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Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps
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Several different interpolation schemes have been proposed for improving the accuracy of lattice Boltzmann
simulations in the vicinity of a solid boundary. However, these methods require at least two or three fluid nodes
between nearby solid surfaces, a condition that may not be fulfilled in dense suspensions or porous media for
example. Here we propose an interpolation of the equilibrium distribution, which leads to a velocity field that
is both second-order accurate in space and independent of viscosity. The equilibrium interpolation rule infers
population densities on the boundary itself to reduce the span of nodes needed for interpolation; it requires a
minimum of one grid spacing between the nodes. By contrast, the linear interpolation rule requires two fluid
nodes in the gap and leads to a viscosity-dependent slip velocity, while the multireflection rule is viscosity
independent but requires a minimum of three fluid nodes.

DOI: 10.1103/PhysRevE.75.066705

I. INTRODUCTION

Over the past ten years, the lattice Boltzmann equation
(LBE) has emerged as the basis of important numerical
methods to study flows in complex geometries. Applications
include flows in porous media [1-3], particle suspensions
[4-7], polymer solutions [8,9], and microfluidic devices
[10,11]. The key issue in such computations is an accurate
and computationally efficient implementation of the no-slip
boundary condition between solid and fluid surfaces. The
most common boundary condition in LBE simulations is the
bounce-back rule, which can be straightforwardly modified
for the case of a moving solid surface [12]. The no-slip
boundary is located approximately half-way between the
solid and fluid nodes [13], but the exact position depends on
the orientation of the solid surface with respect to the under-
lying lattice and the fluid viscosity [14]. There have been
many proposals to improve the accuracy of the solid-fluid
boundary condition. Initially, effort focused on solving equa-
tions for the distribution function at fluid nodes adjacent to
the solid surface [15-20]. However, these methods were
found to be overly complicated in the general case and have
not been widely utilized. An alternative idea is to establish
the boundary condition on the links between the nodes; this
was first described within the context of lattice-gas models of
suspensions [21], and was later adapted to lattice Boltzmann
models [12,15]. However, the link bounce-back rule leads to
a hydrodynamic boundary that is offset from the physical
one, and several link-based interpolation schemes have been
proposed to obtain a more accurate no-slip condition
[22-28].

A simple, physically motivated interpolation scheme has
been proposed [26,29], which both improves the accuracy of
the bounce-back rule and is unconditionally stable for all
boundary positions; the scheme has both linear and quadratic
versions. A more general framework for this class of inter-
polation schemes has been extensively analyzed in a compre-
hensive and seminal paper [30]. The multireflection rule pro-
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posed in Ref. [30] is the most accurate boundary condition
yet discovered for lattice Boltzmann methods. However, in-
terpolation requires additional fluid nodes in the gap between
adjacent particle surfaces. The bounce-back rule requires
only one grid spacing between the surfaces, but linear inter-
polation requires at least two grid spacings, while quadratic
interpolation and multireflection require three. In this work
we consider interpolation of the equilibrium distribution
only. Although this is more complex to implement than linear
interpolation, it has the advantage that the velocity distribu-
tion at the boundary surface may be used to provide an ad-
ditional interpolation point. In this way the span of fluid
nodes can be reduced to that of the bounce-back rule, while
obtaining second-order accuracy in the flow field. In con-
junction with an appropriate choice of collision operator
[30], the location of the boundary is independent of fluid
viscosity, unlike the linear and quadratic interpolations. For
viscous fluids, where the relaxation time 7> 1, the equilib-
rium interpolation rule is significantly more accurate than
either linear or quadratic interpolation.

We have compared results obtained using the equilibrium
interpolation rule with three different interpolation schemes:
linear, quadratic [26], and multireflection [30]. We use a ver-
sion [31] of the multiple-relaxation time (MRT) lattice Bolt-
zmann model [32], which is tuned to minimize the depen-
dence of the boundary location on the fluid viscosity [30].
We have examined flows in channels oriented at different
angles with respect to the underlying grid and flows through
porous media composed of regular arrays of spheres. Our
work parallels that reported in Ref. [3], with the addition of
the equilibrium interpolation rule.

II. MULTIPLE-RELAXATION-TIME (MRT) MODEL

The time evolution of the distribution function in discrete
phase space is described by the lattice Boltzmann equation.
If n;(r,r) represents the density of particles moving in the
direction labeled i at the discrete location r and discrete time
t, then
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TABLE I. Eigenvectors and eigenvalues of the D3Q19 collision operator [37]. The M10 model [12,40]
uses separate bulk and shear viscosities, while the two-relaxation-time (TRT) model [30] uses separate values

for the odd and even modes.

