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Phase vortices from a Young’s three-pinhole interferometer
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An analysis is presented of the phase vortices generated in the far field by an arbitrary arrangement of three
monochromatic point sources of complex spherical waves. In contrast with the case of three interfering plane
waves, in which an infinitely extended vortex lattice is generated, the spherical sources generate a finite
number of phase vortices. Analytical expressions for the vortex core locations are developed and shown to have
a convenient representation in a discrete parameter space. Our far-field analysis may be mapped onto the case
of a coherently illuminated Young’s interferometer, in which the screen is punctured by three rather than two

pinholes.
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I. INTRODUCTION

In a seminal paper, Dirac [1] considered vortical screw-
type dislocations in the phase of complex wave fields, noting
the one-dimensional nature of the associated vortex cores
(nodal lines) in three dimensions (3D). Such phase vortices
exist in a variety of linear and nonlinear physical systems
that may be described via complex fields, including the an-
gular momentum eigenstates of the hydrogen atom [2], the
Meissner state of type-II superconductors [3,4], vortex states
of superfluids [5,6] and Bose-Einstein condensates (BECs)
[7], optical vortex solitons [8], propagating electron wave
functions diffracting through crystalline slabs [9], Gaussian
random wave fields [10], and optical speckle fields [11].

In continuous complex scalar fields, to which the consid-
erations of the present paper are restricted, vortical behavior
is manifest as screw-type dislocations in the field’s multival-
ued surfaces of constant phase [ 12—14]. More precisely, con-
sider a stationary-state, complex spatial wave function or
order-parameter field W(r)=A(r)explix(r)]. Here, A(r) is
the non-negative real amplitude, x(r) is the phase, and r
=(x,y,z) is a position vector in 3D. Note that harmonic time
dependence on angular frequency w and time ¢, via the usual
multiplicative factor of exp(—iwr), is suppressed throughout.
To determine whether a phase vortex exists at a point p in a
plane Il over which W(r) is defined, a line integral of the
phase gradient is evaluated along a smooth infinitesimally
small closed path I' that encircles p. This path is assumed to
have a winding number of unity with respect to p and to be
such that the modulus of W(r) is strictly positive at each
point on I'. One may then write the following expression for
the “circulation” of the phase over I (see, e.g., Nye [15]):

350?)(:% V x-tds=2mmn. (1)
r r

Here, t is a unit tangent vector to I, ds is an infinitesimal line
element along I', and » is an integer corresponding to the
number of phase windings about p. Any nonzero n indicates
the presence of a vortex core threading the path I', with the
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nonzero value for n being referred to as its topological
charge. The sign of this charge distinguishes between a vor-
tex (+) and an antivortex (-).

In an optical setting, a common way to generate such
phase vortices is to pass coherent laser light or soft x rays
through a spiral phase plate or forked transmission diffrac-
tion grating [16-21]. Kim er al. [22] generated optical vorti-
ces with a curved glass plate as an alternative to the spiral
phase plate. Other means for creating optical phase vortices
in coherent light include the use of spatial light modulators
[23], liquid crystal panels patterned with microdots [24], the
use of aberrated lenses to create vortices in a distorted focal
volume [25], and diffraction from random phase screens
[10].

Alternatively, one can forego the use of diffractive or re-
fractive optical elements, seeking instead to create phase vor-
tices by the superposition of a small number of nonvortical
fields. For example, Nicholls and Nye [26] showed that a
lattice of vortices may be generated by interfering three
plane waves. Later, Masajada and Dubik [27] showed ana-
lytically and experimentally that this is a minimum require-
ment, reformulating the analysis in terms of phasors. The
interference of higher numbers of plane waves has also been
investigated in a study of the resulting 3D structure of nodal
lines [28]. Furthermore, by directly interfering vortical
beams, a looped and knotted nodal line network may be cre-
ated [29].

Here, we generalize the idea of vortex formation from
three plane waves by considering the creation of phase vor-
tices from the superposition of three outgoing spherical
waves, generated by three distinct monochromatic equal-
energy point sources.

We see that the resulting system of nodal lines (vortex
cores) exhibits a rich geometry, by developing approximate
analytical expressions for the far-field behavior of this nodal-
line network. The 3D space, into which the sources radiate,
is foliated using a family of observation planes that are par-
allel to the plane containing the three point sources. When
one observes the wave field over any such foliating plane, a
2D pattern of point vortices may be seen, the cores of which
coincide with the points at which a nodal line punctures the
plane.

Interestingly, the problem of three interfering spherical
waves may be mapped onto a Young-type experiment, in
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FIG. 1. (Color online) In this schematic of a Young’s three-
pinhole interferometer, incident illumination (a) impinges upon a
punctured screen (b), producing three divergent waves (c), which
interfere, giving rise to a network of nodal lines (d). These are
observed as phase vortices over a plane (e).

which a black screen with three small pinholes is coherently
illuminated by a propagating complex scalar field (see Fig.
1). Note that this identification is only possible when one is
both sufficiently far from the screen and sufficiently close to
the optic axis, in which case the radiation transmitted by
each of the pinholes is approximately spherical.

