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Monte Carlo simulations are one of the major tools in statistical physics, complex system science, and other
fields, and an increasing number of these simulations is run on distributed systems like clusters or grids. This
raises the issue of generating random numbers in a parallel, distributed environment. In this contribution we
demonstrate that multiple linear recurrences in finite fields are an ideal method to produce high quality
pseudorandom numbers in sequential and parallel algorithms. Their known weakness �failure of sampling
points in high dimensions� can be overcome by an appropriate delinearization that preserves all desirable
properties of the underlying linear sequence.
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I. INTRODUCTION

The Monte Carlo method is a major industry and random
numbers are its key resource. In contrast to most commodi-
ties, quantity and quality of randomness have an inverse re-
lation: The more randomness you consume, the better it has
to be �1�. The quality issue arises because simulations only
approximate randomness by generating a stream of determin-
istic numbers, named pseudorandom numbers �PRNs�, with
successive calls to a pseudorandom number generator
�PRNG�. Considering the ever increasing computing power,
however, the quality of PRNGs is a moving target. Simula-
tions that consume 1010 pseudorandom numbers were con-
sidered large-scale Monte Carlo simulation a few years ago.
On a present-day desktop machine this is a ten minute run.

More and more large-scale simulations are run on parallel
systems like networked workstations, clusters, or “the grid.”
In a parallel environment the quality of a PRNG is even
more important, to some extent because feasible sample sizes
are easily 10, . . . ,105 times larger than on a sequential ma-
chine. The main problem is the parallelization of the PRNG
itself, however. Some good generators are not parallelizable
at all, others lose their efficiency, their quality, or even both
when being parallelized �2,3�.

In this contribution we discuss linear recurrences in finite
fields. They excel as sources of pseudorandomness because
they have a solid mathematical foundation and they can eas-
ily be parallelized. Their linear structure, however, may
cause problems in experiments that sample random points in
high dimensional space. This is a known issue �“random
numbers fall mainly in the planes” �4��, but it can be over-
come by a proper delinearization of the sequence.

The paper is organized as follows. In Sec. II we briefly
review some properties of linear recurrences in finite fields,
and we motivate their use as PRNGs. In Sec. III we discuss

various techniques for parallelizing a PRNG. We will see
that only two of these techniques allow for parallel simula-
tions whose results do not necessarily depend on the number
of processes, and we will see how linear recurrences support
these parallelization techniques. Section IV addresses the
problem of linear sequences to sample points in high dimen-
sions, measured by the spectral test. We show that with a
proper transformation �delinearization� we can generate a
new sequence that shares all nice properties with the original
sequence �like parallelizability, equidistribution properties,
etc.�, but passes many statistical tests that are sensitive to the
hyperplane structure of points of linear sequences in high
dimensions. In the last two sections we discuss the quality of
the linear and nonlinear sequences in parallel Monte Carlo
applications and how to implement these generators effi-
ciently.

II. RECURRENT RANDOMNESS

Almost all PRNGs produce a sequence �r�=r1 ,r2 , . . . of
pseudorandom numbers by a recurrence

ri = f�ri−1,ri−2, . . . ,ri−k� , �1�

and the art of random number generation lies in the design of
the function f . Numerous recipes for f have been discussed
in the literature �5,6�. One of the oldest and most popular
PRNGs is the linear congruential generator �LCG�

ri = ari−1 + b mod m �2�

introduced by Lehmer �7�. The additive constant b may be
zero. Knuth �8� proposed a generalization of Lehmer’s
method known as multiple recursive generator �MRG�
�6,9,10�

ri = a1ri−1 + a2ri−2 + ¯ + anri−n mod m . �3�

Surprisingly, on a computer all recurrences are essentially
linear. This is due to the simple fact that computers operate
on numbers of finite precision; let us say integers between 0
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and rmax. This has two important consequences.
�1� Every recurrence �1� must be periodic.
�2� We can embed the sequence �r� into the finite field Fm,

the field of integers with arithmetic modulo m, where m is a
prime number larger than the largest value in the sequence
�r�.

The relevance of linear sequences is then based on the
following fact ��11�, corollary 6.2.3�:

Theorem 1. All finite length sequences and all periodic
sequences over a finite field Fm can be generated by a linear
recurrence �3�.

In the theory of finite fields, a sequence of type �3� is
called linear feedback shift register sequence, or LFSR se-
quence for short. Note that a LFSR sequence is fully deter-
mined by specifying n coefficients �a1 ,a2 , . . . ,an� plus n ini-
tial values �r1 ,r2 , . . . ,rn�.

According to Theorem 1 all finite length sequences and all
periodic sequences are LFSR sequences. The linear complex-
ity of a sequence is the minimum order of a linear recurrence
that generates this sequence. The Berlekamp-Massey algo-
rithm �11,12� is an efficient procedure for finding this short-
est linear recurrence. The linear complexity of a random se-
quence of length T on average equals T /2 �13�. As a
consequence a random sequence cannot be compressed by
coding it as a linear recurrence, because T /2 coefficients plus
T /2 initial values have to be specified. Typically the linear
complexity of a nonlinear sequence �1� is of the same order
of magnitude as the period of the sequence. Since the design-
ers of PRNGs strive for “astronomically” large periods,
implementing nonlinear generators as a linear recurrence is
not tractable. As a matter of principle, however, all we need
to discuss are linear recurrences, and any nonlinear recur-
rence can be seen as an efficient implementation of a large
order linear recurrence. The popular PRNG “Mersenne
Twister” �14�, for example, is an efficient implementation of
a linear recurrence in F2 of order 19 937.

There is a wealth of rigorous results on LFSR sequences
that can �and should� be used to construct a good PRNG.
Here we only discuss a few but important facts without
proofs. A detailed discussion of LFSR sequences including
proofs can be found in �11,15–19�.

Since the all zero tuple �0,0,…,0� is a fixed point of Eq.
�3�, the maximum period of a LFSR sequence cannot exceed
mn−1. The following theorem tells us precisely how to
choose the coefficients �a1 ,a2 , . . . ,an� to achieve this period
�5�.