Weighted [31] Unweighted [32] TRT M10 BGK
0 1 1 0 0 0
1 Cy Cy 0 0 0
2 cy cy 0 0 0
3 c, c, 0 0 0
4 -1 19¢2-30 \ Ny \
5 3c2-c? 3¢2-¢? A A A
6 ci—cg c}z,—cg A A A
7 ey, ¢y, A A A
8 C,Cy C,Cy A A A
9 CxCy cxCy A N A
10 (3c2=5)c, (5¢2-9)c, N -1 A
11 (3¢?=5)c, (5¢-9)c, N -1 A
12 (3¢*=5)c, (5¢2-9)c, N -1 \
13 (ci—c?)cx (ci—c?)cx N -1 A
14 (c?—ci)c_\, (cf—cﬁ)cy N -1 A
15 (ci—ci)cz (c)zc—ci)cz N -1 A
16 3ct—6¢2+1 (21¢*-53¢%+24)/2 N -1 N
17 (2c2-3)(3c2-¢?) (3c2-5)3c2-¢?) A -1 A
18 (262—3)(C§—C§) (302—5)(65—65) N -1 A

b
i+ AL+ AD) = nr0) + 2 L x,1) + fi(x,1),
j=0

(1)

where L;; is the linearized collision operator [33,34], n7
=nj—n;i’q is the nonequilibrium distribution function, and the
lattice vectors are labeled by i=0,1,...,b. The term f; incor-
porates the effect of an external body force density, f, such as
gravity. In this work we will consider only Stokes flow, so
that the equilibrium distribution is linear,

u'C,-
nfq=a"ip{1+ 5 :|, (2)

s

and the forcing is simply f;=f-c,At/c? [35]. The weighting
factors, a“i, for the 19 velocity three-dimensional D3Q19
model are a°=1/3, a'=1/18, and a**=1/36. The sound
speed is then given by c2=c?/3, where c=A/At. Typically,
we choose units such that the lattice grid spacing A and the
time step Ar are equal to one. The fluid velocity is evaluated
at the half time step by introducing the modified momentum
j' =j+fAt/2 [12]. The improvement in accuracy from intro-
ducing this correction is described in [35].

The single relaxation time or Bhatnagar-Gross-Krook
model (LBGK) has been the most popular collision operator,
due to its computational simplicity [36,37]. However, the
LBGK model suffers from numerical instability and inaccu-
racy near boundaries when compared with the MRT model
[3,38,39], which relaxes the nonhydrodynamic modes at a

different rate from the viscous modes. The modes or mo-
ments of the distribution function can be constructed from
appropriate linear combinations,

b
m= 2, e ;s (3)
J=0

where e, is the kth eigenvector of the collision operator L.
These eigenvectors can be constructed from irreducible poly-
nomials of the lattice-vectors ¢; [32], and are listed in Table
I. The first four moments correspond to the conserved vari-
ables, mass density p and momentum density j, while ny—mq
are related to the bulk and shear stresses. The higher modes,
myo—mg, are Kinetic or “ghost” modes; they do not enter the
bulk hydrodynamic equations, but play an important role
near boundaries [30] and when there are thermal fluctuations
[31].

There are two slightly different sets of eigenvectors
shown in Table I. In the original formulation of the MRT
model [32], the back transformation,

b b

-1 2
n= 2 wilme, wi= 2 € is 4)
k=0 i=0

is simply the inverse of the forward transformation, with w;
the normalizing factor of the kth eigenvector. The eigenvec-
tors must therefore satisfy the orthogonality relation
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b

1
> wi ek = Oij- (5)
k=0

However, a drawback of this choice of eigenvectors is that
the equilibrium distribution has projections onto the kinetic
modes [32]. An alternative set of eigenvectors can be con-
structed so that the back transformation includes the weights
from the equilibrium distribution [31],

b b

n;= E aciwzlmkek’i, W= E a“ieii. (6)
k=0 i=0

These eigenvectors satisfy a slightly different orthogonality
condition,

b

.1
> aw €ri€kj= Oijs (7)
k=0

and the equilibrium distribution now has no projection onto
the kinetic modes. The decoupling of the equilibrium distri-
bution from the kinetic modes significantly simplifies the
implementation of thermal fluctuations [31]. Moreover, the
MRT model with weighted eigenvectors reduces to the
LBGK [37] and ten-moment [12,40] models by a suitable
choice of eigenvalues. We have found that collision operators
constructed from either set of eigenvectors show similar nu-
merical stability and tunability.