In two recent experiments, vortex generation has been
demonstrated in systems related to the one we describe. Lee
et al. [30] illuminated three (and more) “microspheres” with
a laser and observed vortices in the resulting interference
pattern. More recently, Scherer et al. [31] have observed vor-
tices resulting from the merging of three nonrotating BEC
clouds. Disregarding nonlinear effects and reconsidering the
three-spatial-dimensional system described here in 2+1 di-
mensions by replacement of the z dimension with time ¢, the
BEC vortex generation may be understood as arising from
the linear interference of propagating, expanding waves.

We close this Introduction with a brief outline of the re-
mainder of the paper: We begin by reviewing the manner in
which the superposition of three plane waves may be used to
generate an infinite lattice of phase vortices. The generaliza-
tion of this idea to the superposition of three outgoing spheri-
cal waves is then given. We describe the application of a
phasor approach to the spherical-wave arrangement, apply-
ing this in the far-field region asymptotically far from the
sources. Approximate analytical expressions are derived for
the vortex locations. A representation in terms of a certain
parameter space arises, allowing estimates of the number of
vortices and description of a natural coordinate system for
the vortices at the intersections of a certain family of hyper-
bolas. A specific case of collinear sources is explored in de-
tail. We then show how the theory, which has been derived
for spherical point sources, may be mapped onto the case of
a Young’s interferometer in which the illuminated screen
contains three rather than two pinholes. Finally, the 3D nodal
line structure is examined for both the spherical point source
and the pinhole interferometer cases.

II. PHASE VORTICES FROM THE INTERFERENCE
OF THREE PLANE WAVES

Consider the following superposition of three planar spa-
tial wave functions:

3
W(r) =2 A;explilk;- T+ ¢)], 2
j=1

where the non-negative real constants A; denote the ampli-
tude of the jth wave, k; are wave vectors corresponding to
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FIG. 2. (Color online) Interference of three plane waves giving
rise to an infinite, regular vortex lattice [see Eq. (2)]. Here, the wave
vectors are oriented symmetrically with respect to the z axis, with
k,=(y3,-1,10), k,=(=\3,-1,10), and k;=(0,2,10). The real (a)
and imaginary (b) parts, amplitude (c), and phase (d) of the wave
function W(x,y,z=0) are shown. In (b), zero contours of the real
(dashed lines) and imaginary (solid lines) parts are overlaid. In (c)
is overlaid the vector field of the probability current density, which
is seen to rotate counterclockwise around vortices and clockwise
around antivortices. In (d), vortices are visible as the ends of branch
cuts indicated by dark to light (—7— ) steps. Values in (a)—(c) are
represented by linear levels from dark to light (minimum to
maximum).

the same wavelength N\y=27/[k;|, and ¢; are global phase
factors. Notwithstanding the fact that the constituent plane
waves do not have a vortical character, the above superposi-
tion may yield a regular lattice of phase vortices and antivor-
tices [26,27].

A numerical example of this phenomenon is given in Fig.
2, corresponding to the parameters A;=A,=A3z=1 and ¢,
=¢p,=3=0, with all fields being evaluated over the plane
z=0. This example illustrates the three interfering plane
waves giving rise to an infinitely extended lattice of straight,
parallel nodal lines (vortex cores). These nodal lines intersect
the plane z=0, to give the location of the point vortices that
are visible as screw dislocations in the phase map of Fig.
2(d). The locations of these point vortices coincide with both
(i) the intersections of the zero contours in Fig. 2(b) and (ii)
the points at which |W|=0 in the amplitude plot of Fig. 2(c).
Indeed, continuity of the wave function implies that the
probability density vanishes at each vortex core, since these
are branch points at which the phase ceases to be differen-
tiable. The topological charge or phase winding number n of
each of these point defects is seen to be equal to +1, as the
phase increases by +2 as one traverses a circuit that en-
closes a given vortex core. In this context, we note that
higher-charge vortices are not observed in the case of three
sources. To form a charge n nodal line in a field locally
obeying the Helmholtz equation, n(n+1)/2 complex condi-
tions must be specified [32]. A factor of 2, accounting for
separation of the real and imaginary parts, gives n(n+1) real
conditions which must be satisfied. Evidently, a minimum of
five point sources lying in a plane, requiring a total of seven
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FIG. 3. Coordinate system. The point sources ry, r,, and r3 lie in
the plane z=0. The position vector r is to a point with cylindrical-
polar coordinates (r, 6, zg).

coordinates for the specification of their position (up to irrel-
evant translations and rotations), is the minimum require-
ment to form n=2 charges.

III. PHASE VORTICES FROM THE INTERFERENCE
OF THREE SPHERICAL WAVES

Given that the superposition of three complex plane-wave
spatial wave functions may lead to phase vortices [26,27], it
is natural to enquire whether the superposition of three out-
going spherical waves may not also lead to phase vortices.
This latter case is investigated here.

