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analytical solutions of the time-dependent nonrelativistic Schrödinger equation in two and three spatial dimen-
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between the QLB scheme and sequential splitting methods for partial differential equations are also clarified.
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I. INTRODUCTION

In the last decade the lattice kinetic approach to fluid dy-
namics, and notably the lattice Boltzmann �LB� method, has
consolidated into a powerful alternative to the discretization
of the Navier-Stokes equations for the numerical simulation
of a wide range of complex fluid flows �1–4�. To date, the
overwhelming majority of LB work has been directed to the
investigation of classical �nonquantum� fluids. Nonetheless,
a small group of authors have also investigated lattice kinetic
formulations of quantum mechanics �5–9�. The earliest LB
model for quantum motion built upon a formal analogy be-
tween the Dirac equation and a Boltzmann equation for a
complex distribution function �10–12�. It was then shown
that the nonrelativistic Schrödinger equation derives from the
complex Boltzmann equation under the same adiabatic as-
sumptions �in imaginary time� which take the Boltzmann
equation for classical molecules into the Navier-Stokes equa-
tions of continuum fluid mechanics. Based on this analogy, a
quantum lattice Boltzmann scheme was formulated, in which
the discrete speeds are identified with the four-spinor com-
ponents of the Dirac’s wave function. For
�1+1�-dimensional problems �evolutionary problems in one
spatial dimension� this identification is fairly natural, since
the spin can always be aligned with momentum �unit helic-
ity�. In higher dimensions, however, such a helicity-1 repre-
sentation is no longer viable because the spin does not trans-
form like ordinary vectors, and consequently the Dirac
propagation matrices cannot be diagonalized simultaneously.
To cope with this problem, the classical stream-collide struc-
ture of the Boltzmann equation was augmented with a “rota-
tion” step, designed in such a way as to secure alignment
between momentum and spin degrees of freedom along each
direction of propagation �operator splitting�. To the best of
our knowledge, to date, such a multidimensional version of
the quantum lattice Boltzmann �QLB� scheme has not been
validated by actual numerical simulations. In this paper, we
present such a validation for the case of a free particle and
the harmonic oscillator in both two and three dimensions.

Our numerical results show satisfactory agreement with
the analytical solutions, thereby proving the viability of
three-step, stream-collide-rotate, theoretical structure of the
multidimensional QLB scheme. Finally, a few comments on

the potential use of QLB-like schemes for prospective quan-
tum computer implementations are also presented.

II. REVIEW OF THE ONE-DIMENSIONAL MODEL

The quantum lattice Boltzmann model proposed in
�10,12� is based on a formal analogy between the Dirac
equation and the discrete kinetic equation named the lattice
Boltzmann equation �LBE�. In particular, it is possible to
show that the nonrelativistic Schrödinger equation ensues
from the relativistic Dirac equation in the adiabatic limit
where antisymmetric fast modes are enslaved to the symmet-
ric slow ones. In �10� this was demonstrated for the one-
dimensional case, and a theoretical strategy for two and three
dimensions was proposed, albeit not tested against numerical
simulations.

Let us briefly recall the main ideas behind the quantum
lattice Boltzmann scheme in one dimension.

Consider the Dirac equation in one dimension. Using the
Majorana representation �13�, and projecting upon chiral
eigenstates, the Dirac equation reads

�tu1 + c�zu1 = �cd2 + igu1,

�tu2 + c�zu2 = �cd1 + igu2,

�td1 − c�zd1 = − �cu2 + igd1,

�td2 − c�zd2 = − �cu1 + igd2, �1�

where u1,2 and d1,2 are complex wave functions composing
the Dirac quadrispinor

� =�
u1

u2

d1

d2

� ,

and �c=mc2 /� is the Compton frequency �c is the light
speed and �=h /2� where h is the Planck constant�, g=qV is
the space-dependent frequency coupling to the external po-
tential V, and q is the particle electric charge.

Nonrelativistic motion is reproduced by the model in the
adiabatic limit
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� � ��c + g� ,

where � is the typical frequency or energy of the solution �,
so that one can estimate ��t� � =� ���.

With the additional constraint of “small” potential inter-
action

�g� � �c,

it is easy to check that the “slow” mode �to be defined
shortly� dynamics is governed by the Schrödinger equation
for a spinless particle of mass m. In particular, for a free
particle �V=0�, we note that under the unitary transformation

�1,2
± =

1
�2

eimt�u1,2 ± id2,1� ,

observing that u1,2 and d1,2 are solutions of Eq. �1� and tak-
ing the adiabatic limit, the slow modes �1,2

+ obey the
Schrödinger equation for a free particle of mass m.

The QLB model in one dimension

Equation �1� is discretized using classical forward differ-
ences for the time derivative, while spatial derivatives are
replaced by one-sided discrete differences taken along the
streaming directions: forward differences for u1,2 and back-
ward differences for d1,2 �sometimes called “light-cone
propagation”�. In addition, the right-hand side of Eq. �1� is
discretized through an average between the term at time t
and position z and the term at time t+�t and position z±�z
for u1,2 and d1,2, respectively.

