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In this paper, synchronization based parameter identification of dynamical systems from time series is
carefully revisited. It is shown, based on rigorous theoretical analysis and concrete counterexamples, that some
recent research reports on this issue are incomplete or even incorrect. A linear independence condition is
pointed out, which is sufficient for such parameter identification of general dynamical systems.
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Since the pioneering work of Ott, Gregogi, and Yorke �1�,
and Pecora and Carroll �2�, chaos control and synchroniza-
tion have received increasing attention �3–7� due to their
potential applications in secure communication, laser sys-
tems, chemical reactions, biological systems, and so on. An
important application of synchronization and control are in
adaptive parameter estimation methods where parameters in
a model are adjusted dynamically in order to minimize the
synchronization error �8–15�. Such parameter identification
methods are useful for instance in chaos communications
�16� where the states of two identical chaotic systems are
required to asymptotically synchronize and the �unknown�
parameters of the transmitter system will be estimated. In
another field, stable equilibrium points in neural networks
have been widely investigated in associative memories,
where they are used to store and recover a �single� pattern.
However, due to the limited information stored in such a
stable equilibrium point, there is also great interest in using
periodic solutions and chaotic orbits for associative memory
and pattern recognition �17�. In these neural networks, the
learning algorithm is based on the adjustment of the weight
matrix, which can be considered as the estimation of network
parameters.

It is well known in the field of control systems that system
parameters identification may have “parameter drift,” i.e., the
estimated value departs from the true value of a parameter by
a constant that cannot be eliminated unless the so-called per-
sistent excitation condition is satisfied which requires rich
enough training information �input signals� �18�.

Recently, some researchers began to question about
whether the parameters can really be identified from a time
series in deterministic dynamical systems based on the syn-
chronization method, particularly from chaotic systems, due
to the lack of complete and rigorous mathematical theory
about this topic in the field. In �19�, for example, a counter-
example to the model investigated in �13� was given, declar-
ing that parameters cannot be estimated from stable systems

by using the adaptive control method. Later, in �20�, the
same model was revisited with a detailed proof to show that
parameters in periodic and chaotic systems can be estimated.
But the systems discussed therein are too special and cannot
be extended to the general cases. More recently, in �14�,
adaptive synchronization was studied with an application to
estimating system parameters, which provides a detailed
analysis, with a claim that “the chaotic behavior is necessary
to realize such techniques of parameter identification.” How-
ever, in the present paper, based on rigorous theoretical
analysis and concrete counterexamples, we show that all re-
ports �8–14� referred to the above issue are either incomplete
or even incorrect.

In the following we shall demonstrate that parameter
identification is almost impossible for systems converging to
a fixed point and may also fail for chaotic systems. A linear
independence condition will be pointed out, which is essen-
tial for ensuring parameters identification of general dynami-
cal systems. Furthermore, it will be shown that under this
sufficient condition, parameters can be well estimated from a
time series of dynamical systems based on synchronization.

In the master-slave framework, consider the following
master system:

ẋ�t� = F�x,p� + G„x�t − ��,r… , �1�

where x�t�= (x1�t� ,x2�t� , . . . ,xn�t�)T�Rn is the state vector,
��0 is a time delay, F�x , p�= (F1�x , p� ,
F2�x , p� , . . . ,Fn�x , p�)T and G(x�t−�� ,r)= �G1(x�t−�� ,r) ,
G2(x�t−�� ,r) , . . . ,Gn(x�t−�� ,r)�T are nonlinear and delayed
nonlinear functions, respectively, with

Fi�x,p� = ci�x� + �
j=1

m1

pijf ij�x� , �2�

and

Gi„x�t − ��,r… = di„x�t − ��… + �
j=1

m2

rijgij„x�t − ��… , �3�

in which ci�x�, f ij�x�, di(x�t−��), gij(x�t−��) are nonlinear
functions, and p= �pij��Rnm1, r= �rij��Rnm2 are unknown
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parameters to be estimated. The initial conditions are given
by xi�t�=�i�t��C��−� ,0� ,R�, the set of all continuous func-
tions from �−� ,0� to R.

Assume that all nonlinear functions satisfy the uniform
Lipschitz condition, i.e., there exist positive constants f and
g such that, for all i=1,2 , . . . ,n,

�Fi�x,p� − Fi�y,p�� � f maxj�xj − yj�, ∀ x,y � Rn, �4�

and

�Gi�x,p� − Gi�y,p�� � g maxj�xj − yj�, ∀ x,y � Rn. �5�

Note that conditions �4� and �5� are very mild: if �f ij /�xj
and �gij /�xj �i , j=1,2 , . . . ,n� are bounded, then these two
conditions are satisfied. So, system �1� includes many well-
known systems, such as the Lorenz system �18�, Chen sys-
tem, Lü system, various neural networks, Chua’s circuit, and
so on, to name just a few.