A. Extending the plane-wave case to spherical waves

The complex spatial wave function W;(r), due to a point
source at position r; that is radiating outgoing spherical
waves in vacuo, is given by

A; A
W;(r) = —— expli(kr —r;| + ¢;)] = "~ explix),
e - r—r)
3)

where k=2m/\,. For all r #r;, such spherical waves obey
the free-space Helmholtz equation. This applies to mono-
chromatic complex scalar electromagnetic waves, to nonrel-
ativistic spinless particles in the form of the time-
independent free-space Schrodinger equation, and to
relativistic spinless particles in the form of the time-
independent free-space Klein-Gordon equation. As such, the
following discussions are applicable to all of these physical
systems. For example, experimental application involving a
high-energy transmission electron microscope might be en-
visaged using the paraxial form of the time-independent free-
space Klein-Gordon equation, which ignores the typically
small effects of electron spin in this setting [33].

Now, consider an assembly of three point sources, all of
which have the same wave number k. Without loss of gener-
ality, we may consider these sources to occupy the same
plane z=0, with source locations r;=(x;,y;,0), where j
=1,2,3. The resulting spatial wave function W(r) may thus
be written as

A
()= 2 explilkie — x| + )], )
J=1 J

where |r—r;]| E\/(x—xj)2+(y—yj)2+z2 is the distance from
the jth source to a given observation point r.
Referring to Fig. 3, we label both the jth source and its
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FIG. 4. Phasor diagram from which vortex solution conditions
are established [27]. Three phasors p;, p,, and ps—which, respec-
tively, correspond to the three terms on the right-hand side of Eq.
(4), at a given point r on a nodal line—form a closed triangle
corresponding to a resultant zero amplitude. Two angles y and 7
arise in the construction, as indicated. (a) In the case of arbitrary
amplitudes for p;, p,, and ps, the tip of p, is constrained to lie on
circle A of radius |p,|, with the tail of p; being constrained to lie on
circle B of radius |ps|. (b) For equal amplitudes |p;|=|p,|=|ps| an
equilateral triangle is formed. The dashed construction represents
another of the six equivalent alternatives formed by permutating the
phasor order.

distance from the coordinate origin by the same symbol r;.
The position vector r and its perpendicular component r |
have lengths r=|r| and r, =|r |, respectively.

To determine the locations of the vortices which result
from the superposition of the three spherical waves, we uti-
lize the fact that vortex cores lie at points of zero amplitude.
Given that the problem is restricted to two degrees of free-
dom, due to the complex wave-field representation, a geo-
metric phasor diagram can be constructed with one phasor
for each wave component in Eq. (4) (see Fig. 4). We follow
the phasor approach of Masajada and Dubik [27] (see also
[34]). At any point coinciding with a vortex core, the phasor
components must sum to zero when placed tip to tail. Note
that if the source amplitudes differ sufficiently, it is possible
that no closed triangle of phasors may be formed; i.e., circles
A and B in Fig. 4 cannot intersect if |p;| > |p,|+|p3|. In this
case, no vortices will be produced.

Consider a given point r in space, corresponding to the
special case of Eq. (4) where A;=A,=A;=1. Let p;, p,, and
p; denote the three complex terms that are summed on the
right-hand side of this equation. These three numbers are
represented as phasors in Fig. 4. Here, we set ¢;=0, which
implies no loss of generality, since the invariance of the
equations of motion under a shift in the origin of time im-
plies global phase factors to have no physical meaning. The
circle B’ represents the possible orientations of ps;, con-
strained by the tip of p,. The zero sum condition is easier to
construct if ps is notionally flipped to give circle B whose
center coincides with the tail of p;. The resulting vortex
solutions correspond to the phasors p, and p; meeting at the
intersections of the circles A and B. Note that there are two
such “closed-triangle” intersections and hence two apparent
solutions. In the case of equal amplitudes, where |p,|=|p,]
=|ps|, symmetry dictates that there are only two unique so-
lution angles. We consider the triangle in the first quadrant of
the complex plane, which is an arbitrary choice, as any of the
six equivalent constructions formed by permutating the pha-
sor order will lead to the same solution. Relaxing the equal-
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amplitude condition will require consideration of extra
solutions.

