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We describe here a rigorous and accurate model for the simulation of three-dimensional deformable particles
�DPs�. The method is very versatile, easily simulating various types of deformable particles such as vesicles,
capsules, and biological cells. Each DP is resolved explicitly and advects within the surrounding Newtonian
fluid. The DPs have a preferred rest shape �e.g., spherical for vesicles, or biconcave for red blood cells�. The
model uses a classic hybrid system: an Eulerian approach is used for the Navier-Stokes solver �the lattice
Boltzmann method� and a Lagrangian approach for the evolution of the DP mesh. Coupling is accomplished
through the lattice Boltzmann velocity field, which transmits force to the membranes of the DPs. The novelty
of this method resides in its ability �by design� to simulate a large number of DPs within the bounds of current
computational limitations: our simple and efficient approach is to �i� use the lattice Boltzmann method because
of its acknowledged efficiency at low Reynolds number and its ease of parallelization, and �ii� model the DP
dynamics using a coarse mesh �approximately 500 nodes� and a spring model constraining �if necessary� local
area, total area, cell volume, local curvature, and local primary stresses. We show that this approach is
comparable to the more common—yet numerically expensive—approach of membrane potential function,
through a series of quantitative comparisons. To demonstrate the capabilities of the model, we simulate the
flow of 200 densely packed red blood cells—a computationally challenging task. The model is very efficient,
requiring of the order of minutes for a single DP in a 50 �m�40 �m�40 �m simulation domain and only
hours for 200 DPs in 80 �m�30 �m�30 �m. Moreover, the model is highly scalable and efficient compared
to other models of blood cells in flow, making it an ideal and unique tool for studying blood flow in microves-
sels or vesicle or capsule flow �or a mixture of different particles�. In addition to directly predicting fluid
dynamics in complex suspension in any geometry, the model allows determination of accurate, empirical rules
which may improve existing macroscopic, continuum models.
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I. INTRODUCTION

A. General observation

The flow of dense particle suspensions has been studied
extensively experimentally. Two major areas of research
have emerged naturally: solid particle suspensions such as
colloids, which are relevant in shallow water sediment resus-
pension, river bed dynamics, etc., and deformable particle
suspensions, which are important in the petroleum industry,
pharmaceutical production, blood flow, emulsions, etc.

Within these two categories, models and experiments can
address various length scales, namely, mesoscopic which fo-
cuses on length scales comparable to the size of the particles,
and macroscopic which includes length scales at least two
orders of magnitude larger than the size of the particles. Nu-
merous computational models now exist for simulating the

flow of solid particle suspensions, both at the mesoscopic
and macroscopic levels.

The current paradigm is that, while many models can ac-
curately approximate macroscopic flow of solid and deform-
able particles, mesoscopic simulation of deformable particles
�DPs� remains a challenge. It is the latter domain, which
contains complex and interesting fluid dynamics, in which
particle size is similar to the conduit size, that we have fo-
cused our model of deformable particle. The flow of blood
through microvessels is an important example.

Decades of experimental observations have shown that
the two phase nature of blood is responsible for the flow
anomalies observed in microvessels �i.e., the Fahraeus effect,
Fahraeus-Lindqvist effect, and blood cells interactions; see
�1–5�, for example�, and several computational approaches
have led to major advances in the simulation of these sys-
tems. However, most of these models either simulate acute
deformation of a single red blood cell �e.g. �6–10��, or model
multiple red blood cells �RBCs�, but with significant restric-
tions on, for example, deformability and shape �e.g., �11,12��
or the number of spatial dimensions �e.g., �11,13��. Other
than these examples, numerical studies generally ignore the
particulate nature of blood, and models of mesoscale blood
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dynamics which explicitly account for blood cells are lag-
ging far behind the experimental data.

From the discussions above, we suggest that a useful, rel-
evant DP model must �i� contain a physiologically relevant
number of three-dimensional, deformable, and interacting
RBCs as possible, all of which advect in flow, deform in a
physically correct way, and exert a reciprocal effect on the
flow �i.e., exhibit two-way coupling� and �ii� facilitate adapt-
able and efficient computation, so that results are obtained in
a reasonable amount of time.

B. Rational

To date, no model has been reported with the ability to
model O�102� three-dimensional deformable particles. The
limitation has been due to a lack of sufficient CPU capacity
and memory to reproduce physically correct flow. For any
model to be useful it must be designed around the current
hardware limitations. Computational efficiency is therefore
crucial; it may be attained through prudent choice of model
assumptions, which must, however, be validated through rig-
orous testing. This paper demonstrates our model’s efficiency
and accuracy, validating our simplifying assumptions. The
model was designed to run in parallel using multiple proces-
sors and to require a reasonable computational power and
time. We define a model as reasonable if a simulation is
complete within approximately 10 hours on 10 to 30 CPU’s.

II. METHOD OVERVIEW

A. A brief overview of current DP models

The majority of current models for deformable cells are
designated front-tracking �FT�; i.e., the manifold surface of
the cell is represented by a set of points embedded in the
membrane, forming a boundary mesh which is superimposed
over the separate, Eulerian lattice of the fluid domain �if the
fluid is actually represented explicitly�. FT methods are gen-
erally categorized as Lagrangian and provide very narrow
interfaces. Alternatively, in the front capturing �FC� approach
one can define a scalar field, �, everywhere over the Eulerian
mesh of the fluid. The � field as a whole then carries infor-
mation about the membrane location; a closed contour of a
particular value of � represents the position of the interface.

While FC interfaces suffer from being broader, they are
usually preferred in the simulation of fluid interfaces as FT
methods do not handle large interface distortions and inter-
face breakup easily. The broader interface of the FC method
is generally due to numerical diffusion and typically has a
width of three to five times the underlying lattice spacing.

In the majority of the models incorporating flow effects,
the governing equations for the fluid flow are determined by
an Eulerian Navier-Stokes �NS� solver, a notable exception
being low Reynolds Number �Re� so-called Stokesian dy-
namics solvers �e.g., �14��, or models limited to a fixed,
simple geometry, where the flow perturbation of the cell can
be added to the known viscous flow through the condition of
Stokes regime �e.g., �15��.

1. Existing approaches

Sun et al. �16� simulated O�102� solid RBCs in two di-
mensions and were able to recover the Fahraeus and
Fahraeus-Lindqvist effects. Dao et al. ��17�� used a finite-
element modeling �FEM� model to simulate the deformation
of a single RBC stretched due to shear flow. The same au-
thors also published a meshless representation of the mem-
brane �9�. This model is, however, too computationally ex-
pensive to be applied to our goal of O�102� RBC’s. Dzwinel
et al. developed a dissipative particle dynamics �DPD�-like
method for both the RBC as a whole �inner skeleton and
membrane� and the plasma �12�. As a consequence of mod-
eling assumptions, the membrane shape was too rough to be
considered in this approach. Nogushi et al. showed impres-
sive tank treading behavior with their model �10�. However
this method was, again, not designed to handle many RBC’s.
We finally note that Buxton et al. �18� have developed a
model of three-dimensional deformable capsules using a La-
grangian and/or lattice Boltzmann method sightly different
which we describe in the remainder of this section, and very
recently, Alexeev et al. �19� used this approach to model two
capsules in flow. This method would not be practical or suf-
ficiently efficient to simulate the thin membrane of RBC’s.
Finally, following the work of Peskin on the immersed
boundary method �IBM� for deformable boundaries �see,
e.g., �20��, Feng and Michaelides ��21�� combined lattice
Boltzman �LB� and IBM to simulate very stiff solid particle
in flow. This approach could be applied to the current appli-
cation, but computational efficiency is likely to be a limiting
factor.