To estimate the unknown parameters in p based on syn-
chronization principle using time series x�t� from system �1�,
the following response system and adaptive laws are intro-
duced �14�:

ẏ�t� = F�y,q� + G„y�t − ��,s… − k�y − x� , �6�

q̇ij = − �ijeif ij�y�, i = 1,2, . . . ,n, j = 1,2, . . . ,m1, �7�

ṡij = − �ijeigij„y�t − ��…, i = 1,2, . . . ,n, j = 1,2, . . . ,m2,

�8�

k̇i = �i�yi − xi�2, �9�

where �ij, �ij, and �i are positive constants, ei=yi−xi, qij, sij,
and ki are adaptive law parameters in the response system
�6�, and k=diag�k1 ,k2 , . . . ,kn�. Here, qij and sij are also esti-
mates of parameters pij and rij in the master system �1�,
respectively.

In order to state our main results, the following definition
is needed:

Linearly independent. The functions li�t� �i=1,2 , . . . ,N�
are said to be linearly independent if there do not exist non-
zero constants �i �i=1,2 , . . . ,N�, such that

�1l1�t� + �2l2�t� + ¯ + �NlN�t� = 0.

In what follows, it will be shown that if the master system
�1� and the slave system �6�–�9� are globally synchronized,
and moreover if f ij�y�t�� �j=1,2 , . . . ,m1� and
gij�y�t−��� �j=1,2 , . . . ,m2� are linearly independent �in the
sense of linear algebra� on the synchronization manifold
x�t�=y�t�, then qij→pij and sij→rij as t→	.

Consider the following Lyapunov functional candidate:

V�e,q,s,k� =
1

2�
i=1

n

ei
2 + �

i=1

n

�
j=1

m1 1

2�ij
�qij − pij�2

+ �
i=1

n

�
j=1

m2 1

2�ij
�sij − rij�2 + �

i=1

n
1

2�i
�ki − L�2

+ 
�
i=1

n �
t−�

t

ei
2�s�ds , �10�

where 
 and L are positive constants. Taking the derivative
of V�t� along the trajectories of �1� and �6�–�9�, one obtains

V̇�t� = �
i=1

n

ei
T�t��Fi�y,q� − Fi�x,p� + Gi„y�t − ��,s…

− Gi„x�t − ��,r… − kiei� − �
i=1

n

�
j=1

m1

ei�qij − pij�f ij�y�

− �
i=1

n

�
j=1

m2

ei�sij − rij�gij„y�t − ��… + �
i=1

n

�ki − L�ei
2

+ 
�
i=1

n

„ei
2 − ei

2�t − ��… . �11�

It is easy to verify that

Fi�y,q� − Fi�x,p� + Gi„y�t − ��,s… − Gi„x�t − ��,r…

= Fi�y,q� − Fi�y,p� + Fi�y,p� − Fi�x,p� + Gi„y�t − ��,s…

− Gi„y�t − ��,r… + Gi„y�t − ��,r… − Gi„x�t − ��,r… .

�12�

Therefore, one has

V̇�t� = �
i=1

n

ei
T�t��Fi�y,p� − Fi�x,p� + Gi„y�t − ��,r…

− Gi„x�t − ��,r…� − �L − 
��
i=1

n

ei
2 − 
�

i=1

n

ei
2�t − ��

� − �L − nf − ng − 
��
i=1

n

ei
2 − �
 − ng��

i=1

n

ei
2�t − �� .

�13�

Now, choosing L=nf +ng+
+1 and 
=ng, one obtains

V̇�t� � − �
i=1

n

ei
2. �14�

Thus, from the Lyapunov theorem ��21� Chap. 5, Theorem
2.1�, y�t�→x�t� as t→	, and consequently the LaSalle in-
variance principle ��21� Chap. 5, Theorem 3.1� implies that

the set S satisfying V̇=0 is given by

S = ��e,q,s,k� � R2n+n�m1+m2�:e = 0	 . �15�

It follows from �1� and �6� that, for i=1,2 , . . . ,n,
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ėi�t� = Fi�y,q� − Fi�x,p� + Gi„y�t − ��,s… − Gi„x�t − ��,r…

− kiei, �16�

so that, on the set S, i.e., when ei=0, one has

0 = Fi�y,q� − Fi�y,p� + Gi„y�t − ��,s… − Gi„y�t − ��,r…

= �
j=1

m1

�qij − pij�f ij�y� + �
j=1

m1

�sij − rij�gij„y�t − ��… . �17�

Since f ij(y�t�) �j=1,2 , . . . ,m1� and gij(y�t−��) �j
=1,2 , . . . ,m2� are linearly independent on the synchroniza-
tion manifold, one has qij→pij and sij→rij as t→	.