The MRT model can be updated with about a 20% com-
putational overhead over the LGBK model. The moments of
the distribution my, are first calculated from Eq. (3), and then
relaxed towards their local equilibrium,

my =m+ (1 + N\ (my— m$9). (8)

The asterisk indicates the postcollision state, A is the eigen-
value of the kth mode, and the equilibrium moments are
calculated from the analog of Eq. (3),

b
m! = E ek,jn;q~ )
j=0

The eigenvalues of the conserved modes (my—m5) are nec-
essarily zero, and the equilibrium moments are therefore un-
changed by the collision process. Using the weighted eigen-
vectors from Table I, we find that the equilibrium distribution
only has a projection onto the hydrodynamic and viscous
modes (mg—my), while the linearized equilibrium distribu-
tion [Eq. (2)] has no projection on the viscous modes either
and Eq. (8) simplifies to

my = (14 \)my. (10)

The postcollision distribution, n;, can be calculated from Eq.
(6) and then propagated according to Eq. (1),

n(r + AL+ At) = n; (r,1). (11)

Symmetry considerations suggest a total of six distinct
nonzero eigenvalues for the D3Q19 model; the bulk mode
(my4), the shear modes (ms—my), two sets of third-order
modes (mg—m,, and m3—m,s), and two sets of fourth-order
modes (m;q and m;—m;3). However, in this work we will
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use one eigenvalue for the second-order and fourth-order
modes, and a separate eigenvalue for the third-order modes.
This allows for a straightforward tuning of the MRT model
that can result in a viscosity-independent boundary condition
for the bounce-back boundary condition [30] (see Sec. I1I B).
Neither linear nor quadratic interpolations are viscosity inde-
pendent [3], but the equilibrium interpolation scheme pro-
posed here can be made viscosity independent in a similar
way to the bounce-back rule. The multireflection boundary
condition is independent of viscosity without any need for
tuning of the collision operator [30].

III. SOLID-FLUID BOUNDARY

Boundary conditions in the lattice-Boltzmann method are
derived from localized rules applied to the velocity distribu-
tion, as opposed to direct conditions on the velocity field.
The additional physical insight provided by the underlying
mechanics has been useful in the development of interpola-
tion methods [26] as well as in the development of the mov-
ing boundary condition [21]. Before discussing specific
boundary rules, we will clarify some definitions related to
the various types of nodes on the grid. Solid nodes are the set
of nodes overlaid by solid objects; all remaining nodes are
fluid nodes. Boundary nodes are fluid nodes that share a link
with a solid node, and neighboring nodes are fluid nodes
adjacent to boundary nodes. In this work we focus on the
no-slip boundary condition at stationary solid surfaces, while
moving boundary conditions can be found elsewhere in the
literature [12,21,29,30].

A. Link bounce-back boundary condition

In the link bounce-back rule [15,21], the boundary surface
is assumed to lie midway between a boundary node and a
solid node. A fluid population leaving the boundary node r;
and encountering the solid surface is reflected and returns in
one time step to its original location, pointing in the opposite
direction. The corresponding equation can be expressed as

nir(rj,t + At) = n;k(rj,t), (12)

where nf denotes the postcollision population, and the direc-
tion i’ is opposite to i; i.e., ¢;;=—c;.

B. Tuning the MRT model

The relaxation time of a particular mode [Eq. (10)] can be
related to its eigenvalue via a discrete fluctuation-dissipation
theorem [12,31,35,41],

2r= 2, (1+>\k)‘"l=—%—1. (13)

n=—w k

The 7, in Eq. (13) differs from the LBGK definition, 7=
—1/X\, by a constant offset of —1/2. In this work we will use
a two-relaxation-time (TRT) model [30], with separate eigen-
values, \ and \’, for the even (my—mg and m,s—m,g) and odd
(m;g—m;s) modes. The shear viscosity of the fluid is given
by n:pcfr, where 7 is given by Eq. (13). The merit of the
TRT model is that the eigenvalues of the third-order modes
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(myp—m,s) can be tuned to adjust the location of the hydro-
dynamic boundary with respect to the underlying grid. Thus
for a given 7 we can adjust 7’ to keep the location of the
boundary independent of 7. We adopt the same tuning of the
collision operator as in Ref. [30],

2
N=— (14)
T+WwW

where the restriction w>0 is necessary for linear stability.
For planar boundaries located midway between the grid
points, the hydrodynamic boundary is located on the physical
boundary when w=3/8, independent of fluid viscosity [30].
We have verified this relation for the weighted eigenvectors
(Table II) as well.

Linear stability restricts the range of eigenvalues -2
<\ <0 [34,42], but there is a more subtle limitation on the
tunability of the boundary location. For fixed Reynolds num-
ber and grid resolution, the incompressible limit is reached
by reducing the fluid viscosity so that 7— 0. To maintain the
same position of the boundary 7" =w/27 becomes large, and
the ratio 7'/ 7=w/27* eventually diverges. It has been shown
that this introduces a compressibility error whenever this ra-
tio becomes large in comparison to the number of grid points
per linear dimension [43].