2. Our approach

Our model is based on a “bottom-up” approach, with the
following assumptions: �i� the macroscopic deformation of
each cell can be obtained by averaging the microscopic
and/or molecular deformations over the cell surface, with
different types of particles having different sets of micro-
scopic and/or molecular parameters, and �ii� recovering the
overall deformation of individual particles accurately will
ensure correct simulation of flow containing many particles.
It is assumed that the hydrodynamics provided by the LB
method support the correct fluid-particle interactions.

In order to model a sufficient number of three dimen-
sional DPs �O�2�� to recover the required flow regimes, we
�i� model the DP shape with a relatively coarse mesh, �ii�
simulate the elastic properties of the DP membrane as a net-
work of springs, without reference to a membrane potential
function or its spatial gradients, and �iii� use an efficient fluid
solver.

B. Fluid dynamics: lattice Boltzmann (LB)

1. Why lattice Boltzmann?

Clearly, the simulation of complex flows containing ad-
vected, Lagrangian particles is of interest in a variety of very
important applications. However, for many, such simulations
have been prohibitively demanding, from both computational
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and algorithmic points of view. The advent of the lattice
Boltzmann �LB� method has improved matters �22�.

In fact, LB has well-recognized efficiency and algorithmic
advantages over conventional computational fluid dynamics
methods only for certain applications: canonically complex,
time-dependent, multicomponent, and particulate flows.
However, in these applications �which are highly relevant to
the current work�, LB methods can �i� achieve efficiency
improvements approaching two orders of magnitude under
the right circumstances and �ii� facilitate intuitive manipula-
tion of the underlying flow physics. In this work advantage
�i� underpins our central motivation—namely the provision
of an accessible, ambitiously upscalable method. Advantage
�ii� is manifest in the direct methods we use explicitly to
couple advected red blood cells to flow modes; it arises as
follows.

A LB flow solver works essentially at the kinetic equation
scale �22�, at which scale it is possible to incorporate the
important interactions with Lagrangian particles �DPs�. For
this reason and also for simplicity of coding, adaptability,
and parallelizability, we chose to use LB as a full Navier-
Stokes solver. We note that LB may be adapted to Stokes
flow, in which the fluid inertia is ignored in a regime of very
small Re �15�, but its simplest and most effective form lies in
approximating the full Navier-Stokes equations. LB has pre-
viously been used to simulate blood flow �i� at the macro-
scopic, arterial level �23–25�, �ii� at the microscopic level
�16,26�, and �iii� to simulate many deformable droplets in
flow �27�.

2. Description of lattice Boltzmann

For a detailed derivation of this and related lattice Boltz-
mann �LB� models, we refer the reader to Hou et al. �28�; for
wider background details to Succi’s review �22� and more
recently, Sukop and Thorne’s book �29�.

The primary quantity in any LB method is a single par-
ticle distribution function, known as the momentum distribu-
tion function, f i, which may be thought of as the mesoscopic
density of molecules flowing in the direction of the velocity
vector ci. We chose to use the three-dimensional lattice with
19 allowed velocities, designated D3Q19 originally devel-
oped by Qian and d’Humières �30�. Each node is organized
on a regular cubic lattice and connects to its nearest and
next-nearest neighbors �a total of 18, see �22� for more de-
tails and illustration�. The corresponding velocity vectors
ci’s are defined as follows: c0= �0,0 ,0�, c1,2= �±1,0 ,0�, c3,4

= �0, ±1,0�, c5,6= �0,0 , ±1�, c7,10= �±1, ±1,0�, c11,14

= �0, ±1, ±1�, c15,18= �±1,0 , ±1�.
The LB method is a kinetic equation method. Equations

such as Eq. �1� �below� govern the evolution of the single-
particle distribution function, and continuum length scale ob-
servables emerge from appropriate moments of the f is. Thus,
LB is not a discretization of the Navier-Stokes and continuity
equations. The efficiency of the LB method comes from its
“local” nature and its natural kinetic length scale. The LB
method actually yields a weakly compressible form of the
incompressible Navier-Stokes equations; the compressibility
error is, however, very small at low Re.

For the work presented in this paper, we adopt a lattice
Boltzmann Bhatnagar-Gross-Crook �LBGK� �31� scheme
with a source term added to account for the systematic influ-
ence of body forces on the fluid:

f i�x + ci�t,t + �t� = f i�x,t� +
1

�
� f i

�0���,v� − f i�x,t�� . �1�

The parameter � determines the relaxation rate to a local
equilibrium distribution function f i

�0��� ,v�, and � may be re-
lated to the fluid kinematic viscosity � through the equation

� = cs
2�2� − 1� , �2�

where cs is the speed of sound. This result �Eq. �2�� can be
recovered by a Chapman Enskog expansion similar to that
used in kinetic theory �32�.

The first and second discrete c moments of the f i’s pro-
vide the hydrodynamic, continuum length scale, observables
of density ��x , t�, and momentum ��x , t�v�x , t�:

��x,t� = �
i

f i�x,t� ,

��x,t�v�x,t� = �
i

f i�x,t�ci + �
i

�ici. �3�

The relationship between the source term, �i, and the target
fluid body force is strictly given by Eq. �20� of Ref. �33�; in
the rest of the present article we shall, for simplicity and to
make best use of physical insight, concentrate on this mac-
roscopic body force �total force applied to produce the RBC
reciprocal fluid motion and interactions�.

The equilibrium distribution function f i
�0� is determined

solely by these observables and takes the form of a truncated,
low velocity expansion of a translating Maxwell-Boltzmann
distribution,

f i
�0���,v� = ti��1 +

v · ci

cs
2 −

v2

2cs
2 +

�v · ci�2

2cs
4 � , �4�

where the ti’s are constants, termed weights, depending only
on the velocity index i and the geometry of the lattice
�28,30�. For the D3Q19 lattice used in this work, the weights
are given by t0=1/3, t1. . .6=1/18, t7. . .18=1/36. The results in
Eqs. �3� and �4� are similar to those obtained in classical
kinetic theory, as explained in Ref. �32�.

The term �i in Eq. �3� is a source term to impress force on
the lattice fluid at the macroscopic, Navier-Stokes level. Us-
ing methods directly adapted from kinetic theory �22,32�, it
can be shown ��33,34�� that Eq. �1� leads to the following
weakly compressible, forced Navier-Stokes evolution:

− cs
2 �

�t
�v	 +

�

�x


�v
v	 = −
�

�x	

� +
�

�x


�2��S	
� + �
i

�ici	,

�5�

which includes the source forcing term explicitly. Here cs is
the speed of sound �cs

2=1/3� and S	
=1/2��	v
+�
v	� is
the macroscopic, continuum scale rate of strain tensor.
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3. Lattice Boltzmann boundary conditions

Solutions of the incompressible Navier-Stokes and conti-
nuity equations for the velocity and pressure,
�v�r , t� , P�r , t�	, are most straightforwardly closed by Dirich-
let boundary conditions on fluid velocity �only�:


v�x,t�
x�t = u0�x�,t� , �6�

where x� denotes a position on the boundary of the flow
domain and u0�x� , t� is a specified boundary velocity distri-
bution. The special case in which the fluid adjacent to the
boundary is at rest, u0=0, is referred to as the no-slip con-
dition.