This synchronization thus results in y�t�→x�t�, the same
as reported before �8–14� where, unlike the above rigorous
analysis, only simulations were given without a complete
mathematical proof.

It should be emphasized that the above theoretical analy-
sis shows that one cannot estimate the system parameters
without the condition of linear independence of the functions
on the synchronization manifold. In fact, for stable systems,
parameters cannot be estimated when f ij�y�=c �constant� on
the synchronization manifold, since if f ij�y� are not linearly
independent then there will be many nonzero parameters,
��0 and ��0, such that �qij − pij�=� and �sij −rij�=�, and
they both satisfy �17�; as a result, the parameters are not
distinguishable �by any parameter identification method�.

Next, examples are given to show that if the linear inde-
pendence condition is not satisfied, one may not be able to
estimate the system parameters. These counterexamples in
effect disprove previous reports �8–14� claiming that chaotic
dynamics is sufficient for parameter estimation.

First, consider the following system, constructed based on
the classical Lorenz system:

ẋ1 = a�x2 − x1� + a�x4 − x1� ,

ẋ2 = cx1 − x2 − x1x3,

ẋ3 = − bx3 + x1x2,

ẋ4 = − �x4 − x1� + a�x2 − x1� . �18�

System �18� is chaotic when parameters a=10, b=8/3,
c=28, a=6. Obviously, since ẋ4− ẋ1=−�1+a��x4−x1�, one
has x1→x4. Suppose only a and a are unknown for simplic-
ity. Here, p11=a, p12=a, p41=a, f11= f41=x2−x1, and f12
=x4−x1. The time series can be received by the slave system
�6�–�9�. The error states ei and the estimated parameters qij
are shown in Fig. 1.

It is clear that q11→p11=10, q41→p41=10, but
q12yp12=6. Actually, from �17� above, one has

�q11 − p11�f11�y� + �q12 − p12�f12�y� = 0 �19�

on the synchronization manifold x=y and x1=x4. Thus,
f12=0 and �19� is valid for any pair q12, p12.

Next, consider the following neural network model, as
discussed in �8,9,22�:

ẋ�t� = − Cx�t� + Af̃„x�t�… + Bf̃„x�t − 1�… , �20�

where x= �x1 ,x2 ,x3�T, f̃�x�= (tanh�x1� , tanh�x2� , tanh�x3�)T,

C = 
− 0.6 0 − 0.4

0 − 1 0

0.5 0 0.3
� ,

A = 
 2.0 − 0.1 0

p21 3.0 p22

− 2.0 0.1 0
� ,

B = 
− 1.5 − 0.1 0

− 0.2 − 2.5 0

1.5 0.1 0
� ,

in which f21=tanh�x1�, f22=tanh�x3� and p21=−4.0,
p22=−1.0 are unknown to the slave system �6�–�9�.

It is easy to verify that ẋ1+ ẋ3=−0.1�x1+x3� and
x1�t�→−x3�t� as t→	. It follows from �17� that, on the syn-
chronization manifold x=y and x1=−x3, one has
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FIG. 1. Orbits of ei and qij.
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FIG. 2. Orbits of ei, qij, and q21−q22.
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�q21 − p21�tanh�y1� + �q22 − p22�tanh�y3� = 0, �21�

so that

��q21 − p21� − �q22 − p22��tanh�y1� = 0, �22�

which implies that q21−q22= p21− p22 and p21 and p22 cannot
be estimated, respectively. Here, only p21− p22 can be esti-
mated by q21−q22.

The errors ei and the estimated parameters qij and
q21−q22 are shown in Fig. 2. It can be seen that q21−q22
→p21− p22=−3.

In fact, the parameter estimation method will fail if there
is linear dependence because a violation of the linear inde-
pendence condition indicates an overdetermination of the

model which means that there are more parameters in the
determine than one would need to model the observed dy-
namical behavior �redundant parametrization�. The above
analysis and counterexamples show the importance of the
linear independence condition that was not paid attention to
in previous work on �synchronization based� parameter esti-
mation methods. In effect, it provides a necessary and suffi-
cient condition for proper parameter identification which is
crucial for many practical applications.
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