Using atomic units �c=1, �=1� and assuming �z=�t=1,
we obtain the following scheme

û1 − u1 =
m

2
�d2 + d̂2� +

ig

2
�u1 + û1� ,

û2 − u2 =
m

2
�d1 + d̂1� +

ig

2
�u2 + û2� ,

d̂1 − d1 = −
m

2
�u2 + û2� +

ig

2
�d1 + d̂1� ,

d̂2 − d2 = −
m

2
�u1 + û1� +

ig

2
�d2 + d̂2� , �2�

where û1,2=u1,2�z+1, t+1�, d̂1,2=d1,2�z−1, t+1�, u1,2

=u1,2�z , t�, and d1,2=d1,2�z , t�.
The linear system of Eq. �2� is solved algebraically for

û1,2 and d̂1,2 and yields the explicit scheme

û1 = au1 + bd2,

û2 = au2 + bd1,

d̂1 = ad1 − bu2,

d̂2 = ad2 − bu1, �3�

where

a = �1 − �/4�/�1 + �/4 − ig� ,

b = m/�1 + �/4 − ig� ,

with �=m2−g2. Here m represents the dimensionless Comp-
ton frequency in lattice units ��z=�t=c=1, q=−1�.

We note that, in analogy with the classical lattice Boltz-
mann model for fluid dynamics, the scheme of Eq. �2� can be
derived from Eq. �1� by integrating along the characteristics
of u and d, respectively, and approximating the right-hand
side by means of the trapezium rule. Moreover, since the
QLB operator is linear, while the classical LB operator is
not, the resulting scheme of Eq. �2� can be directly solved for

û and d̂ �as we see in Eq. �3��. This is in contrast with the
classical case where, to avoid implicitness of the scheme, a
new distribution function is introduced, which is nonlinearly
related to the original one �14�. Such nonlinearity stems from
the quadratic dependence of the classical local equilibrium
on the fluid speed, as required to describe nonlinear hydro-
dynamic interactions.

The scheme of Eq. �3� is a lattice Boltzmann equation in
matrix form �15�, where the collision step is performed by
applying the unitary collision matrix

Q =�
a 0 0 b

0 a b 0

0 − b a 0

− b 0 0 a
� �4�

to the quadrispinor �= �u1 ,u2 ,d1 ,d2�T, and the streaming
step consists in propagating u1,2 forward and d1,2 backward
according to the light-cone rule, �z=c�t. Note that stability
is secured by the unitarity of the collision matrix Q for any
value of �t. This contrasts with standard explicit schemes,
whose numerical stability is constrained by Courant-
Friedrichs-Lewy-like inequalities of the form �t
	 �2m /���z2.

III. EXTENSION TO TWO AND THREE DIMENSIONS:
A SURVEY

In this section, we work out the details of the multidimen-
sional quantum LB scheme. For the sake of simplicity, we
restrict our discussion to the free-particle case �V=0�; how-
ever, the inclusion of a potential is straightforward.

According to the idea presented in �10�, we start from the
representation of the Dirac equation in which all the spin
matrices are real. For a free particle of mass m in three di-
mensions �in atomic units c=1 and �=1�, this reads �16�

��t + 
x�x + ��y − 
z�z�� = − im
y� , �5�

where 
 and � are the standard 4�4 Dirac matrices and � is
the Dirac quadrispinor. In �10�, a formal parallel between the
discrete speeds of the LBE and the discrete spin states of the
Dirac quadrispinor is proposed in order to solve Eq. �5� by
means of a kinetic equation.

The main problem with this idea is that in order to
achieve a full correspondence between the LBE and the
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Dirac equation, the matrices L= �
x ,� ,−
z� should be simul-
taneously diagonalized, which is clearly forbidden. Here, fol-
lowing the notation introduced in �10�, L indicates a set of
three two-dimensional arrays of size 4�4. However, even
though simultaneous diagonalization of the three matrices is
impossible �17�, we can diagonalize each of them separately
in a sequence. This means we need to find two 4�4 trans-

formation matrices Y and X such that L̃y =Y−1LyY and L̃x

=X−1LxX are diagonal. We have then three equivalent formu-
lations of the same equation, each featuring a diagonal
streaming operator along x, y, and z, respectively. Hence, we
split the operator and use the one-dimensional LBE three
times in sequence.

In practice, this means that collision and streaming are
first performed along one direction, then the system is “ro-
tated” using a transformation matrix and collision and
streaming are performed again along a second direction. Fi-
nally the same procedure is applied to the third direction.

To summarize, the three-step algorithm reads as follows:
�1� �a� Collision along z:

���P,t + �t� = Q̃��P,t� ,

where P= �x ,y ,z� and Q̃ is the collision matrix �see Eq. �10�
for details of the definition of Q̃ in the two-dimensional
case�.

�b� Streaming along z:

��P + �z,t + �t� = Sz���P,t + �t� ,

where Sz is the streaming operator along z.
�2� �a� Rotation of the system:

�y = Y�, Q̃y = Y−1Q̃Y .

�b� Collision along y:

�y��P + �z,t + �t� = Q̃y�y�P + �z,t + �t� .

�c� Streaming along y:

�y�P + �y + �z,t + �t� = Sy�y��P + �z,t + �t� ,

where Sy is the streaming operator along y.
�3� �a� Rotation of the system:

�xy = X�y, Q̃xy = X−1Q̃yX .

�b� Collision along x:

�xy� �P + �y + �z,t + �t� = Q̃xy�xy�P + �y + �z,t + �t� .

�c� Streaming along x:

�xy�P + �x + �y + �z,t + �t� = Sx�xy� �P + �y + �z,t + �t� ,

where Sx is the streaming operator along x.
Finally the updated value is transformed back

��P + �x + �y + �z,t + �t� = Y−1X−1�xy�P + �x + �y + �z,t

+ �t� .

In �10�, the matrix Q̃ is Q itself �see Eq. �4��. This is not
correct �as we will clarify in the following� and leads to a

scheme that does not solve the Schrödinger equation in the
adiabatic limit. In the next section, we describe the details of
the two-dimensional model and show that the evolution of
the slow modes �1,2

+ is governed by the Schrödinger equa-
tion.