Theorem 2. The LFSR sequence �3� over Fm has period
mn−1, if and only if the characteristic polynomial

f�x� = xn − a1xn−1 − a2xn−2 − ¯ − an �4�

is primitive modulo m.
A monic polynomial f�x� of degree n over Fm is primitive

modulo m, if and only if it is irreducible �i.e., cannot be
factorized over Fm�, and if it has a primitive element of the
extension field Fmn as one of its roots. The number of primi-
tive polynomials of degree n modulo m is equal to ��mn

−1� /n=O�mn / (n ln(n ln m))� �20�, where ��x� denotes Eul-
er’s totient function. As a consequence a random polynomial

of degree n is primitive modulo m with probability
�1/ (n ln�n ln m�), and finding primitive polynomials re-
duces to testing whether a given polynomial is primitive. The
latter can be done efficiently, if the factorization of mn−1 is
known �11�, and most computer algebra systems offer a pro-
cedure for this.

Theorem 3. Let �r� be an LFSR sequence �3� with a primi-
tive characteristic polynomial. Then each k-tuple
�ri+1 , . . . ,ri+k�� �0,1 , . . . ,m−1�k occurs mn−k times per pe-
riod for k�n �except the all zero tuple for k=n, which never
occurs�.

From this theorem it follows that, if a tuple of k succes-
sive terms k�n is drawn from a random position of a LFSR
sequence, the outcome is uniformly distributed over all pos-
sible k-tuples in Fm. This is exactly what one would expect
from a truly random sequence. In terms of Compagner’s en-
semble theory, tuples of length k�n of a LFSR sequence
with primitive characteristic polynomial are indistinguish-
able from truly random tuples �21,22�.

Theorem 4. Let �r� be an LFSR sequence �3� with period
T=mn−1 and let � be a complex mth root of unity and �̄ its
complex conjugate. Then

C�h� ª �
i=1

T

�ri�̄ri+h = 	 T if h = 0 mod T

− 1 if h � 0 mod T .

 �5�

C�h� can be interpreted as the autocorrelation function
of the sequence, and Theorem 4 tells us that LFSR sequences
with maximum period have autocorrelations that are very
similar to the autocorrelations of a random sequence with
period T. Together with the nice equidistribution properties
�Theorem 3� this qualifies LFSR sequences with maximum
period as pseudonoise sequences, a term originally coined by
Golomb for binary sequences �11,15�.

III. PARALLELIZATION

A. General parallelization techniques

In parallel applications we need to generate streams tj,i of
random numbers, where j=0,1 , . . . , p−1 numbers the
streams for each of the p processes. We require statistical
independence of the tj,i within each stream and between the
streams. Four different parallelization techniques are used in
practice.

Random seeding. All processes use the same PRNG but a
different “random” seed. The hope is that they will generate
nonoverlapping and uncorrelated subsequences of the origi-
nal PRNG. This hope, however, has no theoretical founda-
tion. Random seeding is a violation of Donald Knuth’s ad-
vice, “Random number generators should not be chosen at
random” �5�.

Parametrization. All processes use the same type of gen-
erator but with different parameters for each processor. Ex-
ample: linear congruential generators with additive constant
bj for the jth stream �23�

tj,i = atj,i−1 + bj mod m , �6�

where the bj’s are different prime numbers just below �m /2.
Another variant uses different multipliers a for different
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streams �24�. The theoretical foundation of these methods is
weak, and empirical tests have revealed serious correlations
between streams �25�. On a massive parallel system you may
need thousands of parallel streams, and it is not trivial to find
a type of PRNG with thousands of “well tested” parameter
sets.

Block splitting. Let M be the maximum number of calls to
a PRNG by each processor, and let p be the number of pro-
cesses. Then we can split the sequence �r� of a sequential
PRNG into consecutive blocks of length M such that

t0,i = ri,

t1,i = ri+M ,
�7�

]

tp−1,i = ri+M�p−1�.

This method works only if we know M in advance or can at
least safely estimate an upper bound for M. To apply block
splitting it is necessary to jump from the ith random number
to the �i+M�th number without calculating the numbers in-
between, which cannot be done efficiently for many PRNGs.
A potential disadvantage of this method is that long range
correlations, usually not observed in sequential simulations,
may become short range correlations between substreams
�26,27�. Block splitting is illustrated in Fig. 1.

Leapfrog. The leapfrog method distributes a sequence �r�
of random numbers over p processes by decimating this base
sequence such that

t0,i = rpi,

t1,i = rpi+1,
�8�

]

tp−1,i = rpi+�p−1�.

Leapfrogging is illustrated in Fig. 2. It is the most versatile
and robust method for parallelization and it does not require
an a priori estimate of how many random numbers will be
consumed by each processor. An efficient implementation
requires a PRNG that can be modified to generate directly
only every kth element of the original sequence. Again this
excludes many popular PRNGs.

Note that for a periodic sequence �r� the substreams de-
rived from block splitting are cyclic shifts of the original
sequence �r�, and for p not dividing the period of �r�, the
leapfrog sequences are cyclic shifts of each other. Hence the
leapfrog method is equivalent to block splitting on a different
base sequence.

B. Playing fair

We say that a parallel Monte Carlo simulation plays fair,
if its outcome is strictly independent of the underlying hard-
ware, where strictly means deterministically, not just statis-
tically. Fair play implies the use of the same PRNs in the
same context, independently of the number of parallel pro-
cesses. It is mandatory for debugging, especially in parallel
environments where the number of parallel processes varies
from run to run, but another benefit of playing fair is even
more important: Fair play guarantees that the quality of a
PRNG with respect to an application does not depend on the
degree of parallelization.

Obviously, parametrization or random seeding as dis-
cussed above prevent a simulation from playing fair. Leap-
frog and block splitting, on the other hand, do allow one to
use the same PRNs within the same context independently of
the number of parallel streams.

