (through waves 2 and 3), respectively [11], and D
is a diffusion coefficient that provides a cutoff in the wave
growth, being essential to nonlinear saturation [12].

We choose a configuration where a parent wave has a
positive linear growth rate and pumps energy to the daughter
waves. Let us consider first the absence of the spatial deriva-
tives in Egs. (1)—(3). The parent wave amplitude, which ini-
tially grows linearly, saturates due to the nonlinear terms and
imparts its energy to the daughter waves, which have noise-
level amplitudes during the linear growth of the parent wave.
The transfer of energy causes the daughter-wave amplitudes
to increase and decrease rapidly, giving energy back to the
parent wave, which grows again, comprising the basic inter-
action process. Depending on the values of the parameter v
the wave amplitudes vary chaotically with time [13]. We
fixed y=0.01 and take v as our tunable parameter, and it
suffices to consider diffusion to act only in the parent wave.

Equations (1)—(3) were numerically integrated by a pseu-
dospectral method using a fixed number N of modes in Fou-
rier space (for a one-dimensional box of length L with peri-
odic boundary conditions):

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.75.067202

BRIEF REPORTS

with spatial
activity

/ without

spatial activity

70.6

FIG. 1. (Color online) Spatiotemporal evolution of the daughter-
wave amplitude for N=32 Fourier modes and y=0.01, v=-0.5,
61=0.1, D=1.0, v4=0.0, v,=1.0, v,3=-1.0, and a box length L
=27/ Kk ;=2/0.089. The initial conditions are a, ((0)=0.45+i0.0
and a, .(0)=0.0+:0.001, all other modes being set to zero.

Aa('x’ t) = E |aa,n(t)|ei[Ka,)lx+¢a,n(l)]’ (4)
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where a,, is the time-dependent Fourier coefficient corre-
sponding to the mode number «, ,=27n/L, whose evolution
is governed by a system of 6/N coupled ordinary differential
equations, and I=[—-(N/2)+1,(N/2)]. We emphasize that the
Kq0 mode does not contain the spatial variable and thus re-
flects only the temporal dynamics of the wave interaction
process. This spatially homogeneous dynamics can be re-
garded as being restricted to an invariant manifold M em-
bedded in the phase space since, once an initial condition is
placed there, the ensuing trajectory remains in M for all
further times. Accordingly, the spatially inhomogeneous
modes «,, are related to directions transversal to M.

A representative example of spatiotemporal chaos in the
dynamics generated by the model equations (1)—(3) is de-
picted in Fig. 1, where the spatiotemporal evolution of the
fast daughter-wave modulus (|A,|) is plotted, for nonvanish-
ing initial conditions, only for the modes «,, and k; .. Ex-
cept for v, all the remaining parameters will take on the same
numerical values for the forthcoming figures. The spatial
profile is initially flat and later alternates with irregular spa-
tial structures. If we think of the mode amplitudes a,, as
coupled oscillators, they have chaotic behavior for this set of
parameter values, and we can regard the flat spatial profiles
as synchronized chaotic states restricted to M, where «,
are the only nonvanishing modes. The spatial irregularities
we observe for certain time intervals result from the excita-
tion of modes with nonzero «,,. The wave energy, which
was initially confined to the k,, mode, is now imparted to
other modes, chiefly the «,; ones. This nonlinear energy
transfer among modes can be observed in Fig. 2, where we
plot the time series for the amplitudes of the homogeneous
(purely temporal) modes «,,( and the first spatial modes &,
for the parent and slow daughter waves (respectively,
a=1,3). Most of the time these spatial-mode amplitudes re-
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FIG. 2. Time evolution of the n=0 and n=1 mode amplitudes
g, for v=—0.37 of parent (a=1) and slow daughter («=2) waves.

main quiescent, meaning that the dynamics is constrained to
the homogeneous manifold, except for the spikes corre-
sponding to irregular spatial profiles for which the mode os-
cillators remain chaotic, although not synchronized. We
stress that the number of excited higher transversal modes,
Kgn (n=2), is bounded near the onset of spatiotemporal
chaos.

The transition from a synchronized chaotic dynamics on
the homogeneous manifold M to a nonsynchronized one,
where spatial modes are progressively excited, can be ana-
lyzed quantitatively by using the order parameter
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Figure 3 depicts the variation of the time-averaged order pa-
rameter in terms of the decay rate v, for both the parent (R))
and the fast daughter waves (R,) showing a similar behavior.
For v>v-p=-0.33 the order parameter reaches its maxi-

mum value—namely, R,=1—meaning that all transversal
Fourier coefficients vanish (a,,=0 for n # 0) and the chaotic
dynamics is constrained to M. On the other hand, if

v<wcg, some spatial modes are excited and R,=<1. When
the dissipative coefficient v reaches its critical value vcp the
purely temporal dynamics breaks down and some energy is
imparted to spatial modes. In geometrical terms, before the
transition (v>vg) the homogeneous manifold M is trans-
versely stable, whereas after the transition (v<<wgg) some
periodic orbits embedded in M lose transversal stability,
causing the occurrence of spatial modes. This is the onset of
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FIG. 3. Time-averaged order parameter for parent wave versus
decay rate for T=2X 10°, after 10* transient iterations.
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FIG. 4. Time evolution of the two largest Lyapunov exponents
of the dynamical system formed by N Fourier modes.

spatiotemporal chaos for the model we study in this work. To
support this conclusion we computed the Lyapunov spectrum
related to the mode dynamics in Fourier space, and the time
evolution of the two largest exponents (out of 6N modes
considered) is depicted in Fig. 4 [17]. The homogeneous
manifold is three dimensional since waves 2 and 3 have the
same values for their dissipation parameters. Before the tran-
sition [Fig. 4(a)] the largest Lyapunov exponent (\;) is posi-
tive, indicating that the dynamics on the homogeneous mani-
fold is indeed chaotic, whereas the second exponent (A,),
which is the largest one along the N—1 transversal direc-
tions, decays to zero as a power law, such that the M is
transversely stable for ¥> vg. After the transition [Fig. 4(b)]
the N\, exponent is also positive, showing that some orbits on
M have lost transversal stability.