Two-dimensional model: Details

Let us consider the two-dimensional version of Eq. �5�,

��t + ��y − 
z�z�� = − im
y� .

It is known that the choice of the Dirac matrices is not
unique; in fact all possible choices are related by similarity
transformations. Therefore, we apply a transformation to the
matrices in order to diagonalize 
z. In particular, we use the
transformation matrix

Z =
1
�2�

0 − 1 0 1

1 0 − 1 0

0 1 0 1

1 0 1 0
� . �6�

This transformation yields the following equivalent problem:

��t + Az�z + Ay�y�� = C� ,

��z,y,0� = �0�z,y� , �7�

where

Az =�
1 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 − 1
� ,

Ay =�
0 0 − 1 0

0 0 0 − 1

− 1 0 0 0

0 − 1 0 0
� ,

C =�
0 0 0 m

0 0 m 0

0 − m 0 0

− m 0 0 0
� .

The problem of Eq. �7� is solved by using the operator split-
ting approach. In particular, we use sequential splitting in
order to treat separately the two spatial dimensions.

Then, defining the splitting step �t
0, for �n−1��t	 t
�n�t, we consider the sequence of initial value problems of
the form

�t�1
n + Az�z�1

n =
1

2
C�1

n,

�1
n��n − 1��t� = �2

n−1��n − 1��t� , �8�

and
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�t�2
n + Ay�y�2

n =
1

2
C�2

n,

�2
n��n − 1��t� = �1

n�n�t� , �9�

for n=1,2 , . . . ,N. To start the procedure we set �2
0�0�=�0.

If we suppose we are able to exactly solve these two
problems, then the function �sp�z ,y ,n�t�=�2

n�z ,y ,n�t�, de-
fined at points tn=n�t, is called the splitting solution of the
problem and represents a first-order approximation of the
real solution.

The two-dimensional problem is now subdivided into two
one-dimensional problems which can be numerically solved
by using the lattice Boltzmann model proposed for the one-
dimensional case. However, in the two-dimensional version

of the model, the collision matrix Q̃ is slightly different from
Q of Eq. �4� due to the factor 1 /2 in front of matrix C in Eqs.

�8� and �9�. In particular, for the free-particle case �V=0�, Q̃
is given by

Q̃ =�
ã 0 0 b̃

0 ã b̃ 0

0 − b̃ ã 0

− b̃ 0 0 ã
� , �10�

where ã= �1− m̃2 /4� / �1+ m̃2 /4� and b̃= m̃ / �1+ m̃2 /4� with
m̃=m /2.

Note that, in order to apply the lattice Boltzmann model
to the problem of Eq. �9�, the equation must be transformed
to diagonalize Ay. Thus, we need to find the transformation Y
such that Y−1AyY is diagonal, and the same transformation
has to be applied to C, as well, in order to obtain an equiva-
lent equation. One possible choice for Y is

Y =
1
�2�

− 1 0 0 1

0 − 1 1 0

1 0 0 1

0 1 1 0
� .

By defining the wave functions

�1,2
± =

1
�2

eimt�u1,2 ± id2,1� ,

it is possible to verify that if � is solution of Eq. �7�, then
�1,2

± satisfy the following equations:

�t�1,2
+ + �z�1,2

− − i�y�2,1
− = 0, �11�

�t�1,2
− + �z�1,2

+ + i�y�2,1
+ = 2im�1,2

− . �12�

From Eq. �12�, after adiabatic elimination of the fast anti-
symmetric modes

��t�1,2
− � � 2m��1,2

− � ,

we obtain

�1,2
− 	

1

2im
��z�1,2

+ + i�y�2,1
+ � ,

and substituting in Eq. �11�, we have

i�t�1,2
+ +

1

2m
��zz�1,2

+ + �yy�1,2
+ � = 0.

This shows that the slow symmetric modes �1,2
+ obey the

Schrödinger equation for a free particle of mass m.
As mentioned above, the procedure proposed in �10�

needs a small, and yet significant, correction by a factor 2. In
fact, in �10�, the operator splitting is performed by taking

Q̃=Q. This corresponds to solving the following sequence of
problems:

�t�1
n + Az�z�1

n = C�1
n

�1
n��n − 1��t� = �2

n−1��n − 1��t� ,

and

�t�2
n + Ay�y�2

n = C�2
n,

�2
n��n − 1��t� = �1

n��n��t� ,

for �n−1��t	 t�n�t, instead of problems of Eqs. �8� and
�9�. Hence, we are not solving Eq. �7�, but rather the follow-
ing equations:

��t + Az�z + Ay�y�� = 2C�

��z,y,0� = �0�z,y� .

Performing the same analysis as above, one sees that the
wave functions �1,2

± have to be defined as

�1,2
± =

1
�2

ei2mt�u1,2 ± id2,1� ,

so that �1,2
+ now solve

i2�t�1,2
+ +

1

2m
��zz�1,2

+ + �yy�1,2
+ � = 0.

This brings up a factor of 2 only on the time derivative term,
thereby delivering an incorrect factor of 2 in the governing
equation.

IV. NUMERICAL TEST 1: FREE PROPAGATION

To validate the model in this regime we set, as initial
condition, a minimum uncertainty wave packet

�0�z,y� = �2��0z�0y�−1/2 exp
−
�z − z0�2

4�0z
2 �

�exp
−
�y − y0�2

4�0y
2 �exp�− im�vzz + vyy�� .