C. Interpolation

In general, the solid surface is not always located midway
between the boundary node and the solid node; a second-
order boundary condition therefore requires interpolation.
The scheme proposed in Ref. [26] combines second-order
accuracy with simplicity and stability. It uses different algo-
rithms depending on the location of the boundary, in order to
ensure that the distribution is always interpolated and never
extrapolated; this ensures stability. The idea is illustrated in
Fig. 1. If the surface is closer to the boundary node than the
solid node (¢<<1/2), an interpolated population is con-
structed farther away from the surface and then bounced
back to end up on the boundary node during the propagation
step. Alternatively, if the solid surface is located closer to the
solid node (¢>1/2) the boundary-node population is
bounced back to end up at an intermediate location during
the propagation step. Then this intermediate distribution is
combined with the neighboring population to interpolate to
the boundary node. The equations for linear interpolation are

ny(rj,t+Af) = 2qn;k(rj,t) +(1- 2q)nf(rj —c,1),
n,»,(rj,t+At)=Zn[(rj,t)+?ni,(l‘j,t), (15)

for 0=g<1/2 and 1/2=<¢g<1, respectively.
A quadratic interpolation [26] can be derived in a similar
fashion, using an additional neighboring node at r;—2c; [48];

ny(rjt+ A1) =q(2q + 1)nf(rj,t) +(1- 4q2)n;k(rj —cph)

— q(1 =2g)n; (r; - 2c;.1),
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i —C; Ty rj+c¢i

T —Ci T
(b)1/2<¢<1

FIG. 1. Schematic diagrams of the linear interpolation rule [26];
r; is a boundary node, rj+c; is a solid node, and r;—c; is a neigh-
boring node; i is the direction towards the solid node. An open
circle represents the location of an interpolated population and an
open square indicates the position of the solid surface; ¢ is the
distance of the fluid node from the boundary surface, normalized by
the grid spacing A. The double-line arrow represents the interpo-
lated distribution obtained from two known distributions, which are

denoted by single-line arrows.

n[r(rj,t+At)= mni(rj,t)+7ni,(rj,t)
1—2q *
+ J(ri—c,t). 16
1424 (r; ) (16)

Although linear and quadratic interpolation schemes both
lead to second-order accuracy at the boundaries, the location
now depends on viscosity in a way that cannot be easily
eliminated as it was for the bounce-back rule. The multire-
flection rule uses more general relations to construct a
boundary condition that is viscosity independent [30]. The
equations were derived from the Chapman-Enskog expan-
sion at a planar boundary and use a total of three fluid nodes
and five different populations:

ny(rj,t+ Af) = nf(rj,t) + ifz—;éqznf&j —c;1)
+ ﬁnf(rj —-2¢;,1)
- ﬁnj‘,(g _e.t). (17)

D. Interpolation of the equilibrium distribution

In many applications, the distance between solid bound-
aries may on occasion be comparable to the grid size, with
insufficient fluid nodes in the gap for the desired interpola-
tion scheme. In such situations a lower-order boundary con-
dition is used, typically bounce back, but this can lead to
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increased global errors, even when only a few nodes are
affected [20]. Our proposed boundary condition is based on
the observation that the nonequilibrium distribution is one
order higher in the Chapman-Enskog expansion than the
equilibrium distribution. Thus a first-order accurate nonequi-
librium distribution, coupled with a second-order accurate
equilibrium distribution, will result in an overall second-
order distribution. Another way to say this is that the non-
equilibrium distribution contributes terms of order Vu to the
macrodynamical equations, and a first-order calculation of
the velocity gradient is sufficient for a second-order velocity
field. The computational advantage of this decomposition is
that we can infer an equilibrium distribution at the solid sur-
face to provide an additional interpolation point and compute
an overall second-order distribution in situations where lin-
ear interpolation is not possible. An additional advantage is
that any viscosity dependence of the hydrodynamic boundary
comes from the nonequilibrium distribution. By interpolating
just the equilibrium distribution, we can still tune the MRT
model to provide a viscosity-independent boundary rule, as
described in Sec. III B.

The distribution function at a boundary node is therefore
divided into equilibrium and nonequilibrium parts, based on
the local density and fluid velocity. The decomposition must
be done before the distribution is propagated, so the equilib-
rium distribution is always interpolated first and then
bounced back to the boundary node. To maintain stability we
use different neighboring distributions to interpolate with, as
illustrated in Fig. 2. When the surface is closer to the bound-
ary node than the solid node (¢ <1/2), we use the neighbor-
ing node at r;—c¢; for the interpolation [Fig. 2(a)], as with the

J
standard linear interpolation [c.f., Eq. (15)],

n(x 0+ Ar) = 2gnf(r ;1) + (1 - 2¢)n(r; — ¢;,1). (18)

On the other hand, when the surface is closer to the solid
node, we use the expected equilibrium distribution at the
solid surface [Fig. 2(b)]:

l-¢g

nf,q(rj,t +Ar) = ni(r;,0) + ! n{i(ry), (19)
where n{(r,)=n{'(p,,u;,) is the equilibrium distribution
corresponding to the local velocity of the surface u,. The
mass density at the surface, p;, can be taken as the local fluid
density p(r;) or as the mean fluid density py. The difference
is small, of the order of M2, where M is the Mach number,
and in Stokes flow M can be made arbitrarily small. Our
simulations use a stationary surface, so in this case n{%(r,)
=a‘ipy. The final distribution at the boundary node, n;/(r;,t
+At), includes the nonequilibrium distribution, which is ob-
tained from the bounce-back rule,

R0+ Ar) = n(r 1), (20)

regardless of g.