Consider the site percolation problem. A site in a lattice of
size N is occupied with some probability, and the occupancy
is determined by a PRN. M random configurations are gen-
erated. A naive parallel simulation on p processes could split
a base sequence into p leapfrog streams and having each
process generate �M / p lattice configurations, independently
of the other processes. Obviously, this parallel simulation is
not equivalent to its sequential version that consumes PRNs
from the base sequence to generate one lattice configuration
after another. The effective shape of the resulting lattice con-
figurations depends on the number of processes. This parallel
algorithm does not play fair.

We can turn the site percolation simulation into a fair
playing algorithm by leapfrogging on the level of lattice con-
figurations. Here each process consumes distinct contiguous
blocks of PRNs from the sequence �r�, and the workload is
spread over p processors in such a way, that each process
analyzes each pth lattice. If we number the processes by their
rank i from 0 to p−1 and the lattices from 0 to M −1, each
process starts with a lattice whose number equals its own
rank. That means process i has to skip iN PRNs before the
first lattice configuration is generated. Thereafter each pro-
cess can skip p−1 lattices, i.e., �p−1�N PRNs and continue
with the next lattice.

ri

t

t

t

i

1, i

i

0,

2,

FIG. 1. Parallelization by block splitting.
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FIG. 2. Parallelization by leapfrogging.
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Organizing simulation algorithms such that they play fair
is not always as easy as in the above example, but with a
little effort one can achieve fair play in more complicated
situations, too. This may require the combination of block
splitting and the leapfrog method, or iterated leapfrogging.
Sometimes it is also necessary to use more than one stream
of PRNs per process, e.g., in the Swendsen Wang cluster
algorithm one may use one PRNG to construct the bond
percolation clusters and another PRNG to decide to flip the
clusters.

C. Parallelization of LFSR sequences

As a matter of fact, LFSR sequences do support leapfrog
and block splitting very well. Block splitting means basically
jumping ahead in a PRN sequence. In the case of LFSR
sequences this can be done quite efficiently. Note, that by
introducing a companion matrix A the linear recurrence �3�
can be written as a vector matrix product �28�.

�9�

From this formula it follows immediately that the M-fold
successive iteration of Eq. �3� may be written as


ri−�n−1�

]

ri−1

ri

� = AM
ri−M−�n−1�

]

ri−M−1

ri−M

� mod m . �10�

Matrix exponentiation can be accomplished in O�n3 ln M�
steps via binary exponentiation �also known as exponentia-
tion by squaring�.

Implementing leapfrogging efficiently is less straightfor-
ward. Calculating tj,i=rpi+j via


rpi+j−�n−1�

]

rpi+j−1

rpi+j

� = Ap
rp�i−1�+j−�n−1�

]

rp�i−1�+j−1

rp�i−1�+j

� mod m �11�

is no option, because Ap is usually a dense matrix, in which
case calculating a new element from the leapfrog sequence
requires O�n2� operations instead of O�n� operations in the
base sequence.

The following theorem assures that the leapfrog subse-
quences of LFSR sequences are again LFSR sequences �11�.
This will provide us with a very efficient way to generate
leapfrog sequences.

Theorem 5. Let �r� be a LFSR sequence based on a primi-
tive polynomial of degree n with period mn−1 �pseudonoise
sequence� over Fm, and let �t� be the decimated sequence
with lag p�0 and offset j, e.g.,

tj,i = rpi+j . �12�

Then �tj� is a LFSR sequence based on a primitive polyno-
mial of degree n, too, if and only if p and mn−1 are coprime,
e.g., greatest common divisor �gcd��mn−1, p�=1. In addi-
tion, �r� and �tj� are not just cyclic shifts of each other, ex-
cept when

p = mh �13�

for some 0�h�n. If gcd�mn−1, p��1 the sequence �tj� is
still a LFSR sequence, but not a pseudonoise sequence.

It is not hard to find prime numbers m such that mn−1 has
very few �and large� prime factors. For such numbers, the
leapfrog method yields pseudonoise sequences for any rea-
sonable number of parallel streams �see also Sec. III D and
the Appendix�.

While Theorem 5 ensures that leapfrog sequences are not
just cyclic shifts of the base sequence �unless Eq. �13� holds�,
the leapfrog sequences are cyclic shifts of each other. This is
true for general sequences, not just LFSR sequences. Con-
sider an arbitrary sequence �r� with period T. If gcd�T , p�
=1, all leapfrog sequences �t1�, �t2� , . . . , �tp� are cyclic shifts
of each other, i.e., for every pair of leapfrog sequences �tj1

�
and �tj2

� of a common base sequence �r� with period T there
is a constant s, such that tj1,i= tj2,i+s for all i, and s is at least
�T / p�. Furthermore, if gcd�T , p�=d�1, the period of each
leapfrog sequence equals T /d and there are d classes of leap-
frog sequences. Within a class of leapfrog sequences there
are p /d sequences, each sequence is just a cyclic shift of
another and the size of the shift is at least �T / p�.

Theorem 5 tells us that all leapfrog sequences of a LFSR
sequence of degree n can be generated by another LFSR of
degree n or less. The following theorem ��11�, Theorem
6.6.1� gives us a recipe to calculate the coefficients
�b1 ,b2 , . . . ,bn� of the corresponding leapfrog feedback poly-
nomial.