�13�

This is a wave packet centered about �z0 ,y0� with initial
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FIG. 1. Difference between the real part of the analytical solu-
tion and the model result for y /Ly =y0 /Ly =0.5 �see Eq. �18�� for
different values of Nz=Ny and taking vz=0.02, vy =0.02, �0z=�0y

=40, and m=1/8. Solid line, Nz=Ny =128; dashed line, Nz=Ny

=256; dotted line, Nz=Ny =512; dash-dotted line, Nz=Ny =1024.
t /Lt= �a� 0.2; �b� 0.6; �c� 1, where Lt=500 is the maximum simu-
lated time.
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FIG. 2. Difference between the real part of the analytical solu-
tion and the model result for z /Lz=z0 /Lz=0.5 �see Eq. �18�� for
different values of Nz=Ny and taking vz=0.02, vy =0.02, �0z=�0y

=40, and m=1/8. Solid line, Nz=Ny =128; dashed line, Nz=Ny

=256; dotted line, Nz=Ny =512; dash-dotted line, Nz=Ny =1024.
t /Lt= �a� 0.2; �b� 0.6; �c� 1, where Lt=500 is the maximum simu-
lated time.
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spreads �0z and �0y along z and y, respectively, and propa-
gating at speed �vz ,vy�. To impose this initial condition on
the model, we set

u1 = u2 =
1

2
�0,

d1 = d2 = − i
1

2
�0.

Furthermore, periodic boundary conditions are imposed in
all the simulations.

With the initial condition given by Eq. �13�, the analytical
solution of the Schrödinger equation for a freely propagating
particle is given by

�an�z,y,t� = �2�
�0z +
it

2m�0z
�
�0y +

it

2m�0y
�
−1/2

�exp
−
�z − z0 − vzt�2

4�0z
2 + 2it/m

�
�exp
−

�y − y0 − vyt�2

4�0y
2 + 2it/m

�exp�im�vzz + vyy��

�exp
−
im�vz

2 + vy
2�t

2
� . �14�

Based on this solution, the mean position (Z�t� ,Y�t�) and the
mean spreads �z�t� and �y�t� evolve according to the equa-
tions

Z�t� = z0 + vzt, Y�t� = y0 + vyt , �15�

and

�z�t� = 
�0z
2 +

t2

4m2�0z
2 �1/2

,

�y�t� = 
�0y
2 +

t2

4m2�0y
2 �1/2

. �16�

For a free particle, the mean energy �E� is given by

�E� = i�� �*�t� dz dy = −
�2

2m
� �*�� dz dy

=
�2

2m
� ��* � � dz dy =

�2

2m
����2

2.

Hence, for the minimum uncertainty wave packet, we obtain

�E� =
1

2m

m2�vz

2 + vy
2� +

1

4�0z
2 +

1

4�0y
2 � . �17�

Since our model provides four wave functions �1,2
± , we can

compute E1,2
+ and E1,2

− on �1,2
+ and �1,2

− , respectively, and then
define

E+ = E1
+ + E2

+, E− = E1
− + E2

−, E = E+ + E−.

A. Comparison with the analytical solution and convergence
test

To study the convergence of the model, we need to fix the
domain �zmin ,zmax�� �ymin ,ymax� and to discretize it by using
an increasing number of points nz�ny. Moreover, the lattice
must be uniform �i.e., �z=�y�h� and the relation h=�t
must be preserved �recall that c=1 in lattice units�. In gen-
eral, h is given by

h =
zmax − zmin

nz − 1
=

ymax − ymin

ny − 1
.

This setting implies a change in the scheme which, for the
one-dimensional case, consists in multiplying by a factor h
the right-hand side of Eq. �2�, corresponding to an “effec-
tive” mass m�=hm. For this reason, we need to take a suffi-
ciently large domain so that m� is not too close to zero.

In this numerical test we set �zmin ,zmax�� �ymin ,ymax�
= �0,512�� �0,512� and Nz=nz−1 and Ny =ny −1 take the val-
ues 128, 256, 512, and 1024. The remaining parameters are
set as follows: �0z=�0y =40, vz=0.02, vy =0.04, and m
=1/8. The error with respect to the analytical solution Eq.
�14� is computed in L2 norm. In particular, we define

e2�t� = ��an�z,y,t� − �+�z,y,t��2

=
� ��an�z,y,t� − �+�z,y,t��2dz dy�1/2

.

The error e2 was found to decrease from 0.08 to 0.009 as the
grid resolution was increased from 128 to 1024 points in
each direction, but with no clear evidence of a specific con-
vergence rate. We tentatively interpret this as the concurrent
effect of time-discretization errors, �O�h2��, the splitting er-
ror �O�h�� and lack of adiabaticity in the limit mh→0. In
Fig. 1 the function

e�z,y,t� = �Re��an�z,y,t�� − Re��+�z,y,t��� �18�

taken at y=y0 for the different values of Nz and Ny is plotted
at times 100, 300, and 500. In Fig. 2 the same function
evaluated at z=z0 is shown. In Figs. 1 and 2 space is normal-
ized to unit value by plotting, on the abscissa axis, z /Lz and
y /Ly, respectively. Here, Lz and Ly indicate the domain
lengths along z and y. For these simulations we have Lz
=Ly =512.

In Table I we report the propagation velocity and the

TABLE I. Propagation velocity and spread of the packet at time
t=500 for different values of Nz=Ny. The expected values are vz

=0.02, vy =0.04, and �z�500�=�y�500�=64.03. Here m=1/8 and
�0z=�0y =40.