When two surfaces are very close together, there may be
no fluid node at r;—c; as illustrated in Fig. 2(c). In the case
when ¢<<1/2, we can use the equilibrium distribution at the
other surface to interpolate with,
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............................
® O > & J
T —Ci T rj+c¢i
(a) 0<g<1/2
q
P
[ 0( o H ®
_ > =
i — ¢ rj rjt+c¢i
b 1/2<q<1
q q
o—HH——o ot °
—_ = —-
ri—c T T ry i+ ¢

() 0<q<1/2, 1/2<¢ <1

FIG. 2. Schematic diagrams of the equilibrium interpolation
rule; r; is a boundary node, ritc; is a solid node, and ri=c; is a
neighboring node in (a) and (b), but a solid node in (c); i is the
direction towards the solid node. An open circle represents the lo-
cation of an interpolated equilibrium population and an open square
indicates the position of the solid surface; ¢ is the distance of the
fluid node from the boundary surface, normalized by the grid spac-
ing A. The double-line arrow represents the interpolated distribution
obtained from two known distributions, which are denoted by
single-line arrows.

!

q +2q-1

-2
ea(r)).

21

whereas when ¢>1/2 we use Eq. (19). Equation (21) is
stable when ¢’ >1-2¢ and ¢<<1/2; otherwise the interpo-
lated distribution becomes an extrapolated one. Thus the
equilibrium interpolation rule requires only a single fluid
node to provide second-order accuracy, and can replace the
bounce-back rule whenever the gap between the solid sur-
faces is larger than A.

n(r;,r+ Ar) = n{l(r;,1) +

IV. RESULTS AND DISCUSSION

In order to assess the accuracy of the proposed equilib-
rium interpolation (EI) rule, we compare with other forms of
interpolation; bounce back (BB), linear interpolation (LI),
quadratic interpolation (QI), and multireflection (MR). The
MRT collision rules were tuned according to Eq. (14), and
results for flows in inclined channels and flows through ide-
alized porous media are reported for different values of the
tuning parameter w.

A. Plane Poiseuille flows

We consider first a planar Poiseuille flow in channels in-
clined at 0° and 45° to a grid line. Consider a planar channel
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TABLE 1I. The slip velocity parameter, «, in 0° and 45° channels; the normalized slip velocity
Au/ i, =4aA?/L2. Results are shown for five different interpolation schemes: bounce back (BB), multire-
flection (MR), linear interpolation (LI), quadratic interpolation (QI), and equilibrium interpolation (EI).

0° 45°
BB 0<p=1 | | 2 1 11 — 1 11
= plE===p||+Zw-~ =l V2H=[ = =p ||+ 2w~
(2 p)[ (2p+3w4 2077 R
MR 0<p<I 2 1
W -wW
3 6
LI - L[ 2 1 1\ (1 1
<- —— —|==p||+=w-— —|=- —|==p||+=w-=
P=3 P R U | N 22771 TP T s
<p<l 1 -2 1 ) 2 1 1 ’ 3 1 1
—<p< ——||27=|p-=|-2|+Zw-- —\p—=|[27=|p+=||+=-w-=
p P=)lm VP2 Ty 2P 2P| Te T g
QI N L 121 L[ AR
<- —— +|=-p|-1|+Zw-— == +|==p|-1|+-w-=
p 2P| TP Ty 21277 TP 6"
1 - L (P L Y - L R | O O Y IR
P= 27T\ 2 3"74 2P| 7TPT 6"
EI 0ep=t o3, 1.2 1 r 43, 3.1 1
P= 2 P\ FPIT3V T, 227 P2 TP
i _, I 2 1 ol 1) 11
1_ _ S [ L)1 1
P P\P=5 3"y 2\P72)7 6" 8

of height L, consisting of H grid cells. The walls are assumed
to be symmetrically placed at a distance pA from the nearest
fluid node, such that L=(H+2p—1)A. When the walls are
located midway between grid points, L reduces to HA. In a
channel flow driven by a body-force density f, the calculated
velocity field differs from the exact velocity field

u= %}x(L -X) (22)

by a constant slip velocity Au. We introduce a dimensionless
parameter, o=2nAu/f, such that the normalized slip veloc-
ity, Au/u,,,, can then be written as 4aA%/L?, where u,,,,
=u(L/2)=fL*/8%. Thus, if a grows linearly with H or L,
then the boundary condition is first-order accurate, whereas
if «a is independent of H, then it is second-order accurate.
Note that L and HA are the same to first order in H. We have
determined the dependence of « on the parameters H, p, T,
and w from a sequence of numerical simulations, using the
MRT collision operator described in Sec. III B.