Theorem 6. Let �t� be a �periodic� LFSR sequence over
the field Fm and f�x� its characteristic polynomial of degree
n. Then the coefficients �b1 ,b2 , . . . ,bn� of f�x� can be com-
puted from 2n successive elements of �t� by solving the lin-
ear system


ti+n

ti+n+1

]

ti+2n−1

� =
ti+n−1 . . . ti+1 ti

ti+n . . . ti+2 ti+1

] � ] ]

ti+2n−2 . . . ti+n ti+n−1

�
b1

b2

]

bn

� �14�

over Fm.
Starting from the base sequence we determine 2n values

of the sequence �t� by applying the leapfrog rule. Then we
solve Eq. �14� by Gaussian elimination to get the character-
istic polynomial for a new LFSR generator that yields the
elements of the leapfrog sequence directly with each call. If
the matrix in Eq. �14� is singular, the linear system has more
than one solution, and it is sufficient to pick one of them. In
this case it is always possible to generate the leapfrog se-
quence by a LFSR of degree less than the degree of the
original sequence.
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D. Choice of modulus

LFSR sequences over F2 with sparse feedback polynomi-
als are popular sources of PRNs �5,29,30� and generators of
this type can be found in various software libraries. This is
due to the fact that multiplication in F2 is trivial, addition
reduces to exclusive-OR and the mod operation comes for
free. As a result, generators that operate in F2 are extremely
fast. Unfortunately, these generators suffer from serious sta-
tistical defects �30–33� that can be blamed quite generally on
the small size of the underlying field �34� �see also Sec.
VI A�. In parallel applications we have the additional draw-
back, that, if the leapfrog method is applied to a LFSR se-
quence with sparse characteristic polynomial, the new se-
quence will have a dense polynomial. The computational
complexity of generating values of the LFSR sequence
grows from O�1� to O�n�. Remember that for generators in
F2, n is typically of order 1000 or even larger to get a long
period 2n−1.

The theorems and parallelization techniques we have pre-
sented so far do apply to LFSR sequences over any finite
field Fm. Therefore we are free to choose the prime modulus
m. In order to get maximum entropy on the macrostate level
�35� m should be as large as possible. A good choice is to set
m to a value that is of the order of the largest representable
integer of the computer. If the computer deals with e-bit
registers, we may write the modulus as m=2e−k, with k
reasonably small. In fact if k�k+2��m modular reduction
can be done reasonably fast by a few bit-shifts, additions,
and multiplications �see Sec. V A�. Furthermore a large
modulus allows us to restrict the degree of the LFSR to
rather small values, e.g., n�4, while the PRNG has a large
period and good statistical properties.

In accordance with Theorem 5 a leapfrog sequence of a
pseudonoise sequence is a pseudonoise sequence, too, if and
only if its period mn−1 and the lag p are coprime. For that
reason mn−1 should have a small number of prime factors
�36�. It can be shown that mn−1 has at least three prime
factors and if the number of prime factors does not exceed
three, then m is necessarily a Sophie-Germain prime and n a
prime larger than two �see the Appendix for details�.

To sum up, the modulus m of a LFSR sequence should be
a Sophie-Germain prime, such that mn−1 has no more than
three prime factors and such that m=2e−k and k�k+2��m
for some integers e and k.

IV. DELINEARIZATION

LFSR sequences over prime fields with a large prime
modulus seem to be ideally suited as PRNGs, especially in
parallel environments. They have, however, a well known
weakness. When used to sample coordinates in
d-dimensional space, pseudonoise sequences cover every
point for d�n, and every point except �0,0,…,0� for d=n.
For d�n the set of positions generated is obviously sparse,
and the linearity of the production rule �3� leads to the con-
centration of the sampling points on n-dimensional hyper-
planes �37,38� �see also the top of Fig. 3�. This phenomenon,
first noticed by Marsaglia in 1968 �4�, motivates one of the
well known tests for PRNGs, the so-called spectral test �5�.

The spectral test checks the behavior of a generator when its
outputs are used to form d tuples. LFSR sequences can fail
the spectral test in dimensions larger than the register size n.
Closely related to this mechanism are the observed correla-
tions in other empirical tests such as the birthday spacings
test and the collision test �39,40�. Nonlinear generators do
quite well in all these tests, but compared to LFSR sequences
they have much less nice and provable properties and they
are not suited for fair playing parallelization.

To get the best of both worlds we propose a delineariza-
tion that preserves all the nice properties of linear pseud-
onoise sequences:

Theorem 7. Let �q� be a pseudonoise sequence in Fm, and
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FIG. 3. Exponentiation of a generating element in a prime field
is an effective way to destroy the linear structures of LFSR se-
quences. Both pictures show the full period of the generator. Top:
ri=95ri−i mod 1999. Bottom: ri=1099qi mod 1999 with qi

=95qi−i mod 1999.
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let g be a generating element of the multiplicative group Fm
* .

Then the sequence �r� with

ri = 	gqi mod m if qi � 0

0 if qi = 0

 �15�

is a pseudonoise sequence, too.
The proof of this theorem is trivial: since g is a generator

of Fm
* , the map �15� is bijective. We call delinearized genera-

tors based on Theorem 7 YARN generators �yet another ran-
dom number�.

The linearity is completely destroyed by the map �15� �see
Fig. 3�. Let L�r��l� denote the linear complexity of the subse-
quence �r1 ,r2 , . . . ,rl�. This function is known as the linear
complexity profile of �r�. For a truly random sequence it
grows on average like l /2. Figure 4 shows the linear com-
plexity profile L�r��l� of a typical YARN sequence. It shows
the same growth rate as a truly random sequence up to the
point where more than 99% of the period has been consid-
ered. Sharing the linear complexity profile with a truly ran-
dom sequence, we may say that the YARN generator is as
nonlinear as it can get.

V. IMPLEMENTATION AND EFFICIENCY

LFSR sequences over prime fields larger than F2 have
been proposed as PRNGs in the literature �5,28,37�. An effi-
cient implementation of these recurrences requires some
care, however.

We assume that all integer arithmetic is done in w-bit
registers and m�2w−1. Under this condition addition modulo
m can be done without overflow problems. But multiplying
two �w−1�-bit integers modulo m is not straightforward be-
cause the intermediate product has 2�w−1� significant bits
and cannot be stored in a w-bit register. For the special case
ak��m Schrage �41� showed how to calculate akri−k mod m
without overflow. Based on this technique a portable imple-

mentation of LFSR sequences with coefficients ak��m is
presented in �10�. For parallel PRNGs this method does not
apply because the leapfrog method may yield coefficients
that violate this condition. Knuth ��5�, Sec. 3.2.1.1� proposed
a generalization of Schrage’s method for arbitrary positive
factors less than m, but this method requires up to twelve
multiplications and divisions and is therefore not very effi-
cient.