Several simple and efficient techniques for imposing the
no-slip condition exist for LB simulation. We use the popular
midlink bounceback method which has been carefully evalu-
ated by a number of workers �e.g., �35–37��. The f i’s on a
boundary node at position xw are subject to a specular reflec-
tion, taken to occur at the midpoint xw+ 1

2ci of the appropri-
ate lattice link ci,

f−i�rw,t + 1� = f i�rw,t�, c−i � − ci. �7�

This simple rule was generalized by Ladd �38� to moving
boundaries with velocity u0 by replacing the evolution ex-
pressed in Eq. �1� with

f−i�rw,t + 1� = f i�rw,t� +
2�ti

cs
2 �u0 · c1� . �8�

Moving walls are implemented using this approach.
Inlet and outlet fluxes and an outlet pressure �density�

distribution are specified at every time step, using an appro-
priate equilibrium f i

�0��� ,u� �22�. The inlet pressure distribu-
tion is allowed to develop, while the outlet flux is taken to be
a square profile matching the inlet flux. In this way, the un-
known inlet density develops to a “fully developed,” uniform
pressure gradient condition �26,39�.

C. Deformable particle dynamics

1. Different types of deformable particles

We consider in this manuscript three categories of DPs:
capsules, vesicles, and red blood cells.

We define capsules as spheroids filled with liquid, with an
unbreakable, Hermetic membrane of finite thickness �ap-
proximately 1/10th to 1/5th of their radius�. This membrane
provides resistance to shear and change of volume but allows
relatively small perturbations in surface area.

We define vesicles as spheroids filled with liquid, with a
membrane that is unbreakable, hermetic, and very thin com-
pared to their radius, typically 1/1000th. Vesicles exhibit a
strong resistance to any volume and total surface area
change, but are insensitive to strain and only weakly sensi-
tive to local bending change.

Red blood cells �RBCs� are biconcave disks with a rest
shape conferred by two structural membrane components:
the plasma membrane and the cytoskeleton �see Fig. 1�. The
plasma membrane is similar to the vesicle membrane, and is
therefore responsible for a resistance to surface area dilata-

tion. The cytoskeleton, on the other hand, is a triangular
protein network, that acts like a triangular network of
springs, providing viscoelastic resistance to bending of the
membrane �similarly to capsules, see �40–42��. Similar to
capsules and vesicles, red blood cells strongly resist changes
in volume. Fortunately for our modeling efforts, experimen-
tal and theoretical studies by a number of authors have ana-
lyzed RBC membrane dynamics in detail; Mukhopadhyay
et al. �6�, Kuzman et al. �7�, Pozrikidis �8�, Li et al. �9�, and
Noguchi et al. �10�.

2. The importance of different constraints in a DP

There are four parameters that affect the mechanical en-
ergy, and therefore shape, of these particles: �1� inner vol-
ume, �2� surface area, �3� hydrodynamic shear, and �4� mem-
brane bending.

Capsules are only subject to two constraints: volume and
strain. Their volume is most often modeled as constant and
their stretching dependence varies with their capsule chem-
istry and composition �18�.

Vesicles have three constraints: strong resistance to
changes in volume and surface area, and a weaker resistance
to bending, which is essentially the only remaining free pa-
rameter �15�.

The case of RBCs is more complicated. The characteristic
biconcave shape arises because the plasma membrane does
not allow expansion or contraction of the membrane �just
like any other vesicle� and the cytoskeleton restricts its strain
and bending, through the three-dimensional mesh it forms.
We note that buckling is believed to be restricted by the

FIG. 1. �Color online� Artist’s view of a RBC membrane. The
cytoskeletal triangular mesh is embedded in the plasma phospho-
lipid bilayer by the transmembrane proteins. The plasma layer �bi-
layer of amphifilic molecules� is believed to be responsible for the
constraints of constant area and resistance to buckling. It can rear-
range itself very easily, and is often referred to as a fluid membrane.
The network of proteins attached underneath the plasma layer is
responsible for the shear resistance �through molecular links be-
tween the proteins� and bending. The whole membrane also con-
tains ionic pumps maintaining the inner volume of the RBC
constant.
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plasma bilayer �7�. These properties are biologically crucial,
for they allow RBCs to squeeze through narrow capillaries
and to withstand large shear forces in the blood stream.

The RBC elastic modulus for volume compressibility KV

is of the order of 0.033 �N s cm−1, the elastic modulus for
area compressibility KA is of the order of 5�105 pN �m−1,
the elastic modulus for shear KS is of the order 5 pN �m−1,
and the bending elastic modulus KB is of the order of
10−1 pN �m �parameters from Dao et al. �17� and Bagchi
et al. �13��. Ghosh et al. �43� noted that, in the range of
displacements we are modeling �a few micrometers�, the
elastic energies of bending, shearing, and dilatation are in the
ratios 1 :50:106; therefore we can write

Ebend � Eshear � Earea � Evolume. �9�

These values reflect the energy cost of certain mechanical
deformations about a preferred value which constrains the
DP dynamics. To model vesicles, we use similar volume,
bending and area constraints �see the quantitative measures
by Kroll et al., for example�. Capsules are taken to have,
quantitatively, the same bending modulus and volume con-
straints as RBCs, but a strain constraint which can vary sig-
nificantly.

3. A coarser mesh for essential gains in efficiency

Our compromise is to use a coarse mesh of approximately
400 nodes for the RBC surface, defining approximately 800
triangular faces, compared to O�104� nodes usually involved
in comparable models �e.g., in �44�, �8�, �45�, or �9��. Each
vertex is defined �on average� by six faces, also referred to as
an order 6 mesh; see Fig. 2. This resolution was arbitrarily
chosen to fit both the spatial DP constraint �expressing
smooth biconcavity in the case of a RBC�, and computa-
tional constraints �not too fine a mesh�. Once the resolution
was chosen, we obtained the mesh by triangular tessellation
from the equation of a sphere in the case of vesicles and, in
the case of RBCs, from the empirical solution of Evans and
Fung �46�,

Z = ± 0.5R0�1 −
X2 + Y2

�R0�2 �0.5

��C0 + C1
X2 + Y2

�R0�2 + C2�X2 + Y2

�R0�2 2�, R0 = 3.91 �m,

C0 = 0.207, C1 = 2.0 C2 = − 1.123.

We find that this approximation allows up scaling to hun-
dreds of DPs, while maintaining correct membrane dynamics
for accurate emergent blood rheology.

4. Definition of notation

Referring to Fig. 3, we now introduce the following quan-
tities and notations:

� is the index of the face.
r��� is the position of the face �, taken to be its center of

gravity.
�1, �2, �3 is the nodes defining the face �.
r��1�, r��2�, r��3� is the position of nodes �1, �2, �3.