B. Vortices in the far-field regime

We evaluate Eq. (4) in the “far-field” regime—namely, in
the half-space 7>z, in which z; is sufficiently large that
|r—rj|~r—¥, r=|r|>r;. (35)
Here, we are making a paraxial approximation to the wave
function. This approximation is applied to the phase term in
the exponent of Eq. (4). In an alternative approach, one
might seek solutions of the paraxial wave equation in re-
stricting attention to the far field (see, e.g., [34]). The wave
function W depends linearly on the amplitude term A;/ |r
—r;|, so for large r the divisor varies much more slowly with
|r—rj| than the phase argument. Consequently, the stronger
approximation |r—r;|~r is made to this term (see, e.g.,
[35]). Thus, Eq. (4) becomes

3
W(r)= D, 1 exp{i{kj(r - u) + qu}} = 1 exp(ikr)
=8 r r

1 {{( 7T ) ]}
+—exp)i|klr———cos 0|+ ¢,

1 {{( r.73 ) }}
+—exp)i| klr——=cos(6-6) | +ds|(, (6)

where we have made use of the assumptions that A=A,
=As=1 and that the sources share a single wave number k.
This expression vanishes when

. rir
1 +exp| il —k—— cos 0+ ¢,
r

+exp[i<—krl—:3 cos(0— 03)+¢3>] =0. (7)

Geometrically, the above condition reduces to the addition
of three unit-length phasors in the complex plane, such that
they form an equilateral triangle when placed tip to tail [27].
This construction is shown in Fig. 4(b), with the arguments
of the two exponentials in Eq. (7) being denoted by y and 7,
respectively. These phase angles are uniquely defined to
within an integer multiple of 27, so that

2
y:—kM cos O+ ¢2=?77+2m77 (8a)
r
and
r.r3 4
n=—k— cos(0—03)+¢3=?+2n77, (8b)
r
where m and n are integers.

C. Vortex locations

Here, we show how the construction of the previous sub-
section can be used to determine the polar coordinates r | ,,,
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and 6,,, of a given point vortex in the plane z=gz, that is
specified by the integer indices (m,n) (cf. Fig. 3).
Dividing Eq. (8b) by Eq. (8a) gives

A - &

rycos(f—6;) 3 nrT s

7, cos 6 T2
?+2m77—¢2

_2Q2+3n)m-3¢y
T 2(1+3m)m=3¢,

)

We denote the denominator and numerator, on the right-hand
side, as

M(m) =2(1+3m)m—3¢, (10a)
and
N(n) =22+ 3n)m—3¢3, (10b)
respectively. Next, making the substitution
cos(f— 63)  cos 6 cos 65 +sin @sin b5
cos 0 cos 0
=cos 05 + tan 6 sin 64 (11)
gives
:—Z(cos 05 + tan @ sin ;) = ;/IVE:;) . (12)

Finally, isolating 6 and labeling it with an mn subscript, to
identify it with the (m,n)th vortex core, gives the desired
expression for the polar angle to the (m,n)th vortex core,

1 (QN(H)
sin 03 r3M(m)

Hmn=arctan[ —cos 65)] (13)
With a view to obtaining the radial coordinate r  ,,, of the

vortex core, take Eq. (8a) and write the denominator r in

terms of its components z, and r, (see Fig. 3). Hence,

rin

N+

1
-k cos 6,,,= EM(m). (14)

Squaring and then solving for r,, we obtain

2

2 2
= s 15
"L (3kr2 cos 6‘,,,,1)2 | (15)

M(m)

where an mn subscript has been added to r,. Applying the
identity

1

S — 16
1 +tan*@,, (16)

c0s%6,,, =

and making use of Eq. (13), we obtain our final expression
for the radial coordinate r,,, of the (m,n)th vortex core:
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£2
(3kry/M(m))?
1 <r2 N(n)

sin’6; r_3 M(m)

(17)

Fimn=

-1

2
—cos 63>

The positive and negative solutions correspond to two sepa-
rate vortices. Note that these coincide with an extra branch of
the arctan function in Eq. (13). Note, also, that Eq. (17) is
only valid for integers (m,n) that yield a real number for
7y (cf. Sec. T D).

The polar equations (13) and (17) specify the vortex core
locations for all allowed m and n parameter values, in the
far-field regime. Note that r ,,, is proportional to z,, as one
would expect in the far field. This corresponds to a 3D nodal-
line structure of asymptotically straight lines radiating from a
single point in the source plane. This may be contrasted with
the case of three superposed plane waves, where the nodal
lines are mutually parallel [26,27].

D. Parameter space

For real solutions, the argument of the square root in Eq.
(17) must be positive, imposing a condition on the allowable
(m,n) values for a given source arrangement. In what fol-
lows, we set ¢;=0, corresponding to all three point sources
radiating in phase with one another. The integers m and n
must therefore satisfy the inequality

2
[(1+3m)sin 65]* + ((2 + 3n)2 — (1 +3m)cos 03)

3

3kry sin 65 \?
<(&> ) (18)
2T

We claim that this describes the interior of an ellipse in the
Cartesian (m,n) plane for all noncollinear arrangements of
the three sources.