The only way to implement Eq. �3� without additional
measures to circumvent overflow problems is to restrict m to
m�2w/2. On machines with 32-bit registers, 16 random bits
per number is not enough for some applications. Fortunately
today’s C compilers provide fast 64-bit arithmetic even on
32-bit CPUs and genuine 64-bit CPUs become more and
more common. This allows us to increase m to 32.

A. Efficient modular reduction

Since the modulo operation in Eq. �3� is usually slower
than other integer operations such as addition, multiplication,
boolean operations, or shifting, it has a significant impact on
the total performance of PRNGs based on LFSR sequences.
If the modulus is a Mersenne prime m=2e−1, however, the
modulo operation can be done using only a few additions,
boolean operations, and shift operations �42�.

A summand s=akri−k in Eq. �3� will never exceed �m
−1�2= �2e−2�2 and for each positive integer s� �0, �2e−1�2�
there is a unique decomposition of s into

s = r2e + q with 0 � q � 2e. �16�

From this decomposition we conclude

s − r2e = q ,

s − r�2e − 1� = q + r ,

s mod�2e − 1� = q + r mod�2e − 1� ,

and r and q are bounded from above by

q � 2e and r � ��2e − 2�2/2e� � 2e − 2,

respectively, and therefore

q + r � 2e + 2e − 2 = 2m .

So if m=2e−1 and s� �m−1�2, x=s mod m can be calculated
solely by shift operations, boolean operations, and addition,
viz.,

x = �s mod 2e� + �s/2e� . �17�

If Eq. �17� yields a value x�m we simply subtract m.
From a computational point of view, Mersenne prime

moduli are optimal and we propose to choose the modulus
m=231−1. This is the largest positive integer that can be
represented by a signed 32-bit integer variable, and it is also
a Mersenne prime. On the other hand, our theoretical consid-
erations favor Sophie-Germain prime moduli, for which Eq.
�17� does not apply directly. But one can generalize Eq. �17�
to moduli 2e−k �43�. Again we start from a decomposition of
s into
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FIG. 4. Linear complexity profile L�r��l� of a YARN sequence,
produced by the recurrence qi=173qi−1+219qi−2 mod 317 and ri

=151qi mod 317. The period of this sequence equals T=3172−1.
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s = r2e + q with 0 � q � 2e, �18�

and conclude

s − r2e = q ,

s − r�2e − k� = q + kr ,

s mod�2e − k� = q + kr mod�2e − k� .

The sum s�=q+kr exceeds the modulus at most by a factor
k+1, because by applying

q � 2e and r � ��2e − k − 1�2/2e� � 2e − k − 1,

we get the bound

q + kr � 2e + k�2e − k − 1� = �k + 1�m .

In addition, by the decomposition of s�=q+kr,

s� = r�2e + q� with 0 � q� � 2e,

it follows

s mod�2e − k� = s� mod�2e − k� = q� + kr� mod�2e − k� ,

and this time the bounds

q� � 2e and r� � ��k + 1��2e − k�/2e� � k + 1

and

q� + kr� � 2e + k�k + 1� = m + k�k + 2�

hold. Therefore if m=2e−k, s� �m−k�2 and k�k+2��m, x
=s mod m can be calculated solely by shift operations, bool-
ean operations, and addition, viz.,

s� = �s mod 2e� + k�s/2e� ,

x = �s� mod 2e� + k�s�/2e� . �19�

If Eq. �19� yields a value x�m, a single subtraction of m will
complete the modular reduction. To carry out Eq. �19�, twice
as many operations as for Eq. �17� are needed, but Eq. �19�
applies for all moduli m=2e−k with k�k+2��m. Note that
on systems with big enough word size �such as 64-bit archi-
tectures�, just doing the mod operation might well be faster
than using Eq. �19�.

B. Fast delinearization

YARN generators hide linear structures of LFSR se-
quences �q� by raising a generating element g to the power
gqi mod m. This can be done efficiently by binary exponen-
tiation, which takes O�log m� steps. But considering LFSR
sequences with only a few feedback taps �n�6� and m
�231 even fast exponentiation is significantly more expen-
sive than a single iteration of Eq. �3�. Therefore we propose
to implement exponentiation by table lookup. If m is a
2e�-bit number we apply the decomposition

qi = qi,12e� + qi,0

with

qi,1 = �qi/2
e��, qi,0 = qi mod 2e�, �20�

and use the identity

ri = gqi mod m = �g2e��qi,1gqi,0 mod m �21�

to calculate gqi mod m by two table lookups and one multi-

plication modulo m. If m�231 the tables for �g2e�
�qi,1 mod m

and gqi,0 mod m have 216 and 215 entries, respectively. These
384 kbytes of data easily fit into the cache of modern CPUs.

C. TRNG

LFSR sequences and their nonlinear counterparts have
been implemented in the TRNG software package, a portable
and highly optimized library of parallelizable PRNGs. Paral-
lelization by block splitting as well as by leapfrogging are
supported by all generators. TRNG is publicly available for
download �44�. Its design is based on a proposal for the next
revision of the ISO C++ standard �48�. TRNG uses 64-bit
arithmetic, fast modular reduction �17� and �19�, and expo-
nentiation by table lookup �21� to implement PRNGs based
on LFSR sequences over prime fields, with Mersenne or
Sophie-Germain prime modulus. Table I describes the gen-
erators of the software package.

Table II shows some benchmark results. Apparently the
performance of both types of PRNGs competes well with
popular PRNGs such as the Mersenne Twister or RANLUX.
Absolute as well as relative timings in Table II depend on
compiler and CPU architecture, but the table gives a rough
performance measure of our PRNGs.