FIG. 2. �Color online� Meshes used for the RBCs, capsules, and
vesicles, consisting of only approximately 400 nodes �800 faces
approximately� only, compared to �104 nodes for comparable
methods. This relatively coarse mesh reduces computational re-
quirements while accurately reproducing flow and cell deformation.

FIG. 3. �Color online� Diagram defining DP mesh face metrics
for area, stretching, and bending.
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N��� is the normal to the face �, pointing outside the
enclosed volume of the DP.

A��� is the area of the face �.
L12���, L13���, L23��� is the length between r��1� and

r��2�, r��1� and r��3�, and r��2� and r��3�, respectively
�note that L	
=L
	�.

�	
�r� is the angle between face � and the face that has
node �	 and �
 in common �with �	 ,
	 in
��1,2	 , �1,3	 , �2,3		�.

�	
 is the node of face � other than �	 and �
.
w	 is the vector from centroid of face to node �	

�w	=r��	�−r����.

5. Constant particle volume constraint

The inner volume of the DPs is held essentially constant
at all times:

V�t� = V0. �10�

The incompressible fluid encapsulated within the DP main-
tains a uniform internal �hydraulic� fluid pressure on the in-
ner membrane surface �see, e.g., Dao et al. �17��; there is
therefore no fluid pressure drop across the membrane:


P�r,t�
outside = 
P�r,t�
inside. �11�

Consequently, we use a very stiff Hookean “spring” ap-
proach to describe how a DP reacts to a change of inner
volume. Each of its faces, �, is subjected to the force FV���
as follows:

FV��� = − KVV − V0

V0
A���N̂��� , �12�

where we compute the inner volume by

V = �
�

A���N̂��� · h��� , �13�

where h��� is the vector from the center of the face r��� to
any plane which does not cross the cell �we chose to use the
x-y plane�. The force FV��� is distributed equally onto each
of �’s nodes, �	 �	=1. . .3�,

FV��1� = FV��2� = FV��3� =
FV���

3
. �14�

We chose to add area dependence to Eq. �13� in order to
account for possible local variation of area. We found that
this restrains the inner volume to within ±2%.

6. Particle membrane area constraint

We impose the area constraint through the force

FA��	� = − KAA���
A���

ŵ	, �15�

where KA is the elastic modulus of area dilatation, A��� is
the change in area of face �, and ŵ	 is the unit vector from
the centroid of the face r��� to the node �	 �	= �1,2 ,3	�.
This force has the effect of �homocentrically� shrinking or
expanding the face.

In the case of a phospholipid plasma membrane of the
RBC or the envelope of a vesicle, only a relatively small
amount of energy is required to reorganize the molecular
distribution locally to accommodate a local change of area.
This provides a certain “fluidity” to the membrane, which is
constantly undergoing changes in shape. Local stresses re-
sulting in a change of local area are easily accommodated by
a fluid reorganization of the membrane �47�. This fluidity is
modeled by modifying Eq. �15� to conserve global area
strongly, but local area only weakly,

FA��	� = − �KL
AA���

A���
+ KT

AAT

AT
ŵ	, �16�

where the subscript L denotes local and T the total area and
KT

A�KL
A. We note that more complicated fluidization meth-

ods do exist �see Kroll �47�, for example�. We also note that
Eggleton et al. report that the common Evans and Skalak
membrane model used for RBCs ��41�� has a very high dila-
tation modulus, giving rise to instability in their model �45�.
The same authors showed that a much lower dilatation
modulus was equally valid, provided that total membrane
area is conserved to within ±1% �45�. We calibrated our
dilatation coefficient in a similar way: the local area of our
DP was found to vary by less than 10% under normal con-
ditions, and the total area varied by only 2% under the most
severe conditions.

7. Particle surface strain constraint

The stretching force between nodes �	 and �
, at posi-
tions r��	� and r��
�, respectively, can be written

FS��	,�
� = − FS��
,�	� = KS��	
�
L	


L	

0 L̂	
, �17�

where KS is the in-plane shear modulus �see Eq. �19��, L̂	
 is
the unit vector from r��	� to r��
�, and �	
 is the stretch
value between �	 and �
 defined by

�	
 =
L	


L	

0 . �18�

It is should be noted that the stretching force due to the
spring does not depend directly on the distance between the
nodes. KS has units of N /m �recalling that the membrane is
considered to have no thickness, this length dependency ac-
counts for the amount of material on the ring perpendicular
to the direction of stretching, see Sec. III A�. The neo-
Hookean �hyperelastic� behavior of the RBCs membrane is
imposed through the spring constant KS following Evans and
Skalak �17,41�:

KS → KS��	
� =
��	
�0.5 + ��	
�−2.5

�	
 + ��	
�−3 . �19�

Our model does not allow rupture of the membrane. Ul-
timately, this results in a lack of stability for extremely high
membrane stresses.
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8. Local curvature constraint: Bending

We imposed bending moments proportional in magnitude
to the departure from preferred local curvature, but obtained
unphysical cell behavior at high shear: the RBC buckled and
folded when the radii of curvature became small, leading to
instability. Eggleton et al. reported precisely the same limi-
tation �45� using their similar approach. We therefore choose
to impose a preferred angle between faces. This provides
more spatial information for the �on average� six faces at
typical vertices, especially on a coarse mesh. We compute
the departure from rest angles �0 between faces from

FB��	
� = �KB�	


�	

0 N̂��� , �20�

where KB is the coefficient of bending stiffness. See Sec.
II C 4 for a definition of the other symbols. An equal and
opposite force is distributed to two nodes 	 and 
,

FB��	� = FB��
� = −
1

2
FB��	
� . �21�

This force ensures that the local and total stress on the mem-
brane are unchanged by the constraint of bending, while per-
mitting a local net rotation.

D. Coupling of DP and fluid dynamics

A range of strategies have been used to couple the Eule-
rian fluid mesh �position x� and the Lagrangian particle mesh
�position r�. Jadhav et al. �48� weight the Eulerian lattice
fluid velocities by the function �h�r−x�, aiming to cut off the
part of the fluid which is too distant to interact �typically
more than two Eulerian lattice spacings� and provide a dis-
tance weight of cosine type. Our recurrent motive of simplic-
ity favors the choice of a simple weighted average for the
interpolation between the Lagrangian, DP surface nodes �r,
at position r� and the Eulerian, LB, fluid nodes �x at position
x�. Essentially, each velocity and/or force component has a
weight inversely proportional to the cuboidal volume defined
by its position and the LB node to which it is closest,

v�r� = �
x���r�

v�x���r, x̄� , �22�

where �see Fig. 4� x̄ represents the diagonally opposite ver-
tex to x, ��r ,x� is the volume of the cube defined by x and r
which has all its segments parallel to an axis of the geometry,
��r� represents the vicinity of DP mesh node r, defined as
the LB cube which contains it �see Fig. 4�, and v�x� is the LB
velocity at x, defined by Eq. �3�. It should be noted that we
have the following relationship:

�
8

��r,xi� = �
8

��r, x̄i� = 1; �23�

see Fig. 4.
Similarly, the force on a fluid node is given by

F�x� = �
r

F�r���r,x���r,x� , �24�

where F�r� is the total force acting on the node �after com-
puting the membrane stresses� and ��r ,x� is the function
cutting off nodes too distant from r to be included in a com-
putation of the average:

��r,x� = �1 if r is within ��x� ,

0 otherwise,

where ��x� is the cube comprising the eight cubes which
have x as a summit �see Fig. 5�.