To prove the above claim, first note that the boundary
curve, of the open region defined by Eq. (18), is obtained by
replacing the inequality in this expression with an equality.
The resulting equation form is consistent with a general
conic section in the (m,n) plane: namely (see, e.g., [36]),

O(m,n) = am® + 2hmn + bn> + 2gm + 2fn+c=0, (19)
where a, h, b, g, f, and ¢ are real numbers given by

a=9r§,
h=—9r2r3 COS 03,
2
b=9r;,
a2
g =3r;—06r,r;cos 05,
f=6r§—3r2r3 COS 03,

3kryrs sin 6, )2 (20)

c= r% + 4r% —4ryrycos 65— (
2m

Introduce the invariants [36]
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FIG. 5. A parameter-space ellipse, in the (m,n) plane, sets an
upper limit on the number of vortices that are created by the inter-
fering radiation from three point sources. (a) The bounding ellipse
has center (my,ny), makes an angle ¢ to the positive m axis, and has
semiaxis lengths a’ and b’. (b) The enclosed (m,n) pairs lie on a
discrete square lattice of unit spacing. Each of these interior points
corresponds to two vortices.

a h g
A=|h b f|, (21a)
g f c
5= |2 " (21b)
“|hob|”
and
T=a+b. (21¢)

Substituting Egs. (20) into Egs. (21) and evaluating gives

27k 2
A=- (—(r2r3 sin 93)2> , (22a)
27T
8= (9r,ry sin 6;)?, (22b)
and
T= 9(r% + r%) (22¢)

In order for Eq. (19) to correspond to an ellipse, the discrimi-
nant conditions A #0, §>0, and A/7<0 must be satisfied.
These three conditions are met when (i) r,,r3# 0 and (ii)
05 # par, p € 7. This will always be true for noncollinear ar-
rangements of three distinct sources. Since the area of the
corresponding ellipse is finite, for three noncollinear sources,
each of which is separated by a finite distance, we have a
finite number of vortices labeled by the integer pairs (m,n)
obeying Eq. (18).

The parameter-space ellipse has center (mg,n,), is rotated
anticlockwise at an angle ¢, and has semiaxis lengths ¢’ and
b’ (Fig. 5). These ellipse parameters are given by well-
known expressions in terms of the coefficients in Eq. (20).
The center and rotation angle are given by [36]

bg—hfaf—hg)_( 1 2)
= —5’—— .

(mo:0) = (hz—ab’}ﬂ—ab 3

1 b-a 1 r% - r%
@ = — arccot = — arccot| ——— . (23)
2 2h 2 2ryr;3 cos 64

The semiaxis lengths a’ =s, and b’ =s_ are given by
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A
L= —, 24
==V |\ (24)

where A\, denotes the two solutions to the quadratic
A =7\ +6=0. (25)
Thus

9

2[r% + r% + \/(2r2r3 cos 65)% + (r% - r% 2, (26)

A, =

so that the semiaxis lengths are given by

kr,ry sin 6
e Mrmssingl )
T2V (2,15 cos 65)% + (r% - r%)2 + (r% + r§)|

For fixed k, r,, and r5 and variable 65, Egs. (23) and (27)
define a family of ellipses. A “bounding rectangle” may be
constructed as the envelope of this continuum of ellipses.
Any one ellipse in this family, corresponding to a particular
value of 65, touches each side of this bounding rectangle
exactly once. The bounding rectangle is centered at (m,n,)
and has dimensions of kr,/7 and kry/7 in the m and n
directions, respectively. [Note that these dimensions are
found by setting #;=7/2 in Eq. (27).] As 65 is varied from O
to r, while keeping k, r,, and r; fixed, the parameter-space
ellipse transforms from (i) a line at 45° to the m axis, iden-
tified with the positive-gradient diagonal to the bounding
rectangle, to (ii) a series of nondegenerate ellipses, each of
which touches each side of the bounding rectangle exactly
once, to (iii) a line at —45°—namely, the negative-gradient
diagonal to the bounding rectangle. Note that no vortices are
produced in the limit cases (i) and (iii) above, since the open
region bounded by a straight line is an empty set [cf. Eq.
(18)]. The change in shape of the ellipse with 65 is symmet-
ric about #3=1r [corresponding to case (iii)], so that the el-
lipse for 6;=m—¢ is coincident with that for 7+ ¢ for any
angle &.

Figures 6 and 7 present simulations with various source
geometries showing predicted vortex locations for the far-
field case. The corresponding parameter-space ellipses are
shown in Fig. 8. The fields of view of the intensity and phase
plots do not show the outermost vortex cores in most cases.
This is evident from a count of the lattice points enclosed by
the corresponding ellipse in Fig. 8. Only Figs. 7(c) and 7(d)
have all the generated vortices within the visible region. The
corresponding parameter-space ellipse, near —45° in Fig. 8,
encloses six lattice points—this corresponds to the 6 X2
=12 phase vortices in Figs. 7(c) and 7(d).