The slip velocities reported in Table II show that the in-
terpolation methods are all second-order accurate, while the
BB rule is only first order. However, on average the BB rule
is also second-order accurate since terms proportional to H
vanish on averaging over all possible wall locations. This

explains how the BB rule can exhibit second-order accuracy
in a number of practical applications. The LI and QI rules are
both second order, but the boundary location depends on
fluid viscosity. Since the 7-dependent terms also depend on p
this additional slip velocity cannot be tuned away, nor does it
vanish on averaging over different boundary locations. For
viscous fluids, with 7> 1, the BB rule, in conjunction with a
tuned MRT collision operator, can be more accurate than the
LI or QI rules. It is noteworthy that the EI rule is both second
order and independent of 7, because it is the interpolation of
the nonequilibrium distribution that causes the dependence
on fluid viscosity. The multireflection rule leads to boundary
conditions that are independent of 7 and p. However, even
the MR rule is only exact for a specific orientation, unless
the tuning parameter is varied for each new angle.

An important question is whether the interpolated bound-
ary rules are second-order accurate for more complex geom-
etries. Therefore, we also simulated a planar Poiseuille flow
in a channel oriented at tan™!(1/2) to the underlying lattice.
In this case the slip velocity is no longer constant across the
channel [27]; we report values measured at the center of the
channel where the slip velocity is largest. In Fig. 3 we show
the dependence of the slip velocity on the tuning parameter,
w, using a relaxation time 7=1/2. The optimal w was chosen
to minimize the deviation near the end points, p=0.1 and 0.9,
where the errors tend to be the largest. The selected w is
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FIG. 3. Effect of variations in the tuning parameter, w, on the
dimensionless slip velocity, a, at the center of a tan~!(1/2) channel.
The channel width L=(16/y5+2p—1)A and 7=1/2; results are
shown for w=1/2 (triangle), w=3/8 (square), w=1/6 (diamond),
and the optimal w (solid circle). The optimal w for each rule is
selected to minimize the error at p=0.1 and p=0.9; w=17/14 (BB),
w=3/46 (MR), w=1/3 (LI), w=1/12 (QI), w=1/2 (EI).
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FIG. 4. Resolution dependence of the slip velocity, |Au/u,,,,|, at
the center of a tan™!(1/2) channel. The optimal w is used with each
rule; BB (diamond), LI (circle), QI (asterisk), MR (square), EI
(triangle).

independent of spatial resolution except for very coarse
grids. Generally, the no-slip wall moves closer to the solid
nodes as w increases, and as a result, the fluid velocity in-
creases with w.

Figure 4 shows the actual slip velocity Au/u,,,, as a func-
tion of grid resolution; the optimal value of w was used for
each boundary rule. The results are qualitatively similar to
those of the 0° and 45° channels. All methods are second-
order accurate except the BB rule, which is only second-
order accurate on average. Note that for the BB, LI, and EI
rules, the slip velocity changes sign between p=0.1 and p
=0.9. Finally, the viscosity dependence of the slip velocity,
shown in Fig. 5, is similar to the 0° and 45° channels; the slip
velocity is linearly dependent on 7 with LI and QI rules, and
independent of 7 with BB, MR, and EI rules.

In summary, the equilibrium interpolation rule proposed
in this paper results in comparable accuracy to the LI and QI
rules [26] at low viscosity, with the added advantage that the
location of the boundary is independent of fluid viscosity.
The ability to simulate accurate flow fields with large vis-
cosities can lead to orders of magnitude reduction in com-
puter time in low-Reynolds number flows. The EI rule is less
accurate than the multireflection rule [30], but it only re-
quires a single grid point in the gap between the solid sur-
faces, whereas the MR rule requires three. Next we examine
these same boundary rules in geometries more typical of sus-
pensions and porous media.

B. Flows through cubic arrays of spheres

In order to test the accuracy of the different boundary
rules in more realistic geometries, we examined steady
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FIG. 5. Viscosity dependence of the slip velocity, Au/u,,,,,
at the center of a tan~'(1/2) channel. The channel width L
=(16/\s“’5+2p— 1)A. The optimal w is used with each rule; BB (dia-
mond), LI (circle), QI (asterisk), MR (square), EI (triangle).

Stokes flow through simple-cubic and body-centered-cubic
arrays of spheres. We calculated the dimensionless perme-
ability, Q=67 nalu)/F, where (u) is the volume-average ve-
locity of the fluid; the results for Q can be compared with
precise values from independent methods [44,45] over a
wide range of volume fractions. We used reduced volume
fractions, x=(¢/ Pa)'’?, between 0.4 and 0.95, where
Ppax="/6 for simple-cubic (SC) arrays and ¢,,,,=\37/8
for body-centered-cubic (BCC) arrays. The parameter x is
therefore a measure of the linear expansion of the lattice; the
minimum gap between the solid surfaces is given by 2a(l
—x)/x, where a is the sphere radius. At the lower volume
fractions we use an analytic representation of the permeabil-
ity [44], but at y=0.95 we used an interpolation between
numerically calculated data [45]. It is noticeable that the ana-
lytic solution [44] deviates from the numerical results in
Refs. [44,45] for xy>0.9; the numerical results are similar
even at high volume fractions.