Viscoelastic properties of the DP membrane are not in-
cluded in this implementation of the model because no mod-
els against which we benchtest our method account for it.
Viscoelasticity may, however, be easily incorporated, follow-
ing Bagchi’s simple and elegant approach �13�, by adding

Fvisc��	� = �



Kvisc 1

�	


d�	


dt
�25�

to the total force on the DP membrane.

III. MODEL VALIDATION

As discussed in Sec. II C 5 and II C 6, our model con-
serves both total DP surface area and volume to a good ap-
proximation. Thus, the remainder of this section deals with
the validation of the two remaining DP constraints, namely
stretching and bending.

A. Validation of stretching properties

Landau and Lifshitz �49� showed that, for a spherical shell
with two opposite forces applied at its poles, the stress dis-

FIG. 4. �Color online� Interpolation of the velocity of the DP
surface mesh node r from the eight surrounding LB fluid nodes
�including x�, contained in the volume ��r�. ��r ,x� is the volume
as depicted and � is the LB subdomain encapsulating r.
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tribution is unchanged along any latitude and is given by

Tx =
F

2�R�x�
, �26�

where R�x� is the transverse radius of curvature at the longi-
tudinal coordinate x �x=0 chosen to be the center of the
spheroid� and F is the force applied to the sphere to stretch it.

We stretched the spherical mesh �see Fig. 2� by applying
an equal and opposite force at each of its poles. The maxi-
mum strain was 120%, in order to remain in Landau and
Lifshitz’s small deformation regime. Longitudinal stress T�x�
was measured at steady state. It is important to note that the
strain forces were the only forces applied to the membrane
for this particular experiment; that is, KL

A=KT
A=KV=KB=0.

This represents a capsule with no bending dependence.
Figure 6 shows the expected inverse relationship between

the local longitudinal stress Tx and the local circumference,
2�R�x�, as shown experimentally by Hénon et al. �50� and
studied analytically by Landau and Lifshitz �49�. The simu-
lation size was 50�20�20 lattice nodes, the LB relaxation
parameter was equal to 1, the sphere had an initial radius of
4 lattice units and was stretched �in the x direction� at a rate
of 0.05% per time step to limit viscous interactions. In this
paper, all simulations ran in parallel on a Hewlett-Packard
�HP� cluster DL145, running AMD-Opteron 32-64 bit pro-
cessors with 4 GB random access memory �RAM� each.
This particular simulation ran on 5 CPUs and required only

one minute to reach equilibrium �approximately 1000 time
steps�. Tx in Fig. 6 has been normalized by F and R�x� by
2�. This validates the stretching behavior of our DP mem-
brane.

B. Validation of bending properties

This section deals with the dynamics of a vesicle. Kraus
et al. �15� showed analytically and computationally that the

FIG. 5. �Color online� Interpolation of the force on the LB fluid
node x from the DP surface mesh node r. ��r ,x� is the volume as
depicted and ��x� is the LB subdomain encapsulating x.

FIG. 6. �Color online� Longitudinal local stress Tx and lateral
inverse radius 1/R�x� of a spheroidal vesicle stretched by two equal
and opposite forces of magnitude F at its two poles. The abscissa is
the normalized position on the hemisphere �0/1 corresponding to
the central and/or extreme positions�. The measurements were
taken at steady state, with a total longitudinal stretch of 120%, in
order to remain in the small deformation regime. The only force
applied on the vesicle membrane was the strain force, FS��	 ,�
�.
Tx was normalized by F. The oscillations observed near x→1 �cor-
responding to the extremity of capsule� are most certainly due to the
discretization of the mesh: the number of mesh nodes decreases
significantly towards the extremity, hence the histogram bin used to
calculate at x is subjected to more noise.

FIG. 7. �Color online� Diagram of the configuration used by
Kraus et al. �15�. A neutrally buoyant vesicle is sheared horizontally
at a shear rate �t and exhibits a tank-treading motion with, at steady
state, an inclination � and an average rotation velocity, �.
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stationary state of a vesicle �KS=0, KV�KA
T �KA

L �KB�0�
in a linear shear flow is characterized by �i� its finite inclina-
tion angle, �, subtended at the longest axis of inertia of the
vesicle and the flow direction, and �ii� the revolution fre-
quency, �, of the “tank-treading” tangential motion of the
membrane around the vesicle; see Fig. 7.

Both � and � depend strongly on the reduced volume
v=V / �4�R0

3 /3� of the vesicle, where V is the enclosed vol-
ume and R0 is determined by R0=�A /4�. Interestingly, �
and � do not depend on the reduced shear rate �
���R0

3 /KB. The vesicle mesh �Fig. 1� was inflated to an
ellipsoidal shape with parameters �a ,b ,c	 �lengths of the
three major axes of the ellipsoid�. We found that interchang-
ing a, b, and c did not affect � or �. Table I gives the sets of
�a ,b ,c	 to control v in the range 0.7. . .1, with an incremental
step of 0.05.

The simulation size was 50�30�30 lattice nodes, the
fluid relaxation parameter was �=1, the vesicle’s parameters
were taken from Table I, and the top and bottom shear ve-
locities were 0.1 �shear rate of 0.003 lattice units�. The simu-

lation ran on 5 CPU’s and required only 4 minutes to reach
steady tank-treading equilibrium �approximately 2000 time
steps�. We obtained the steady state elliptical profiles pre-
dicted by Kraus et al. �15�, see Fig. 8. The corresponding
angle of inclination, �, was calculated from an ellipsoidal fit
on a profile crossing the ellipse at its center �observable on
Fig. 8�, parallel to the direction of the shear. It was found that
� follows the theoretical predictions given in �15�, see Fig. 9.
Finally, the revolution frequency � of the sheared vesicle,
defined by the average angular velocity of each node, fol-
lows the theoretical prediction given in �15�, see Fig. 10.

TABLE I. Set of lengths for the major axes of an ellipsoid
�a ,b ,c	 and corresponding reduced volume v. a, b, and c were
chosen such that the ellipsoid was not significantly flat in any
direction.

v 1 0.95 0.9 0.85 0.8 0.75 0.7

a 4 3.5 3 2.6 2.2 2 1.7

b 4 4 5.4 5.4 5.4 5.1 4.3

c 4 5.5 5.5 5.5 5.5 5.7 6

(a) v=0.7, θ=15◦. (b) v=0.75, θ=17◦. (c) v=0.8, θ=21◦. (d) v=0.85, θ=24◦.

(e) v=0.9, θ=28◦. (f) v=0.95, θ=32◦. (g) v=1.0, θ=43◦.