Note that, to aid visualization in all of the phase plots in
Figs. 6 and 7, a constant spherical background has been sub-
tracted. Indeed, far from the three point sources, one may
meaningfully write the wave function as a single expanding
“background” spherical wave, multiplied by an envelope
whose functional form depends on the particular local ar-
rangement of the sources. By subtracting the phase of this
spherical background from all of the displayed phase maps,
the structure of the envelope alone—including any vortical
structure—may be examined without the distraction of a
large number of concentric phase contours from the back-

PHYSICAL REVIEW E 75, 066613 (2007)

FIG. 6. (Color online) (a), (c) Amplitude |¥| and (b), (d) asso-
ciated phase y from Eq. (4) at zo=25\, with different source ar-
rangements, shown pictographically alongside the (a) and (c) labels.
Small circles overlaid on numerical simulations show the vortex
locations as approximated by Egs. (13) and (17). Values in (a) and
(c) are represented by linear levels from dark to light (minimum to
maximum). The phase ranges from —m (dark) to 7 (light). All
sources are in phase (i.e., ¢,=¢3=0), N\y=, and the source ar-
rangements are (a), (b) r,=r;=3\g, 63=0° and (c), (d) r,=r3=3\,
6;=60°. Note that a spherical background has been subtracted from
all phase maps, as described in the main text.

ground wave. Note also that this background spherical wave
corresponds to an effective source located at the geometric
centroid of the real sources, with amplitude A=A;+A,+A;.

Let us return consideration to Figs. 6(a) and 6(b), which
exhibits a degenerate case in which two of the point sources
are colocated, thereby reducing the system to two in-phase
spherical sources with one having twice the amplitude of the
other. As expected for only two sources, no vortices are gen-
erated. Rather, one has a series of Young-type fringes. In the
case of two equal-amplitude sources, in 3D, a series of nodal
planes or “domain walls” is generated, coinciding with the
amplitude minima. Domain walls separate regions of space
where the phase changes discontinuously [6]. Changing the
amplitude of the second source or adding a third source as in
Fig. 7(e), dissolves the nodal planes, allowing the phase to
change rapidly but smoothly between the regions. In Fig.
6(b), the phase is not left-right mirror symmetric, due to the
positioning of the geometric centroid for three sources being
to the right of center. Thus, there is a global tilt to the phase,
which is observed to cycle through two branch cuts. For this
example, the parameter-space ellipse (not shown) is the lim-
iting case of a line at 45°. The complementary limiting case
is Fig. 7(e) where the three sources are collinear; the ellipse
(not shown) is a line at —45° and again no vortices are gen-
erated. The phase here is mirror symmetric since (i) the ini-
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FIG. 7. (Color online) Phase y from Eq. (4) and vortex-core
locations approximated by Egs. (13) and (17), with variation in
source arrangement. The representation and parameters are as de-
scribed in Fig. 6. The scale bar in (c) applies to all images and
corresponds to zo=25\, except for (d) which corresponds to z,
=250\,. Small arrows in (b), (c) point to the exact vortex locations,
to indicate their deviation from the far-field predictions. Ay=7 and
source arrangements are (a) ry=rz=3\q, 6;=10°, (b) r,=r3=3\,
0;=90°, (c) ry=r3=3Ng, 63=175°, (d) ro=r3=3\;, 6;=175° z,
=250)\0, (e) r2=r3=3)\0, 03=1800, and (f) r2=3)\0, r3=1.5)\0, 03
=60°. A spherical background has been subtracted from all phase
maps (see main text).

tial field configuration is mirror symmetric and (ii) the wave-
field propagator is rotationally symmetric. In Fig. 7(a), one
of the sources has been moved just enough from coincidence
with another so that the corresponding ellipse just encom-
passes some lattice points and vortices are created. There are
four points clearly within the ellipse, giving rise to the vor-
tices seen in the panel. If the additional two points near the
boundary are just inside the ellipse, more vortices will be
present at large r, and these will lie at the other ends of the
branch-cut lines; otherwise, the branch-cut lines will extend
to infinity. Figure 7(b) shows the case for #3=90°, giving a
circle in parameter space. The number of vortices will there-
fore be close to the maximum for fixed values of r, and rs.

The far-field solution is usually considered valid for a
Fresnel number Np=a?/\yz< 1, where a is the largest
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FIG. 8. Parameter-space ellipses corresponding to Figs. 6 and 7.
Enclosed lattice points define vortex locations.

transverse length scale present in the system (see, e.g., [34]).
We take this to be the maximum pinhole-pinhole spacing.
The far-field condition corresponding to Fig. 6 is then
(BNg)?/Ngz< 1 or, say, z>100\,. The value of z, for nu-
merical simulations in Fig. 7 was deliberately chosen as 25\
to show up visual disagreements between the vortices in the
numerically determined phase map and their analytically de-
termined locations. Small arrows illustrate the true vortex
positions for some vortices which do not coincide with their
predicted far-field positions. The discrepancy between nu-
merical and analytical results is highlighted in Fig. 7(c), a
case arising from all parameter space lattice points lying
close to the ellipse boundary. In Fig. 7(d), the Fresnel num-
ber is smaller and the correspondence is improved because
the observation is being made further into the far field, where
nodal lines have asymptotically approached closer to the
straight lines predicted in Sec. III C. Note that, for any finite
z9, there will be some angle 65, close to 7, at which the
numerical and analytical prediction disagree by an arbitrarily
large amount. Predictions are more reliable for (m,n) lattice
points closer to the ellipse center. In contrast with the far-
field prediction that vortices may abruptly appear and disap-
pear with infinitesimal changes in source arrangement as lat-
tice points cross the ellipse boundary, we observe through
simulations at finite z, that the vortex location becomes
highly sensitive to the source arrangement, with vortices ar-
riving from and escaping transversely to an infinite r | dis-
tance. This point is further explored in Sec. III H.