In this context we can explain the intermittent transition
to spatial chaos occurring in the vicinity of the critical point
ver [16]. A trajectory in the (Fourier) phase space which is
off but very close to the homogeneous manifold M will stay
in its vicinity as long as it suffers the major influence from
the transversely stable periodic orbits embedded in M, the
energy being concentrated on the k,, mode. As the trajec-
tory approaches transversely unstable orbits of M it experi-
ences excursions far from M, physically imparting some
amount of energy to higher «,, modes and causing the
spikes observed in Fig. 2. The trajectory eventually returns to
the vicinity of M due to the influence of those transversely
stable orbits, and the interspike intervals found in Fig. 2 may
be regarded as laminar phases of duration 7; interrupted in an
intermittent way. There may exist interburst intervals as large
as circa 30000 time units, explaining the plateau with
almost-constant values of N\, before the power-law decay ob-
served in Fig. 4(a). Figure 5 depicts the probability distribu-
tion of these interspike intervals, P(7), which presents the
characteristic scaling of on-off intermittency with noise,
where the small interspike intervals are fairly common, their
lengths obeying a power-law scaling with universal exponent
—3/2, whereas the large intervals obey a decreasing expo-
nential scaling characteristic of noise [18]. The latter part is
due to the influence of small-amplitude random perturbations
on the intermittent scenario, which come from the intrinsic
chaotic dynamics in the homogeneous manifold.

The previous analyses were conducted using a modest
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FIG. 5. Probability distribution for the duration of interspike
intervals for v=-0.37<wvcp.

number of Fourier modes (N=32). Our results were com-
pared with N=64 modes with no quantitative differences for
the transition to spatiotemporal chaos. In fact, near the onset
of spatiotemporal chaos, the wave energy, formerly restricted
to the homogeneous manifold, is transferred to the lowest
spatial modes first. This scenario, however, is expected to
change completely in the fully turbulent case, where the
strong interaction there existing among different spatial
scales leads to a fast redistribution of the wave energy to the
lowest wavelengths, such that the use of a large number N of
modes would be necessary.

We can obtain such a fully turbulent scenario for values of
v in the same range we get the onset of spatiotemporal chaos,
provided we decrease the magnitude of the diffusion term in
Eq. (1). A crude way to explain this observation is to note
that, on neglecting the influence of the nonlinear and convec-
tive terms, the effective linear growth rate for the parent
wave is y—Dx?*. Hence a weak diffusion reduces the growth
of the modes with smaller x but damps modes with higher «.
On the other hand, letting D — 0 allows a fast distribution of
energy among modes. Accordingly, we plot in Fig. 6 the
power spectrum of the parent-wave Fourier-mode amplitude
|a, ,| for N=1024 modes with weak diffusion. Our numerical
results are consistent with a power-law scaling P(|a;,|)
~lay ™" which compares well with the 5/3 exponent pre-
dicted by Kolmogorov theory [1]. This behavior occurs since
energy is injected in the waves at the lowest xk modes due to
the chaotic dynamics in the homogeneous manifold (k=0),
and it is transported to smaller length scales or higher «
modes.

In conclusion, we propose an interpretation for the onset
of spatiotemporal chaos in a nonlinear system, using as a
paradigmatic example the quadratic interaction of three
waves and considering both dissipation and diffusion effects.
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FIG. 6. Power spectrum of the daughter-wave oscillations. We
used N=1024 modes, D=10"%, and considered T=400 before nu-
merical mode saturation. The solid line is the Kolmogorov
5/3-scaling law.
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We claim that the onset of spatiotemporal chaos in this sys-
tem occurs via the loss of transversal stability of a spatially
homogeneous state for which the temporal dynamics is cha-
otic. The spatial modes so excited draw energy from the
purely temporal chaotic state, eventually leading to fully de-
veloped spatiotemporal chaos when the number of excited
modes is large enough. The underlying dynamical mecha-
nism of this transition scenario is that some unstable periodic
orbit embedded in this homogeneous manifold loses trans-
versal stability, causing the emergence of the spatially het-
erogeneous modes. This process has been extensively stated
in low-dimensional dynamical system, where it is related to
fundamental phenomena like riddled basins [19], on-off in-
termittency [15], and unstable dimension variability. Thanks
to the high dimensionality of the dynamics of our spatiotem-
poral system, it is very difficult to find the particular orbit in
the homogeneous manifold M which loses transversal sta-
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bility first, although for simpler low-dimensional systems
this can be done [19]. In the scenario following this loss of
transversal stability only a limited number of spatial modes
are excited. Moreover, after the onset of spatiotemporal
chaos, we observe an intermittent switching between spa-
tially homogeneous and nonhomogeneous states which pos-
sesses a power-law (with the universal exponent 3/2) distri-
bution of laminar states. As more spatial modes are added we
can obtain a fully developed scenario with the Kolmogorov
spectral distribution. Our numerical results were drawn from
a paradigmatic model of spatiotemporal dynamics, and hence
we claim that the same mechanism described here could be
applied to other high-dimensional spatially extended dy-
namical systems [18].
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