FIG. 8. �Color online� Snapshots showing the steady state �tank-treading� orientation and shape of an ellipsoidal vesicle for various
reduced volume v. The shear rate did not vary between simulations. The angle of view of was chosen to show the elliptical profile of the
vesicles predicted by �15�. The forces applied were FA���, F	

B���, and F	
V���, area, bending, and volume, respectively. The fitted ellipsoidal

profiles are shown with the dashed white line.

FIG. 9. �Color online� Inclination angle, �, measured between
the direction of shear and the longest axis of inertia, as a function of
the reduced volume v. � was normalized to �. The continuous solid
line is the predicted analytical value in Ref. �15�.
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Kraus et al. �15� reported good agreement with analytical
predictions using a finite element model of a vesicle in shear
flow, having only area and bending constraints. We obtained
accuracy similar to that theoretical model with our simple
method, validating the bending property of our membrane.

IV. MODEL CALIBRATION AND RBC BEHAVIOR

A. Calibration

We adopt the following notation:

� = �̄�̂ , �27�

where � represents the physical parameter of interest in

Systéme International �SI�, �̄ is the conversion factor in SI

units per lattice unit, and �̂ represents the physical parameter
of interest in lattice units.

The calibration of lattice Boltzmann starts with the cali-
bration of length ��26,51��. Both a typical length of interest
and the number of regularly spaced grid points allocated to
represent it must be known �we take RBC dimensions�.
Therefore, x̄=x / x̂. Time calibration is derived from the
�fixed� viscosity of the suspending fluid: �= �x̄�2 / t̄�̂, where
�̂=cs

2�2�−1� �see Eq. �2��. Similarly, mass is derived from
the density of the fluid: �= m̄ / x̄3�̂.

In the particular spatial resolution of the application of
this paper �1 lattice spacing per �m, �=1000 kg/m3, and �
=10−6 m2/s�, we have

x̄�10−6 m/ ls,
t̄�1/6�10−6 s / lt,
m̄�10−12 kg/ lm,

F̄�4�10−5 kg m s−2 / lmls�lt�−2,
v̄�6 m s−1 / ls�lt�−1, �̄�6 s−1 / �lt�−1,

where ls is the lattice spacing, lt is the lattice unit of time,
and lm is the lattice unit of mass. Note that we used the RBC
stretching configuration of the next section to calibrate the
force with the quantity �i of Eq. �1�.

B. RBC deformation

Sections III A and III B showed a validation of the me-
chanics of a capsule and of a vesicle respectively; this sec-
tion demonstrates a combination of the two: a RBC for
which all four constraints apply.

Dao et al. �17� compared real RBC stretching experiments
with a high resolution deformation model. The setup was to
stretch a RBC by fixing two diametrally opposed clamps and
measure the force required as a function of the stretch. Their
strain-energy potential model involves a fine grid with an
impressive mesh size comparable to the actual cell cytoskel-
eton’s mesh size �l�75 nm, see Fig. 1� in order to repre-
sent the RBC membrane; however, the model lacks fluid dy-
namics. The group could successfully compare their model
with experiments, since the application of force in the ex-
periment allowed the membrane to achieve a series of steady
states. In this regime, a RBC does not induce significant flow
by its deformation because the rate at which the RBC is
stretched ��10 �m per second� is too slow to induce any
significant fluid stresses compared to the membrane stresses.

Our simulation size was 50�20�20 lattice nodes, the
fluid relaxation parameter was taken to be �=1, the RBC had
an initial radius of 4 lattice units and was stretched �in the x
direction� at a rate of 0.05% per time step, to limit the influ-
ence of deformation on flow �for consistency with Dao’s ex-
periment and model�. The simulation ran in parallel on 5
CPU’s and required only 2 minutes to reach a deformation of
200% �2000 time steps�.

Our results agreed well with those of Dao et al. �17� for
both the maximum transversal diameter, DT, and longitudinal
diameter, DL as the RBC was stretched by increasing force,
F; see Fig. 11.

We stress that successful comparison of our model against
this experiment �consisting of a series of equilibrium states�
only validates the mesh mechanics. We address validation of
our model’s dynamics in Sec. IV D.

Mills et al. �52� used Dao’s computational model �17� to
provide the local maximum principal stretch ratio of the

FIG. 10. �Color online� Measured angular velocity of the vesicle
averaged over all nodes, �, as a function of different reduced vol-
umes v. � was scaled to the shear rate �. The continuous solid line
is the predicted analytical value by �15�.

FIG. 11. �Color online� Longitudinal �DL� and transverse �DT�
diameters of the stretched RBC as a function of the stretching force
F. The black diamonds along with error bars are the experimental
measurements by Dao et al. �17�.
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RBC under stretch. Figures 12 and 13 show that our model
quantitatively recovers Dao’s results very well. A remarkable
point is that the distribution of stress is �on average� depen-
dent on the axial radius of the RBC: the highest stress is near
the poles �where the clamps are�, where the axial radius is
the smallest. The stress is the least in the middle of the RBC,
where the radius is the greatest. This, indeed, correlates with
the Landau and Lifshitz theoretical model �see previous sec-
tion�.

C. RBC relaxation to equilibrium: Force parameter
calibration

Following Dao et al. �17�, when the stretching force, F,
imposed on the poles of the RBC is released at the point of
maximum deformation, the cell returns to its original bicon-
cave shape with a characteristic time tc. Hochmuth et al. �53�
proposed the following relaxation dynamics:

��t� =
��1

2 − 1���1,max
2 + 1�

��1
2 + 1���1max

2 − 1�
= exp�−

t

tc
 , �28�

where �1 is the total longitudinal stretch ratio, �1,max is the
maximum stretch �200% in this case� and � is the elongation
index. Figure 14 shows the results of our characteristic re-

FIG. 12. �Color online� Deformation of a RBC stretched along
its poles. The first column is experimental data from Mills et al.
�52�, the second column is from the present method, and the third
column is from a finer mesh model by Dao et al. �17�. Our results in
this series of stretching simulations agree closely with those from
both experimental and numerical studies. The simulation configu-
ration used for these data was identical to that of Fig. 11.

FIG. 13. �Color online� Local maximum principal strain of the
stretching experiment, Fig. 12. The first column is from our model
and the second column is from the finer model by Dao et al. �17�.
The distribution of stress on the RBC is qualitatively similar in both
methods; the difference in mesh coarseness in the two models is
obvious here. The slight asymmetry of our measurements are due to
the inherent slight asymmetry of our coarse RBC mesh.

FIG. 14. �Color online� Evolution of the elongation index ���
during the relaxation to rest, biconcave equilibrium shape of a RBC
initially stretched by 200%. � follows the expected exponential de-
cay, providing a time constant tc of 320 LB time steps.

FIG. 15. �Color online� Dependence of the inverse characteristic
relaxation time �tc�−1 with the stretch modulus of the membrane KS.
Dao et al. �17� reported an experimental relaxation time of tc

exp

=0.12±0.05 s, corresponding to �tc�−1=8.3 s−1. This calibrates the
stretching modulus kS to kS=0.03.
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laxation measurements along with the best exponential fit.
We found that the characteristic time of relaxation tc was 320
time steps. We also found that the inverse of the characteris-
tic relaxation time, tc, for relaxation to equilibrium shape for
the RBC, is linearly dependent on the stretch parameter KS,
see Fig. 15. Dao et al. �17� found experimentally that tc
=0.19±0.06 s. With this information and the calibration of
Fig. 15, we have KS=0.03 for healthy RBC’s. Furthermore,
Dao et al. reported that a force of 140 pN is necessary to
stretch a RBC longitudinally by 75% �see Fig. 11�. This pro-
vides a calibration of the force applied on the RBC’s pole,
through the quantity �i of Eq. �1�, see Fig. 15. We therefore
have the following parameters for healthy human RBC’s �in
LB units�, KSˆ =0.03, KL

Aˆ =0.01, KT
Aˆ =0.1, KVˆ =0.3, KBˆ =0.006.