E. Source phase variation

We now consider the effects of source phase variation on
the geometric parameter space description.

The functions M(m) and N(n) [Egs. (10)] contain the vor-
tex coordinate dependence on the source phase via Egs. (13)
and (17), where ¢; is the relative phase of the jth source and
¢;=0. These may be rewritten as

M(m) =271 +3(m— ¢,/27)] (28a)

and
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N(n) =272+ 3(n— ps/2m)], (28b)

to highlight the 27 phase periodicity.

We see that a 27 change in relative phases ¢, or ¢; may
be absorbed as an integer change in an associated parameter-
space coordinate m or n, respectively. By allowing the lattice
point coordinates to correspond to discrete real values,
spaced at intervals of 27, the coordinates specified by m and
n may then also absorb fractional parts of the relative phase.
The subtraction of a value from m or n therefore corresponds
geometrically to a translation of the (m,n) lattice points
along the associated axis, with a relative phase change of 27
effecting a translation of one lattice unit.

In summary, parameters defining the source configuration
or the wave-number map to the parameter space as different
ellipse constructions, whereas source phase variations corre-
spond to translations of the lattice itself.

F. Estimate of number of vortices

In contrast to the case of three interfering plane waves
reviewed in Sec. II, in which infinitely many nodal lines are
produced, the analysis of the preceding subsections implies
that only a finite number of vortices are produced by three
overlapping spherical waves, provided that there is a finite
spacing between the three corresponding point sources. Here,
we give a simple means to estimate the number of vortices
over a given plane in the far field, as a function of the ge-
ometry of the three point sources.

As mentioned earlier, the two-valued nature of Eq. (17)
implies that each (m,n) pair gives rise to a pair of vortices.
Because the m and n values have unit spacing [see Fig. 5(b)],
the number of vortices n, may be approximated by twice the
area mra'b’ of the ellipse. Thus

n,=2ma'b’ (29)
or
K , K*A
n, = ——|ryrysin 65| = —, (30)
2 T

where A is the area of a triangle whose vertices coincide
with the locations of the three point sources.

This is exactly the expression N=.4Q/\? found by Gabor
[37] and attributed by him as a restatement of an earlier
result of Max von Laue, for the degrees of freedom N—a
measure of the information carrying capacity—of a light
beam of area A. Here, () is the solid angle of any beamlet,
equal to 27, corresponding to a forward-propagating spheri-
cal wave front, and N=2m/k. Each lattice point determines
two vortices as Eq. (17) has positive and negative solutions;
hence, N=n,/2. Correspondingly, A is found to be the area
of the triangle whose vertices coincide with the pinholes.

One may ask whether it is possible to develop an exact
expression for the number of lattice points enclosed by our
parameter-space ellipse, thereby improving on the approxi-
mation for n, given in Eq. (30). Indeed, this question is ad-
dressed by a famous problem in number theory known as
“Gauss’s circle problem.” With ¢,=27/3, ¢3=-27/3, and
0y=/2, the conditions corresponding to the common form
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of Gauss’s circle problem are established; the ellipse is a
circle and is centered on a lattice point. The resulting solu-
tion for this case is both involved and well known, and so
will not be given here (see, e.g., Andrews [38]).

We note that two unexpected and beautiful connections
have arisen between the physical system considered here, a
result from information theory, and a certain problem in the
theory of numbers.

G. Vortex trajectories from phase variation

In most of the preceding discussion, the phases ¢;, ¢,,
and ¢ of the sources were all set to zero. Here, we consider
how vortices move in response to varying the phase of one of
the sources.

The equations of these curves are found by eliminating
the phase ¢; corresponding to the source r; in Egs. (13) and
(17). For example, the trajectories for variation of source r,
are found by solving Eq. (13) for ¢, and substituting this into
Eq. (17). Repeating this for ¢; gives a second set of trajec-
tories along which the vortices move with ¢; variation. The
resulting equations are

M(m)z
Fim="] 20 > (31a)
V(3kr, cos 6,,)” — M(m)
and
N(n)z
L, ()2 (31b)

- \[3kr; cos(6, — 6;) ] - N(n)? ’

where the subscripts mn have been changed to m or n to
highlight the independence of the equations with respect to
the complementary parameter space coordinate. Note that
Eq. (31a) is the same as Eq. (15), with minor manipulation.