VI. QUALITY

It is not possible to prove that a given PRNG will work
well in any simulation, but one can subject a PRNG to a
battery of tests that mimic typical applications. One distin-
guishes empirical and theoretical test procedures. Empirical
tests take a finite sequence of PRNs and compute certain
statistics to judge the generator as “random” or not. While
empirical tests focus only on the statistical properties of a
finite stream of PRNs and ignore all the details of the under-
lying PRNG algorithm, theoretical tests analyze the PRNG
algorithm itself by number-theoretic methods and establish

TABLE I. Generators of the TRNG library. All PRNGs denoted
by trng�mrg n�s� are pseudonoise sequences over Fm with n feed-
back terms, trng�yarn n�s� denotes its delinearized counterpart.
The prime modulus 231−1 is a Mersenne prime, whereas all other
moduli are Sophie-Germain primes.

Name m Period

trng�mrg2, trng�yarn2 231−1 �262

trng�mrg3, trng�yarn3 231−1 �293

trng�mrg3s, trng�yarn3s 231−21 069 �293

trng�mrg4, trng�yarn4 231−1 �2124

trng�mrg5, trng�yarn5 231−1 �2155

trng�yarn5s, trng�yarn5s 231−22 641 �2155
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a priori characteristics of the PRN sequence. These a priori
characteristics may be used to choose good parameter sets
for certain classes of PRNGs. The parameters of the LFSR
sequences used in TRNG, for example, were found by exten-
sive computer search �38� to give good results in the spectral
test �5�.

In this section we apply statistical tests to the generators
shown in Table I to investigate their statistical properties and
those of its leapfrog substreams. The test procedures are mo-
tivated by problems that occur frequently in physics, and that
are known as sensitive tests for PRNGs, namely, the cluster
Monte Carlo simulation of the two-dimensional Ising model
and random walks. Furthermore we analyze the effect of the
exponentiation step of the YARN generator in the birthday
spacings test. Results of additional empirical tests are pre-
sented in the documentation of the software library trng �44�.

A. Cluster Monte Carlo simulations

In �33� it is reported that some “high quality” generators
produce systematically wrong results in a simulation of the
two-dimensional Ising model at a critical temperature of the
infinite system by the Wolff cluster flipping algorithm �49�.
Deviations are due to the bad mixing properties of the gen-
erators �low macrostate entropy� �35�. An infamous example
for such a bad PRNG is the r250 generator �29�. It combines

e LFSR sequences over F2 to produce a stream of e-bit inte-
gers via

ri = ri−103 � ri−250, �22�

where � denotes the bitwise exclusive-OR operation �addi-
tion in F2�.

Figure 5 shows the results of cluster Monte Carlo simu-
lations of the Ising model on a 16�16 square lattice with
cyclic boundary conditions for the generator r250 and its
leapfrog substreams. Each simulation was done ten times at
the critical temperature applying the Wolff cluster algorithm.
The mean of the internal energy EMC, the specific heat cMC,
and the empirical standard deviation of both quantities have
been measured. The gray scale in Fig. 5 codes the deviation
from the exact values �50�. Black bars indicate deviations
larger than four standard deviations from the exact values.
The original r250 sequence and its leapfrog sequences yield
bad results if the number of processes is a power of two.
Since the statistical error decreases as the number of Monte
Carlo updates increases, these systematic deviations become
more and more significant and a PRNG with bad statistical
properties will reveal its defects. Figure 5 visualizes the in-
verse relation between quantity and quality of streams of
PRNs mentioned in the Introduction.

The apparent dependency of the quality on the leapfrog
parameter p is easily understood: If p is a power of two, the
leapfrog sequence is just a shifted version of the original
sequence �15,30�. On the other hand, if p is not a power of
two, the leapfrog sequence corresponds to a LFSR sequence
with a denser characteristic polynomial. For p=3, e. g., the
recursion reads

ri = ri−103 � ri−152 � ri−201 � ri−250,

and for p=7,

ri = ri−103 � ri−124 � ri−145 � ri−166 � ri−187 � ri−208 � ri−229

� ri−250,

respectively. The quality of a LFSR generator usually in-
creases with the number of nonzero coefficients in its char-
acteristic polynomial �9,51,52�, a phenomenon that can be
easily explained theoretically �34�, and that also holds for
LFSR sequences over general prime fields �35�.

While LFSR sequences over F2 with sparse characteristic
polynomial are known to fail in cluster Monte Carlo simula-
tions, LFSR sequences over large prime fields with dense
characteristic polynomial perform very well in these tests.
This can be seen in the lower half of Fig. 5 for the
trng�mrg3s generator; other generators from Table I per-
form likewise.

B. Random walks

The simulation of the two-dimensional Ising model in the
previous section measured the quality within distinct sub-
streams. Potential interstream correlations are not taken into
account. In �53� some tests are proposed that are designed to
detect correlations between substreams. One of them is the
so-called SN test.

TABLE II. Performance of various PRNGs from the TRNG li-
brary version 4.0 �44� and the GNU Scientific Library �GSL� ver-
sion 1.8 �45�. The test program was compiled using the Intel C++
compiler version 9.1 with high optimization �option −03� and was
executed on a Pentium IV 3 GHz.

TRNG GSL

Generator PRNs per second Generator PRNs per second

trng�mrg2 48�106 mt19937a 41�106

trng�mrg3 43�106 r250b 85�106

trng�mrg3s 36�106 gfsr4c 77�106

trng�mrg4 38�106 ran2d 27�106

trng�mrg5 38�106 ranluxe 8�106

trng�mrg5s 23�106 ranlux389f 5�106

trng�yarn2 26�106

trng�yarn3 23�106

trng�yarn3s 16�106

trng�yarn4 20�106

trng�yarn5 22�106

trng�yarn5s 13�106

aMersenne twister �14�.
bShift-register sequence over F2, ri=ri−103 � ri−250 �29� �see also
Sec. VI A�.
cShift-register sequence over F2, ri=ri−471 � ri−1586 � ri−6988

� ri−9689 �30�.
dNumerical recipes generator ran2 �46�.
eRANLUX generator with default luxury level �47�.
fRANLUX generator with highest luxury level �47�.
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For the SN test N random walkers are considered. They
move simultaneously and independently on the one-
dimensional lattice, i.e., on the set of all integers. At each
time step t each walker moves one step to the left or to the
right with equal probability. For large times t the expected
number SN�t� of sites that have been visited by at least one
walker reaches the asymptotic form SN�t�� t	 with 	=1/2.
In the SN test the exponent 	 is measured and compared to
the asymptotic value 	=1/2.