D. Deformable particle dynamics

Only the dynamic behavior of the DPs remains to be vali-
dated. To this end, we first compare the shear-induced tum-
bling of our RBC with that of a solid ellipse.

1. RBC dynamics

We use a conformation identical to that of Pozrikidis �40�;
see Fig. 16.

Our simulation consists of a single, neutrally buoyant
RBC in a linear shear flow. The long axis of symmetry of the
RBC is perpendicular to the flow. Parameters were taken
from the previous section, representing a healthy RBC.

The simulation size was 50�30�30 lattice nodes, the
LB fluid relaxation parameter was �=1, the RBC had an
initial radius of 4 lattice units. The shear rate was 10 s−1. The
simulation ran in parallel on 5 CPU’s and required only 3
minutes for each tumble �4000 time steps�. A shear rate of
approximately 10 s−1 provides the most dramatic RBC defor-

mation. A RBC exposed to shear rates below this level
tumbles without significantly deforming; above this level,
the RBC tank treads with no apparent variation of its shape
�similar to the sheared vesicle of Fig. 19�.

We obtained good qualitative agreement with the simula-
tions of Pozrikidis �40�, see Fig. 17. Note that �i� Eggleton
and Popel �44� reported significant stability issues with their
model in this configuration, making it impossible to simulate
a full revolution; and �ii� Pozrikidis �40�, in 2003, required of
the order of a week of CPU time for one tumble in linear
shear. In our simulations, one tumble required only 3 minutes
of processing time on 5 CPUs; moreover, there were no sta-
bility issues in this regime.

2. Ellipse dynamics

Following the example of Aidun et al. �55�, we performed
additional, more quantitative tests of our model’s dynamics
by simulating the motion of a solid ellipse at vanishing Re
�see below�, with one of the principal axes constrained par-
allel to the vorticity vector of the shear flow �the ellipsoid
rotates around this axis�, see Fig. 18. In this section, the
Reynolds number is defined

Re =
�d2

�
, �29�

where � is the shear rate, � is the viscosity of the fluid, and
d=2b where b is the length of the major axis �radius� of the
ellipsoid.

Under present conditions, Jeffery ��56�� showed that the
angle of rotation �ellipse and the angular rate of rotation

�̇ellipse are given by

�ellipse = tan−1�b

c
tan� bc

a2 + b2�t� , �30�

FIG. 16. �Color online� Tumbling RBC from linear shear im-
pressed horizontally. A sheared RBC �1� tumbles with no significant
deformation below a shear rate of approximately 10 s−1, and �2�
tank treads at higher shear rates �the membrane rotates around the
highly deformed, flat ellipsoidal cell�. We therefore chose to inves-
tigate the tumble and/or deformation of a RBC at this transition
shear rate. See �54�, for example, for more experimental details.

FIG. 17. �Color online� Profiles of a neutrally buoyant tumbling
RBC from a linear shear impressed at top and bottom. The snap
shots are at dimensionless time �t=0, 4, 8, and 11, respectively. The
shear rate � is 10 s−1, approximately at the tumbling and/or tank-
treading transition value found experimentally �see Skalak and
Chien �54�, for example�.
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�̇ellipse = �
1

a2 + b2 �a2 cos2 � + b2 sin2 �� , �31�

from which the motion of the ellipse has period

Tellipse = 2�
�a2 + b2�

bc

1

�
. �32�

In turn, this means that �a� the rotation period scales lin-
early with the inverse of the shear rate � and that �b� there is
no difference between the trajectories of a two-dimensional
and a three-dimensional ellipsoid, since Eqs. �30�–�32� do
not include the parameter c, the remaining major axis of the
ellipsoid, parallel to the axis of rotation. We define by ��Re�
the normalized product:

��Re� =
Tellipse

Tellipse
low Re
= Tellipse

ab

2��a2 + b2�
Re �

d2 . �33�

Note that �=1 under Jeffery’s assumptions.
The simulation size was 50�30�30 lattice nodes, and

the fluid relaxation parameter �=1; the ellipse had shape
parameters of a=1.5, b=4, and c=1.5. The top and bottom
shear velocities were 0.01 �corresponding to a shear rate � of
8�10−4, and a Reynolds number Re of 0.3, consistent within
Jeffrey’s assumptions of low Re�. The simulation ran in par-
allel on 5 CPUs and required only 6 minutes for one tumble
of the ellipse �4000 time steps�.

Figure 19 shows that our model recovers, very well, the

analytical angular rate of rotation �̇ellipse from Eq. �31�. The
“pointiness” of the profile we obtained compared to the ana-
lytical solution is probably due to tank treading of our ellipse

when the major axis is parallel to the plane of shear �when �̇
is at its minimum�.

Equation �32� shows that, for low Re �Jeffery’s assump-
tions�, � should remain constant and equal to unity, indepen-
dent of Re. For nonzero Re, Aidun et al. �55� observed that �
diverges as Re−0.5, with a significant departure from unity
�more than 10%� at Re=5. Figure 20 shows similar behavior,
� remain equal to unity for Re�3 and diverges for Re�3
�approximately�. It is interesting to note that we found a log
increase while Aidun found an inverse square root increase.
The difference is probably due to the deformation and tank

FIG. 18. �Color online� Tumbling of a solid ellipse in response
to a linear shear impressed at top and bottom. The ellipse has an

instantaneous orientation ��t�, rotation speed �̇�t�=d� /dt, and b�a�
the major �minor� axis. The stability was compromised at the high-
est shear rates �corresponding to Re�50� due to the necessity for
large forces applied to the membrane in order to simulate a “solid”
ellipse �by design, our particles have deformable membranes�. This
stability problem is, however, not an issue in the range of Re and
under the physiological conditions for which the model is intended
�where the stresses on the cells are orders of magnitude lower�.

FIG. 19. �Color online� Angular velocity as a function of time
for a solid tumbling ellipse in shear �solid line� and RBC �points�.
The disparity is probably due to some tank treading of the RBC
when it is aligned with the direction of the shear.

FIG. 20. �Color online� Dependance of � as a function of Re.
Jeffery �56� predicted analytically that �=1 for vanishing Re, and
Aidun et al. �55� observed with their simulation that � remains
constant until Re�5 and then diverges. Our model provides solu-
tions consistent with both these regimes. The difference in diver-
gence behavior is probably due to the fact that our model ellipse
deforms and tank treads at high Re �our model’s computational
stability required lowering the stiffness of the ellipse as Re
increased�.
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treading of the RBC: the method we use models, by design,
deformable objects and therefore is not efficient at maintain-
ing solid shapes, especially at high stresses �the ellipse stiff-
ness had to be reduced to comply with the stability con-
strains that the LB method imposes at high ��. These last
series of results �tumbling of deformable RBC or solid ellip-
soid� validate the overall dynamics of our model and illus-
trate its efficiency.