Nz=Ny vz vy �z�500� �y�500�

128 0.0175 0.0355 60.20 60.19

256 0.0189 0.0379 62.41 62.40

512 0.0191 0.0384 62.97 62.95

1024 0.0193 0.0386 63.11 63.09
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mean spread of the packet with increasing number of dis-
cretization points. For the present setting the expected veloc-
ity is vz=0.02 and vy =0.04 and the spread at time t=500 is
computed by Eq. �16� and is 64.03 since �0z=�0y =40.

In the following section we will check the ability of the
model to reproduce the mean position and spread for differ-
ent sets of parameters.

The model is able to preserve a unit norm, i.e., the quan-
tity

��+�2 + ��−�2 =� ��+�z,t,t��2dz dy +� ��−�z,y,t��2dz dy .

It follows that ��+ � =1 cannot be preserved during the evo-
lution. Indeed, we have ��− � � ��+�, with both terms oscil-
lating in such a way that ��+�2+ ��−�2=1. In Fig. 3 ��+�2,
��−�2 and ��+�2+ ��−�2 are shown, while in Fig. 4 only ��+�2

is plotted, in order to have a closer appreciation of its evo-
lution.

A similar behavior is obtained for the energy. The model
stays constant, and very close to the expected value given by
Eq. �17�, the total kinetic energy E=E++E−, while E+ and E−

are oscillating with E−�E+. In Fig. 5 E+, E− and E are
shown.

Finally, in Table II we report the mean values of ��+�2,
E+, and E while increasing the number of nodes. Note that,
for the present setting, the expected value for the energy
given by Eq. �17� is 1.375�10−3.

B. Mean position and mean spreads

In all of the following simulations we take h��z=�t
=1; hence the computational domain is �0,nz�� �0,ny� and is
not fixed as in the previous section. In all of the simulations
periodic boundary conditions are imposed.

As we mentioned, the mean position and mean spreads
evolve according to Eqs. �15� and �16�. We can check the
ability of the model to reproduce these evolutions under a
number of different conditions.

In all of the following tests we use a grid of size 1024
�1024. As to the position, we measure the propagation ve-
locity of the packet for different values of the parameters m
and �0z=�0y, while keeping vz=0.05 and vy =0.025. In Table
III, the results of the model are reported.

To verify the asymptotic behavior of �z�t� and �t�t� we
set vz=vy =0 so that the wave packet is not hitting the grid

TABLE II. Mean values of ��+�2, E+, and E for different values
of Nz=Ny. The expected value for the energy is 1.375�10−3. Here
m=1/8, �0z=�0y =40, vz=0.02, and vy =0.04.

Nz=Ny ��+�2 E+ E

128 0.980 1.234�10−3 1.3712�10−3

256 0.985 1.240�10−3 1.3741�10−3

512 0.987 1.293�10−3 1.3748�10−3

1024 0.988 1.320�10−3 1.3749�10−3
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FIG. 3. ��+�2 �solid line�, ��−�2 �dotted line�, and ��+�2+ ��−�2

�dashed line� for Nz=Ny =1024 �h=1/2�, m=1/8, �0z=�0y =40,
vz=0.02, and vy =0.04. Time is normalized by plotting t /Lt, where
Lt=500 is the maximum simulated time.
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where Lt=500 is the maximum simulated time.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

t/L
t

E+

E−

E

FIG. 5. E+ �solid line�, E− �dotted line�, and E=E++E− �dashed
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boundary too early. The results are reported in Table IV.
Finally, we set vz�vy and �0z��0y, in particular we

choose vz=0.05, vy =0.02, �0z=50, �0y =32, and m=0.2. In
Fig. 6, we compare Z�t� and �z�t� with the analytical curves
given by Eqs. �15� and �16�. A similar comparison for Y�t�
and �y�t� is shown in Fig. 7.

V. NUMERICAL TEST 2: HARMONIC OSCILLATOR

As a second example, we consider a two-dimensional har-
monic oscillator. The potential is given by

V�z,y� = V0�
 z − nz/2

nz/2
�2

+ 
 y − ny/2

ny/2
�2


and the initial condition is still given by the minimum uncer-
tainty wave packet of Eq. �13�; periodic boundary conditions
are again assumed.

It is known that the mean quantities (Z�t� ,Y�t�) and P�t�
= (Pz�t� , Py�t�) obey the classical equations of motion of the
harmonic oscillator

Ż = Pz�t�/m, Ẏ = Py�t�/m ,

Z̈ + �0
2Z = 0, Ÿ + �0

2Y = 0;

hence,

Z�t� = z0 +
vz

�0
sin��0t� ,

Y�t� = y0 +
vy

�0
sin��0t� . �19�

Moreover, if we set �0z=�0y ��0 such that

�0 =
1

2m�0
2 , �20�

then the initial spreading �0 is preserved all along the evo-
lution. We can check the ability of the model to preserve �0
varying the parameters V0, m and nz=ny so as to produce the
following spreadings: �0=64, 32, and 16. In Table V the
model results are reported. Here �z and �y are the wave
function variances averaged over two periods. In all of the
simulations we set vz=0.02 and vy =0.04. In Fig. 8, Z�t� and

TABLE III. Results for the propagation velocity for different
values of m and �0z=�0y ��0. By Rz and Ry are indicated the ratios
between the model result and the expected value along z and y
respectively. Here nz=ny =1024, vz=0.05, and vy =0.025.