Let p be the number of parallel streams or walkers. The
motion of each random walker is determined by a leapfrog
stream ti,j based on the generators from Table I. The expo-
nent 	 is determined for up to 16 simultaneous random walk-
ers as a function of time t. After about 1000 time steps the
exponent has converged and fluctuates around its mean
value.

Figure 6 shows some typical plots of the exponent 	
against time t for generator trng�yarn3. The exponent 	 was
determined by averaging over 108 random walks. Results for
the other generators in Table I look similar and are omitted
here. Figure 7 presents the asymptotic values of 	 as a func-
tion of the number of walkers for generator trng�mrg5. The
mean value of 	 averaged over the interval 1500� t�2500
is plotted and the error bars indicate the maximum and the
minimum value of 	 in 1500� t�2500. Almost all numeri-
cal results are in good agreement with the theoretical predic-
tion 	=1/2 and for other generators we get qualitatively the

same results. Therefore we conclude that there are no inter-
stream correlations detectable by the SN test.

C. Birthday spacings test

The birthday spacings test is an empirical test procedure
that was proposed by Marsaglia �5,54�. It is specifically de-
signed to detect the hyperplane structures of LFSR se-
quences �39�.

For the birthday spacings test N days 0�di�M are uni-
formly and randomly chosen in a year of M days. After sort-
ing these independent identically distributed random num-
bers into nondecreasing order b�1� ,b�2� , . . . ,b�N�, N spacings

s1 = b�2� − b�1�,

s2 = b�3� − b�2�,

]

sN = b�1� + M − b�N�

are defined. The birthday spacings test examines the distri-
bution of these spacings by sorting them into nondecreasing
order s�1� ,s�2� , . . . ,s�N� and counts the number R of equal
spacings. More precisely, R is the number of indices j such
that 1� j�N and s�j�=s�j+1�. The test statistics R is a random
number with distribution
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FIG. 5. Results of Monte Carlo simulations of
the two-dimensional Ising model at the critical
temperature using the Wolff cluster flipping algo-
rithm and the generator r250 �top� and
trng�mrg3s �bottom�. Only each pth random
number of the sequence was used during the
simulations. See the text for details.
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pR�r� =
�N3/�4M��r

eN3/�4M�r!
+ O� 1

N
� . �23�

For N→
 and M→
 such that N3 / �4M�→�=const, pR�r�
converges to a Poisson distribution with mean �. After re-
peating the birthday spacings test several times one can ap-
ply a chi-square test to compare the empirical distribution of
R to the correct distribution �23�. If the p value of the chi-
square test is very close to one or zero, the birthday spacings
test has to be considered failed �5�.

In order to make the birthday spacings test sensitive to the
hyperplane structure of linear sequences, the birthdays are
arranged in a d-dimensional cube of length l, i.e., M = ld.
Each day bi is determined by a d tuple of consecutive PRNs
�rdi ,rdi+1 , . . . ,rdi+d−1�,

bi = �
j=0

d−1 � lrdi+j

m �lj . �24�

This bijective mapping transforms points in a d-dimensional
space �0,1 , . . . , l−1�d to the linear space �0,1 , . . . ,M −1� and
points on regular hyperplanes are transformed into regular
spacings between points in �0,1 , . . . ,M −1�.

To demonstrate the failure of LFSR sequences in the
birthday spacings test we applied the test to the LFSR se-
quence

ri = 17 384ri−1 + 12 391ri−2 mod 65 521, �25�

and its YARN counterpart

ri = 	20 009qi mod 65 521 if qi � 0

0 if qi = 0,

 �26�

with

qi = 17 384qi−1 + 12 391qi−2 mod 65 521,

with the test parameters �=N3 / �4M��1 and d=6. Beyond a
certain value of M the LFSR sequence starts to fail the birth-
day spacings test due to its hyperplane structure �see Fig 8�.
The hyperplane structure of LFSR sequences give rise to
birthday spacings that are much more regular than randomly
chosen birthdays. As a consequence, we observe a value R
that is too large �see the top of Fig. 8�.

The nonlinear transformation �15� in the YARN sequences
destroys the hyperplane structure. In fact, even those YARN
sequences whose underlying linear part fails the birthday
spacings test, passes the same test with flying colors �Fig. 8�.
YARN generators start to fail the birthday spacings test only

0 500 1000 1500 2000 2500
0.496

0.497

0.498

0.499

0.5

0.501

0.502

0.503

0.504

t

γ t

2 walkers
4 walkers
8 walkers
16 walkers
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FIG. 7. Results of the SN test for generator
trng�mrg5; corresponding results for other gen-
erators in Table I look similar. See the text for
details.
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for trivial reasons, i.e., when M gets close to the period of
the generator. For the experiment shown in Fig. 8 we aver-
aged over 5000 realizations of the M birthdays, and each
birthday was determined by d=6 random numbers. Then we
expect that the YARN generator starts to fail if M6
�5000�65 5212−1, i.e., M�217.

Of course the period of the PRNGs �25� and �26� is arti-
ficially small and the birthday spacings test was carried out
with these particular PRNGs to make the effect of hyper-
plane structures and its elimination by delinearization as ex-
plicit as possible. “Industrially sized” LFSR and YARN gen-
erators like those in Table I share the same structural
features, however. So the results for PRNGs �25� and �26�
can be assumed to present generic results for LFSR and
YARN sequences, respectively.