V. PROOF OF CAPABILITY: 200 RBCS IN CONFINED
GEOMETRY

Thus far we have presented an efficient approach to simu-
lating the rheology of a single DP. We next show that our
model can reproduce flow of a dense solution of DPs, at
physiological Re �O�10−2–10−3��. To the authors’ best
knowledge, this level of accuracy is the most complete, ac-
curate, and computationally tractable at this date.

A. Snapshots

As a proof of capability, we simulated 200 RBCs in a
rectangular channel. We chose RBCs over vesicles and cap-
sules because the flow they produce is the most interesting.
Their biconcavity provides them with a unique tumbling be-
havior at a moderate shear rate ��10 s−1�, undeformed tum-
bling at lower shear, and tank treading at higher shear. The
presence or absence of other cells locally increases or de-
creases the local shear rate, making the flow of concentrated
RBCs highly complicated.

The simulation domain size was �length , width , depth	
= �100, 33, 27	. The 200 RBCs where initialized randomly
on a rectangular lattice filling the simulation space �holding
up to 210 RBCs�, with 1 micron spacing between them �one
lattice Boltzmann node�. The volumetric cell concentration
was 30%.

Figures 21 and 22 show the time evolution of the 200
RBCs. Figure 23 shows the velocity profiles averaged along
the length of the conduit before steady state and at steady
state.

The arrangement of the RBCs reached steady state after
approximately 0.45 seconds in real units, or 3 hours of simu-
lation. Running the simulation for three times longer did not
produce any significant changes in RBC arrangement or
axial velocity profile. This required only 10 hours of compu-
tation on 15 CPUs, demonstrating the high efficiency of this
approach. The profiles of Fig. 23 exhibit the expected sig-
nificant blunting occurring in suspension flows, as observed
experimentally �57,58�. Varying cell concentration, deform-
ability, viscosity, and other cell parameters would lead
straightforwardly to empirically derived, accurate, local rules
of the macroscopic flow of such a suspension �which might
be used to increase the accuracy of continuum models solv-
ing similar flows at a larger length scale�.

B. Detailed pressure field: Unprecedented accuracy

In more detail, Figs. 24 and 25 show the pressure fields
corresponding to Figs. 21 and 22. The profiles show the pres-
sure in the longitudinal plane bisecting the depth of the simu-
lation, together with the profiles of RBCs cut by this plane.
This shows an unexpected behavior: the pressure field varies

FIG. 21. �Color online� Caption on Fig. 22.

FIG. 22. �Color online� Snapshot of the evolution of 200 RBC’s
in flow, initialized on a regular lattice. The RBCs collide, interact,
and deform in a physical manner. Qualitatively, the disorder and
mixing of the RBC’s reaches steady state after 0.45 s. The total
computational time was only 10 hours on 15 CPUs.
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significantly—spatially and temporarily; a fact that is nor-
mally ignored in biological models. A direct consequence
could be that cells comprising the vessel wall would be ex-
posed to widely varying pressures and shear forces, poten-
tially affecting the gene expression of these cells.

This is the first time, to our knowledge, that the pressure
field within a flowing suspension of deformable particles has

been reported explicitly �computationally or experimentally�.
This kind of application, along with the model’s ability to
easily adapt to different conduit configurations and particle
properties, should provide unprecedented insight into the
fluid dynamics of RBCs in concentrated flow.

Finally, it is important to note that lubrication forces are
not included in the present implementation of the model.
This approximation relies on the fact that the cells were ini-
tialized with an explicit layer of fluid surrounding all cells;

(a) After 0.113s (b) After 0.450s

FIG. 23. �Color online� Axial
in-length velocity profiles of the
simulation described in Figs.
21 and 22. The velocity profile
reaches steady state �b�, approxi-
mately at the same time as the
RBC’s disorder described in Figs.
21 and 22 �after 0.45 s�. �a� A
transient velocity profile.
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FIG. 24. �Color online� Caption on Fig. 25.
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FIG. 25. �Color online� Cross sectional pressure and RBC pro-
files of 200 RBC’s flowing at a concentration of 30%. The same
color map has been used for all the pressure profiles in this figure.
We found that the pressure varied significantly with time along the
wall, which could have some influence on the behavior of the cells
comprising it.
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because we operate at low Re, we expect that this layer
should be maintained at all times. We did notice that the
minimum distance separating any two DP nodes regularly
crossed the half LB spacing limit �the limit below which the
previous assumption no longer holds�, probably due to the
first order accuracy in the interpolation of the velocities of
the DP nodes. We propose, in future work, to adapt and
validate Nguyen and Ladd’s model �Ref. �59�� for explicit
lubrication in LB.

C. Efficiency and scalability of the model

Whether simulating blood flow, dense vesicle flow, or any
suspension flow, the main question is how the model scales
with the simulation size and number of particles. There are
therefore two independent components to the model require-
ments. �1� The dependence on simulation size is usually lin-
ear with the volume of the simulation �total number of
nodes�. �2� The dependence on the number of particles in
turn depends strongly on the essential fundamentals of the
method, and the cell-cell interaction rules.

Tables II and III demonstrate the computational depen-
dency of the model by �i� varying the size of the simulation
and the number of CPU’s accordingly, with only one DP, and
�ii� varying the simulation size and the number of CPUs,
maintaining the concentration of cells constant �important
when the cell concentration is a fixed parameter, as in blood
flow, for example�. t represents the time needed for the
simulation to reach 1000 time steps.

These results demonstrate that the model is appropriately
linear in the number of cells and geometry, and therefore is
highly scalable.

VI. CONCLUSION

In summary, we have developed and validated an ap-
proach for simulating the flow a dense suspension of deform-

able particles, with the primary design constraint of effi-
ciency, rather than higher-order accuracy. We chose the
lattice Boltzmann method to approximate the full Navier-
Stokes equations efficiently and accurately, and a simple har-
monic spring model to reproduce the membrane mechanics
of the deformable cell. We validated the mechanical proper-
ties of each parameter of the model against several models of
deformable particles, and the overall dynamics against
known deformations. Finally, we demonstrated the power of
this method by simulating 200 fully three-dimensional, de-
formable red blood cells in flow. Thanks to the simplifica-
tions made to this model, it is highly efficient and capable of
addressing configurations unapproachable with current com-
putationally expensive techniques.

Despite its efficiency, our approach was not designed for
scales where the typical length is of the order of 100 cell
diameters; in these cases, continuum models are more appro-
priate. Our model is, on the other hand, ideal for generating
accurate rules for implementation in the latter continuum-
based models.

Future improvements to the model will be the incorpora-
tion of reversible, dynamic RBC-RBC adhesion, and the in-
clusion of cytoskeletal reorganization, which can result in
hysteresis of the stresses and temporary changes in the pre-
ferred cell shape. These changes, when applicable, will be
easily linked to local properties of the fluid �e.g., a dynamic
and local strain resistance also depending on local stress his-
tory would better approximate real RBC dynamics�.
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