Porous media were constructed from cubic arrays of
spheres positioned randomly with respect to the underlying
grid. Twenty sets of positions were generated with the same
macroscopic configuration, which enables us to measure
both the mean and standard deviation of Q. The Reynolds
number was identically zero in these simulations due to the
choice of equilibrium distribution [Eq. (2)], and the drag
force on the spheres is independent of flow direction. The
average fluid velocity is calculated by volume, averaging the
momentum density of the fluid, p(u):(j):N‘lijy:l i(r),
where the sum includes all N nodes in the system. The error
in permeability |Q/Q"~1| was determined from the com-
puted permeability Q and the independent value, Q”, from
Refs. [44,45].
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The optimal tuning parameter for channel flows was
found to depend on the channel orientation with respect to
the underlying grid. We therefore begin by determining the
optimal value of w for a dilute simple-cubic array of spheres
(x=0.4). Figure 6 shows the error in the permeability for
different values of w. The results for all boundary rules are
second-order accurate, including the BB rule with a suitable
choice of w. The spherical geometry samples different loca-
tions and orientations of the boundary and the first-order
error is then small. Considering both the overall accuracy
and the rate of convergence of the results, we choose the
following “optimal” values w for each rule; BB w=3/4, LI
w=1/6, Ql w=1/6, MR w=1/6, and EI w=3/10, which are
then used in the rest of the work. This process resembles the
tuning of the hydrodynamic radius proposed previously
[4,35] in the context of the bounce-back rule. The present
tuning is superior in that the hydrodynamic boundary is now
coincident with the mechanical boundary, and, for the MR
and EI rules at least, viscosity independent.

The exact mapping of the boundary nodes onto the lattice
Boltzmann grid varies with the location of the center of mass
of the particle. This produces variations in the flow field
around the sphere which can lead to substantial variations in
permeability. The error bars in Fig. 7 indicate the maximum
and minimum values of the permeability across a simulation
set. The bounce-back rule shows the largest fluctuations in
permeability as would be expected, but the EI rule shows
much smaller variations (~50% ) than LI or QI; the multire-
flection rule has even smaller fluctuations. Figure 7 also
shows the viscosity dependence of the permeability. As with
channel flows, the permeability obtained with BB, MR, and
EI rules are independent of 7, while with LI and QI rules the
error in permeability grows in proportion to 7. We note by
comparing Figs. 7(a) and 7(b) that the fluctuations in perme-
ability decay rapidly with increasing resolution. The data
shown in Fig. 8 indicate that the position-dependent fluctua-
tions in force decay quadratically with increasing grid reso-
lution. Quadratic interpolation shows larger fluctuations than
even the bounce-back rule in this case, due to the large 7and
the relatively small volume fraction.

The permeability of dilute (y=0.4) and dense (y=0.95)
arrays of spheres was calculated for different grid resolu-
tions, with both simple-cubic and body-centered-cubic struc-
tures. We used the optimal value of w for each rule, deter-
mined from the permeability of dilute simple-cubic arrays
(Fig. 6). In the dilute case (y=0.4) there are always at least
three fluid nodes in the gap between particle surfaces, but in
the dense case (x=0.95) there is typically only one fluid
node in the gap. If there are insufficient fluid nodes for the
interpolation rule, we reduce the MR and QI rules to the LI
rule, and the LI rule to the BB rule, depending on the number
of available nodes. The EI rule can always be applied in one
of its interpolated forms unless the gap between the surfaces
is less than A; in this case we use the BB rule. The proposed
mixed methods are stable, and the implementation is summa-
rized in Table III.

Figure 9 illustrates the convergence of the permeability
for different geometries, different packing fractions, and dif-
ferent fluid viscosities. In the dilute packings [Figs. 9(a),
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FIG. 7. Viscosity dependence of the error in permeability for a
simple-cubic array of spheres (y=0.6). Results are shown for relax-
ation times 7=0.05,0.5,1.5,2.5,3.5. For clarity the results are plot-
ted with small offsets from the actual values of 7. The error bars
denote the maximum and the minimum values in the simulation
sets; BB (diamond), LI (circle), QI (asterisk), MR (square), EI
(triangle).

9(c), and 9(e)], all the rules are second-order accurate. In
general, the MR rule has the lowest error, by up to an order
of magnitude, while EI is slightly less accurate than LI and
QI at low viscosity [Fig. 9(a)] but more accurate at higher
viscosity [Figs. 9(c) and Fig. 9(e)]. In fact, at the higher
viscosity (7=1.5), the bounce-back rule tends to be at least as
accurate as the LI or QI rules.