VII. CONCLUSIONS

We have reviewed the problem of generating pseudoran-
dom numbers in parallel environments. Theoretical and prac-

tical considerations suggest to focus on linear recurrences in
prime number fields, also known as LFSR sequences. These
sequences can be efficiently parallelized by block splitting
and leapfrogging, and both methods enable Monte Carlo
simulations to play fair, i.e., to yield results that are indepen-
dent of the degree of parallelization. We also discussed the-
oretical and practical criteria for the choice of parameters in
LFSR sequences. We then introduced YARN sequences,
which are derived from LFSR sequences by a bijective non-
linear mapping. A YARN sequence inherits the pseudonoise
properties from its underlying LFSR sequence, but its linear
complexity is that of a true random sequence. YARN se-
quences share all the advantages of LFSR sequences, but
they pass all tests that LFSR sequences tend to fail due to
their low linear complexity.

All our results have been incorporated into TRNG, a pub-
licly available software library of portable, parallelizable
pseudorandom number generators. TRNG complies with the
proposal for the next revision of the ISO C++ standard �48�.
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APPENDIX: SOPHIE-GERMAIN PRIME MODULI

The maximal period of a LFSR sequence �3� over the
prime field Fm is given by mn−1. We are looking for primes
m such that mn−1 has for a fixed n a small number of prime
factors.

For m�2 the factor m−1 is even and the smallest pos-
sible number of prime factors of mn−1 is three.

mn − 1 = 2
m − 1

2
�1 + m + m2 + ¯ + mm−1� . �A1�

If �m−1� /2 is also prime, m is called a Sophie-Germain
prime or safe prime. For m=2 there exist values for n such
that 2n−1 is also prime. Primes of form 2n−1 are called
Mersenne primes, e.g., 22−1 and 286 243−1 are prime.

If n is composite and m�2 the period T is a product of at
least four prime factors.

mkl − 1 = �mk − 1���mk�l−1 + �mk�l−2 + ¯ + 1�

= �m − 1��mk−1 + mk−2 + ¯ + 1�

���mk�l−1 + �mk�l−2 + ¯ + 1� . �A2�

Actually, the number of prime factors for composite n is
even larger. The factorization of mn−1 is related to the fac-
torization of the polynomial

fn�x� = xn − 1 �A3�

over Z. This polynomial can be factored into cyclotomic
polynomials �k�x� �55�,

fn�x� = xn − 1 = �
d�n

�d�x� . �A4�

The coefficients of the cyclotomic polynomials are all in Z;
so the number of prime factors of the factorization of mn

−1 is bounded from below by the number of cyclotomic
polynomials in the factorization of xn−1. This number equals
the number of natural numbers that divide n. If n is prime
then fn�x� is just the product �1�x��n�x�.

If m is a prime larger than two, from �1�x�=x−1 it fol-
lows that mn−1 can be factorized into at least three factors,
namely,

mn − 1 = 2
m − 1

2 �
d�1;d�n

�d�m� . �A5�

The period of a maximal period LFSR sequence with linear
complexity n over Fm is a product of exactly three factors, if
and only if m is a Sophie-Germain prime, n is prime, and
�n�m� is prime also. Note, �2�m�=m+1 is never prime, if m
is an odd prime. Let us investigate some special cases in
more detail.

Case n=2. The period m2−1 is a product of 23�3 and at
least two other factors. Using the sieve of Eratosthenes
modulo 12 it can be shown, that each large enough prime m
can be written as m=12k+c, where k and c are integers such
that gcd�12,c�=1. Factoring the period m2−1= �12k+c�2−1
we find

�12k + 1�2 − 1 = 23 � 3k�6k + 1�

�12k + 5�2 − 1 = 23 � 3�2k + 1��3k + 1�
�A6�

�12k + 7�2 − 1 = 23 � 3�3k + 2��2k + 1�

�12k + 11�2 − 1 = 23 � 3�k + 1��6k + 5� .

Case n=4. The period m4−1 is a product of 24�3�5
and at least three other factors. Using the sieve of Eras-
tosthenes modulo 60 it can be shown, that each large enough
prime m can be written as m=60k+c, where k and c are
integers such that gcd�60,c�=1. Factoring the period m4−1
= �60k+c�2−1 we find

TABLE III. A collection of Sophie-Germain primes m for which
mn−1 has a minimal number of prime factors.

n m

1 231−525

231−69

263−5781

263−4569

2 231−37 485

231−2085

263−927 861

263−156 981

3 231−43 725

231−21 069

263−275 025

263−21 129

4 231−305 829

231−119 565

263−3 228 621

263−156 981

5 231−46 365

231−22 641

263−594 981

263−19 581

6 231−4 398 621

231−1 120 941

263−122 358 381

263−29 342 085

7 231−50 949

231−6489

263−92 181

263−52 425
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�60k + 1�4 − 1 = 24 � 3 � 5k�30k + 1��1800k2 + 60k + 1�

�60k + 7�4 − 1 = 24 � 3 � 5�10k + 1��15k + 2�

��360k2 + 84k + 5�
�A7�

�60k + 11�4 − 1 = 24 � 3 � 5�5k + 1��6k + 1�

��1800k2 + 660k + 61�

�60k + 13�4 − 1 = 24 � 3 � 5�5k + 1��30k + 7�

��360k2 + 156k + 17�;

and so on ….
Case n=6. This case is similar to the n=2 and n=4 cases.

Applying the sieve of Erastosthenes modulo 84 it can be

shown that m6−1 is a product of 23�32�7 and at least four
other factors.

Cases n=3, n=5, n=7. Here n is prime, and therefore the
period mn−1 has at least three factors. The number of factors
of mn−1 will not exceed three, if m is a Sophie-Germain
prime and �n�m� is prime, too.

In Table III we present a collection of Sophie-Germain
primes m, for which mn−1 has a minimal number of prime
factors. For n prime an extended table can be found in �56�.
If n is prime, its factorization can be found by Eq. �A4�, and
if n=2 or n=4 by Eqs. �A6� and �A7�, respectively. All these
primes are good candidates for moduli of LFSR sequences as
PRNGs in parallel applications. Note that the knowledge of
the factorization of mn−1 is essential for an efficient test of
the primitivity of characteristic polynomials.
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