�0 m vz vy Rz Ry

50 0.1 0.048 0.024 1.038 1.040

32 0.1 0.047 0.023 1.073 1.076

32 0.2 0.048 0.024 1.034 1.035

16 0.2 0.046 0.023 1.084 1.092

TABLE IV. Asymptotic behavior of �z�t� and �y�t� for different
values of m and �0z=�0y ��0. By Rz and Ry are indicated the ratios
between the model result and the expected value along z and y
respectively. Here nz=ny =1024 and vz=vy =0.

�0 m �z �y Expected value Rz Ry

50 0.1 0.087 0.087 0.1 1.155 1.115

32 0.1 0.144 0.144 0.15625 1.083 1.083

32 0.2 0.0719 0.0719 0.078125 1.083 1.083

16 0.2 0.145 0.145 0.15625 1.080 1.080
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FIG. 6. Comparison between Z�t� and �z�t� and the expected
curves given by Eqs. �15� and �16� for the following settings: nz

=ny =1024, vz=0.05, vy =0.02, �0z=50, �0y =32, and m=0.2. Solid
lines represent Z�t� and �z�t� given by the model; dashed lines are
the expected curves. Time is normalized by plotting t /Lt, where
Lt=1200 is the maximum simulated time. Space is also normalized
to unit value by plotting Z�t� /Lz and �z�t� /Lz, where Lz=1024 is the
domain width along the z axis.
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FIG. 7. Comparison between Y�t� and �y�t� and the expected
curves given by Eqs. �15� and �16� for the following settings: nz

=ny =1024, vz=0.05, vy =0.02, �0z=50, �0y =32, and m=0.2. Solid
lines represent Y�t� and �y�t� given by the model; dashed lines are
the expected curves. Time is normalized by plotting t /Lt, where
Lt=1200 is the maximum simulated time. Space is also normalized
to unit value by plotting Y�t� /Ly and �y�t� /Ly, where Ly =1024 is
the domain width along the y axis.
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�z�t� are shown for nz=ny =512, V0=1/32, m=1/4; in Fig. 9,
Y�t� and �y�t� are reported for the same set of parameters.

When an external potential V is acting on the particle, as
in this case, the total energy of a wave function � satisfying
the Schrödinger equation is given by

�E� = i�� �*�t� dz dy

=
�2

2m
� ��* � � dz dy +� �*V� dz dy .

In analogy with classical mechanics, �E� satisfies the relation

�E� =
1

2m
�P2� + �V� .

In Fig. 10 the kinetic and potential energy and their sum are
plotted for the harmonic oscillator defined by the parameters
nz=ny =512, V0=1/32, m=1/4. In particular, the energies
are computed using �1,2

+ ; the quantities Ekin
+ , Epot

+ , and E+

=Ekin
+ +Epot

+ are shown independently. From this figure, a sat-
isfactory energy conservation is observed.

Finally, in order to verify the isotropy of the model we
plot the isolines taken at some values of �= ���z ,y��2. This
test is performed for the following set of parameters: nz
=ny =256, V0=1/8, m=1/4. The contour plot obtained after
two periods is shown in Fig. 11. In particular, the isolines
taken at �=1�10−4, 2�10−4, 3�10−4, 4�10−4, 5�10−4,
and 6�10−4 are plotted.

VI. NUMERICAL TEST 3: ROTATED ELLIPTIC
OSCILLATOR

As a third test we model an elliptic oscillator by using the
potential

TABLE V. Averaged variances of the packet along z and y for
different settings of the parameters nz=ny, m and V0. Here vz

=0.02 and vy =0.04.

nz=ny V0 m �z �y Expected �

1024 1/32 1/16 64.35±1.33 64.35±1.33 64

1024 1/8 1/4 32.25±0.70 32.27±0.75 32

512 1/16 1/8 32.16±0.70 32.17±0.69 32

512 1/32 1/4 31.87±0.27 31.87±0.29 32

512 1/4 1/2 16.01±0.69 16.02±0.70 16

256 1/8 1/4 16.05±0.37 16.05±0.38 16

256 1/16 1/2 15.74±0.32 15.74±0.32 16
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FIG. 8. Z�t� and �z�t� for the harmonic oscillator with param-
eters nz=ny =512, V0=1/32, m=1/4, vz=0.02, and vy =0.04. The
solid line is Z�t�, while the dotted one is �z�t�. Time is normalized
by plotting t /Lt, where Lt=6600 is the maximum simulated time.
Space is also normalized to unit value by plotting Z�t� /Lz and
�z�t� /Lz, where Lz=512 is the domain width along the z axis.
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V�z,y� = V0� 1

a2
 z − nz/2

nz/2
�2

+
1

b2
 y − ny/2

ny/2
�2
 ,

where we take nz=ny �n.
If we define

�0 =�2V0

m

1

n/2
,

then the characteristic frequencies along z and y are given by

�0z
2 =

�0
2

a2 , �0y
2 =

�0
2

b2 .

The evolution of Z�t� and Y�t� is described by

Z�t� =
vz

�0z
sin��0zt� ,

Y�t� =
vy

�0y
sin��0yt� ,

and choosing �0z and �0y such that

�0z =
1

2m�0z
2 , �0y =

1

2m�0y
2 , �21�

the initial spreadings are preserved throughout the evolution.
Consider, now, a rotated coordinate system

z� = z cos�
� − y sin�
� ,

y� = z sin�
� + y cos�
� . �22�

The mean position in the rotated system (Z��t� ,Y��t�), is still
following the laws

Z��t� =
vz�

�0z
sin��0zt� ,

Y��t� =
vy�

�0y
sin��0yt� , �23�

and, from Eq. �22�, we have that (Z�t� ,Y�t�) must satisfy

Z�t� = Z��t�cos�
� + Y��t�sin�
� ,

Y�t� = − Z��t�sin�
� + Y��t�cos�
� . �24�

We next check the ability of the model to reproduce these
evolutions for Z�t� and Y�t� for this elliptic rotated oscillator.