For dense packings [Figs. 9(b), 9(d), and 9(f)], the errors
are typically an order of magnitude larger than in the dilute
case when the particle size is kept constant. But for the same
fluid volume, L3, the errors are quite similar. This gives a

FIG. 8. Grid-dependent fluctuations in permeability AQ/Q" for
a simple-cubic array of spheres (7=3/2, x=0.4). The difference
between the maximum and minimum permeability for different lo-
cations of the sphere are shown as a function of grid resolution; BB
(diamond), LI (circle), QI (asterisk), MR (square), EI (triangle).
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TABLE III. Mixed interpolation rules. The LI, QI, and MR interpolations require additional neighboring
nodes, whereas the EI rule does not. However the EI rule does have the additional restriction that the gap
between the solid surfaces must be greater than one grid spacing.

Available fluid nodes

Boundary rules

3 BB
BB
BB

- Ny

MR QI LI EI
LI LI LI EI
BB BB BB EI

useful empirical rule for predicting the accuracy of LBE
simulations at different solids loadings. For comparable rela-
tive error, the fluid volume per particle should be similar,
independent of the volume fraction. Note that for the BCC
packing, the volume per particle is L?/2, because there are
two particles in the unit cell. In dense simple-cubic packings
the EI rule is quite comparable to the MR rule and is more
accurate than either LI or QI, especially at the higher viscos-
ity. However, in BCC packing the MR rule is more accurate
than EI. Once again the accuracy of the LI and QI rules is
degraded at larger viscosities.

C. Mass leakage

A drawback of these interpolation methods is that the total
fluid mass is not conserved. In special cases, such as a chan-

nel flow with the walls symmetrically placed on the grid,
there is no mass leakage; the gain and loss of mass from the
interpolations are exactly canceled by each other. However,
in general, solid surfaces are not located in symmetric posi-
tions, so that the fluid mass tends to keep increasing or de-
creasing over time, depending on the position of the bound-
aries. In a dynamical simulation some procedure to
compensate for variations in fluid mass is necessary. Mass
conserving interpolations have been developed [46,47] but
they are more complicated to implement and do not give
second-order accuracy in general.

The mass leakage per time step, AM =X [p(r;,1)-p*]/t,
is roughly constant for a given configuration and propor-
tional to the average velocity of fluid. The results in Fig. 10
show that AM/{u) is close to viscosity independent with MR
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FIG. 9. Error in the permeability |Q/Q"~1| for simple-cubic and body-centered-cubic array of spheres as a function of grid resolution.
Results are shown for different solid packing fractions and fluid viscosity; BB (diamond), LI (circle), QI (asterisk), MR (square), EI

(triangle).
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and EI rules, while with LI and QI it linearly increases with
7. LI and QI rules have the largest mass leakage, while EI
and MR are smaller, particularly at large 7. However, even
though the mass gain or loss increases with time, we did not
observe any variation in the fluid velocity. We conclude that
in the incompressible limit the mass leakage does not affect
the velocity field [3].

V. CONCLUSIONS

We have proposed an interpolation method for imple-
menting a no-slip boundary condition in lattice Boltzmann

PHYSICAL REVIEW E 75, 066705 (2007)

simulations. By interpolating only the equilibrium portion of
the distribution, second-order accuracy is maintained but the
number of fluid nodes needed is reduced; instead information
about the equilibrium distribution on the boundary surface is
used for the interpolation. The EI rule can be used with only
a single fluid node, as long as the gap between surfaces is
larger than A.

The accuracy of several different boundary rules was
evaluated for flows in inclined channels and flows though
porous media composed of regular arrays of spheres. We
used a multiple-relaxation time LBE model, but with a dif-
ferent set of eigenvectors from Refs. [30,32]. The alternate
set of “weighted” eigenvectors [31] does not project the
equilibrium distribution onto the kinetic modes. We have
used a two-relaxation-time model, with a single tuning pa-
rameter, w, to control the location of the no-slip boundary.

The convergence of all the interpolation methods is sec-
ond order, in contrast to the first-order accuracy typical of the
BB rule. However, in more complex geometries such as ar-
rays of spheres, the bounce-back rule is also second order,
because the first-order terms tend to average out when a
number of different positions and orientations are sampled.
In general the MR rule is most accurate and independent of
viscosity. The the LI and QI rules are second-order accurate
but viscosity dependent. They show a significant improve-
ment in accuracy compared with the BB rule at lower vis-
cosity (7<1), but not in more viscous fluids. The EI rule is
independent of viscosity, and has significantly better accu-
racy for highly viscous flows. Our results suggest that the EI
rule is especially suitable for flows through small gaps be-
cause it can maintain second-order accuracy down to the
level of a single grid spacing.
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