As a first example, we set the parameters as follows: n
=1024, a2=2, b2=4, m=1/8, V0=1/16, vz�=0.05, vy�=0,
and 
=� /4. With this setting we have

�0 =
1

512
, �0z =

1
�2512

, �0y =
1

1024
,

and, from Eq. �21�, we obtain

�0z = 53.817, �0y = 64.

Moreover, since vy�=0, from Eqs. �23� and �24�, we expect
the following evolution for Z�t� and Y�t�:

Z�t� =
vz�

�0z
sin��0zt�cos�
� =

vz�

�0z
sin��0zt�

�2

2
,

Y�t� = −
vz�

�0z
sin��0zt�sin�
� = −

vz�

�0z
sin��0zt�

�2

2
.

In Fig. 12, Z�t� and Y�t� are plotted. We also observe that

vz�

�0z

�2

2
= 25.6,

in close agreement with the maximum absolute value
reached by Z�t� and Y�t�, which is 25.47, corresponding to
Z�t� /Lz=Y�t� /Ly =0.0248 as indicated in Fig. 12 �where Lz

=Ly =1024 are the domain widths along z and y�.
As a second example we set n=1024, a2=1, b2=2, m

=1/4, V0=1/32, vz�=0.05, vy�=0.0, and 
=� /6. With these
parameters we obtain

�0 =
1

1024
, �0z =

1

1024
, �0y =

1
�21024

,

and, from Eq. �21�,

�0z = 45.255, �0y = 53.817.

As in the previous example, since vy�=0, from Eqs. �23� and
�24�, we expect the following evolution for Z�t� and Y�t�:

Z�t� =
vz�

�0z
sin��0zt�cos�
� =

vz�

�0z
sin��0zt�

�3

2
,

z/L
z
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FIG. 11. Contour plot for �= ���z ,y��2 for the harmonic oscilla-
tor with parameters nz=ny =256, V0=1/8, m=1/4, vz=vy =0.0, and
�0=16. Here, coordinates z and y are normalized to unit value by
plotting the dimensionless quantities z /Lz and y /Ly, where Lz=Ly

=256 are the domain lengths along z and y, respectively. The iso-
lines correspond to the following values of �: 1�10−4, 2�10−4,
3�10−4, 4�10−4, 5�10−4, and 6�10−4 going from the outside
toward the inside.
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Y�t� = −
vz�

�0z
sin��0zt�sin�
� = −

vz�

�0z
sin��0zt�

1

2
.

In Fig. 13, Z�t� and Y�t� are plotted. We also observe that

vz�

�0z

�3

2
= 44.34,

vz�

�0z

1

2
= 25.6,

again in close agreement with the maximum absolute values
reached by Z�t� and Y�t�, namely, 43.90 and 25.27, corre-
sponding to Z�t� /Lz=0.0429 and Y�t� /Ly =0.0247 as indi-

cated in Fig. 13 �where Lz=Ly =1024 are the domain widths
along z and y�.

VII. THREE-DIMENSIONAL MODEL

The two-dimensional model just described can be easily
extended to three dimensions. In this case, as a result of the
application of transformation Z �see Eq. �6��, the Dirac equa-
tion takes the form

��t + Ax�z + Ay�y + Az�z�� = C� ,

��x,y,z,0� = �0�x,y,z� ,

where Ay, Az, and C are the same as in Eq. �7� and

Ax =�
0 0 0 1

0 0 − 1 0

0 − 1 0 0

1 0 0 0
� .

By using the sequential splitting method, we consider the
sequence of three initial value problems for �n−1��t	 t
�n�t

�t�1
n + Ax�x�1

n =
1

3
C�1

n,

�1
n��n − 1��t� = �3

n−1��n − 1��t� , �25�

�t�2
n + Ay�y�2

n =
1

3
C�2

n

�2
n��n − 1��t� = �1

n�n�t� ,

and

�t�3
n + Az�z�3

n =
1

3
C�3

n

�3
n��n − 1��t� = �2

n�n�t� .

To start the procedure, we set �3
0�0�=�0 and

�sp�x ,y ,z ,n�t�=�3
n�x ,y ,z ,n�t� is the splitting solution of

the problem.
To solve the problem of Eq. �25� with a one-dimensional

lattice Boltzmann model, Ax needs to be diagonalized. A pos-
sible choice for the transformation matrix is given by

X =
1
�2�

− 1 0 1 0

0 1 0 − 1

1 0 1 0

0 1 0 1
� .

The three-dimensional algorithm set proceeds in full analogy
with the two-dimensional case.

Numerical test: Harmonic oscillator

In order to test the isotropy of the three-dimensional
model, we simulate a three-dimensional harmonic oscillator

0 0.2 0.4 0.6 0.8 1
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

t/L
t

Z(t)/L
z

Y(t)/L
y

FIG. 12. Z�t� and Y�t� for the rotated elliptic oscillator of the
first test. The solid line is Z�t�, while the dotted one is Y�t�. In this
first test, the parameters are as follows: n=1024, a2=2, b2=4, m
=1/8, V0=1/16, vz�=0.05, vy�=0, and 
=� /4. Time is normalized
by plotting t /Lt, where Lt=3000 is the maximum simulated time.
Space is also normalized to unit value by plotting Z�t� /Lz and
Y�t� /Ly, where Lz=Ly =1024 are the domain widths along z and y.
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FIG. 13. Z�t� and Y�t� for the rotated elliptic oscillator of the
second test. The solid line is Z�t�, while the dotted one is Y�t�. In
this second test, the parameters are as follows: n=1024, a2=1, b2

=2, m=1/4, V0=1/32, vz�=0.05, vy�=0.0, and 
=� /6. Time is
normalized by plotting t /Lt, where Lt=3000 is the maximum simu-
lated time. Space is also normalized to unit value by plotting
Z�t� /Lz and Y�t� /Ly, where Lz=Ly =1024 are the domain widths
along z and y.
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and we show that by fixing �0x=�0y =�0z��0 such that

�0 =
1

2m�0
2 , �26�

the packet spreading is kept constant throughout the evolu-
tion.

For this test we set nx=ny=nz=100, V0=0.081 35, m
=0.1, vx=vy =vz=0, and periodic boundary conditions are
imposed. With this setting we have �0=0.025 51 and, from
Eq. �26�, we obtain �0=14. The numerical values given by
the model for �x, �y, and �z averaged over a quarter of a
period are

�x = 15.35 ± 1.38, �y = 14.40 ± 0.88, �z = 15.47 ± 1.50.

Let us consider the radius r defined as r2= �x−x0�2+ �y
−y0�2+ �z−z0�2, where the point �x0 ,y0 ,z0� is the center of
the initial Gaussian wave packet. In Fig. 14, a scatter plot of
���x ,y ,z��2 against r2 at time t=T /4 �where T is the har-
monic oscillator period, T=2� /�0	250 lattice units� is re-
ported in order to expose the degree of isotropy of the nu-
merical solution. In the figure, results are shown for r2

	 �3�0�2, because for larger values of r2, statistical fluctua-
tions become dominant due to the extremely small values of
���2. To be noted that, due again to the exponential depen-

dence of ���2 on the radius ����2�e−r2/�2�0
2��, even a mild lack

of isotropy is exponentially enhanced at increasing values of
r. This effect is well visible in Fig. 14. However, for r2

	�0
2, the linear dependence of log����2� on r2 is clearly vis-

ible, with a fairly acceptable scatter of the numerical data.
For increasing values of r2, however, the scatter also in-
creases. Finally, for r2 close to �3�0�2, boundary condition

effects start to become appreciable. In fact, we note that the
solution is not affected by periodic boundary conditions as
long as the wave function remains negligible at the boundary.
Going much further in time with this setting is not sensible,
since the finite-size effects due to the periodic boundary con-
ditions would propagate into the domain, thus deteriorating
the solution even for smaller values of r2. To overcome this
limitation, a much larger domain, or different boundary con-
ditions, should be used.

VIII. CONCLUSIONS AND OUTLOOK

The present work explicitly demonstrates the viability of
the quantum lattice Boltzmann scheme for the numerical so-
lution of the time-dependent Schrödinger equation in mul-
tiple spatial dimensions. In addition, it clarifies its links with
sequential splitting methods for partial differential equations.
Being based on a unitary, first-order, relativistic formulation,
at variance with most explicit schemes for nonrelativistic
quantum wave equations, the QLB method offers uncondi-
tional stability with the size of the time step or mesh. How-
ever, its accuracy is subject to the condition �c�t=�x /�B
�1, �B=c /�C being the de Broglie wavelength of the par-
ticle. Since the time step scales linearly with the mesh spac-
ing �a result of the relativistic formulation�, the QLB method
can be taken down to very refined grids without suffering the
time-step collapse typical of nonrelativistic Courant-
Friedrichs-Lewy stability conditions, �t	 �2m /���x2, thus
compensating for its low-order accuracy. However, care must
be taken to ensure that errors due to lack of adiabaticity
remain under control when �c�t is sent to zero. Due to the
one-sided nature of the space-time discretization, the light-
cone streaming, as well as its low communication to compu-
tation ratio, the QLB method makes an excellent candidate
for parallel implementations on classical �electronic� com-
puters, as well as for prospective quantum computing appli-
cations �18–20�. Indeed, the complex distribution function
��x , t�=cuu�x , t�+cdd�x , t�, cu and cd being two complex co-
efficients, provides a natural representation of qubits as an
arbitrary superposition of the two quantum eigenstates u�x , t�
and d�x , t� at each space-time location �x , t�. Moreover, as
observed in �21�, the stream-and-collide structure of the
quantum lattice Boltzmann equation maps naturally onto the
structure of quantum networks, i.e., quantum computing de-
vices consisting of quantum logic gates, whose computa-
tional operation proceeds synchronously in time. The output
of some gates is wire connected to the input of some others
�the streaming step�, and locally processed by unitary opera-
tions �the collision step�.

In addition to the quantum computing prospects, further
extensions to nonlinear quantum wave equations, e.g., the
Gross-Pitaevski equation describing zero-temperature Bose-
Einstein condensates �22�, as well as to nonuniform grids,
make interesting topics of future research in the field.
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FIG. 14. Scatter plot of ���x ,y ,z��2 against r2 for a three-
dimensional harmonic oscillator with parameters nz=ny =nz=100,
V0=0.081 35, m=0.1, vx=vy =vz=0, and �0=14 at time t=T /4.
���x ,y ,z��2 is represented on a logarithmic scale in order to show its
linear dependence on r2. Here, the coordinates x, y, and z are nor-
malized to unit value by plotting the dimensionless quantities x /Lx,
y /Ly, and z /Lz, where Lx=Ly =Lz=100 are the domain lengths along
x, y, and z, respectively.
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