Figure 9 shows the trajectories overlaying the numerical
simulation results for the source arrangement seen in Fig.
7(f).

We have seen (Sec. IIIE) that variation of ¢, (or ¢s)
corresponds to a translation of the m (or n) lattice alone.
Thus, our choice to eliminate the respective phase has led to
the separation of the m and n dependences. The equations
describe hyperbolas, where the polar coordinate system ori-
gin is centered between the two hyperbola branches. Note
that this polar form is less common than that typically seen
in the study of conics, in which the origin is placed at the
focus of one branch. Equations (31) may be thought of as a
(one-to-many) mapping from lines of constant m or n in
parameter space to hyperbolas in real space.

The angle 6; in Eq. (31b) corresponds to the rotation of
the n-indexed hyperbola axes with respect to the coordinate
system axes. The square-root limits the range of real solu-
tions, hence the number of hyperbolas and the number of
vortices. The domain of the parameter-space variable m (or
n) is restricted to match that determined by the parameter-
space ellipse. Thus, these equations may be applied to deter-
mine the valid domains of m or n independently, without
recourse to the ellipse solution.

Fixing the source phases defines two particular hyperbo-
las corresponding to the parameter space coordinates m and
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\'§
W\

= =
N
FIG. 9. (Color online) Vortices move with varying source phase
along trajectories and lie at the intersections of two independent sets
of hyperbolas. Two independent phases give rise to two sets of
hyperbolas indexed by m (solid lines) and n (dashed lines), respec-
tively. The hyperbolas are shown overlaying the phase y from Eq.

(6). Note that the result of this equation is =0 for arbitrary (r |, 6).
The parameters are the same as Fig. 7(f).

n, respectively, with vortices located at the intersections of
an m and an n curve. Both branches are included, giving four
separate curves. Where one branch of an m (or n) hyperbola
intersects both branches of an n (or m) hyperbola, only one
intersection is observed to correspond to a physical vortex
solution.

These equations also describe an intersecting curvilinear
coordinate system. The location of a vortex on the phase map
may be thought of as addressable by selection of a particular
patch having coordinates (m,n) and then finely addressable
within that patch by variation of the source phases. Variation
of the phases from 0 to 27 shifts the vortices along one of
the two families of curvilinear trajectories within the patch.
When there are a moderate or large number of vortices
present, the patches in the central region of the phase map
are correspondingly small. In this case, the vortices shift a
small distance with changing phase. In the outer, sparsely
populated regions, small changes in phase lead to arbitrarily
large distance changes since the outermost patches have
boundaries at infinity.

It is not unexpected that vortices should lie along inter-
secting hyperbolas. Two point sources naturally give rise to
surfaces of constant phase that are hyperboloids of two
sheets having the sources as their foci. The difference in path
length being constant establishes the condition for constant
phase and is equivalent to the well-known geometric con-
struction method for hyperboloids. The intersections of hy-
perboloids of two sheets with the z=z; plane will be hyper-
bolas of two branches. These will not have phase values at
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the amplitude maxima or minima due to any individual pair,
but will be at some other value y=a+ib on one set and —y
=—a—ib on the other, summing to zero at the vortex loca-
tions.

H. Parameter space near collinearity

Here, we examine the behavior of the nodal lines as 6;
approaches 7 (three collinear sources) when ¢,=@3=0,
since we observe a marked deviation between numerical
simulation and analytical results in this regime [see Fig. 7(c),
which clearly illustrates this discrepancy].

An analysis around 6= may be performed by substitut-
ing 6;=m+¢ into Eq. (12), where ¢ is small:

E(cos(71'+ g) +tan Osin(w+¢)) = M (32)
r M(m)
Applying the small-angle approximations cose~1 and
sin e ~ ¢, Eq. (32) yields

tan 6,,, () = l(?ﬂ% + 1) (33)
e\r3

for the 6,,, coordinate of the vortex core. Substituting into
Eq. (15) and applying Eq. (16) gives r,,, for our special
case
2
2
= . 34
r Lmn ( 3 kr2 )2 1 ( )

-1
M(m)/) 1+tan®,,

Finally, substituting Eq. (33), we get

20
(3kry/M(m))?

N L(z N | 1)2 )
&2\ ry M(m)

35)

ern(S) ==

In the limit e—0, we now see that 6,,(s)— 7/2 and
7 mn(€) — Fizo. Regarding the latter limit, r ,,,(e) first ap-
proaches infinity and then becomes imaginary.

We may widen the context of this result by realizing that
it is but one example of a lattice point crossing an ellipse
boundary. Whenever this occurs, the far-field prediction is
that associated vortices will be created or destroyed instan-
taneously. In contrast, in numerical simulations, which are at
some finite distance from the source, vortices rapidly enter
from or escape to infinity.

1. Relation to the Young’s three-pinhole interferometer

Here, we show how to map our far-field results for three
spherical point sources, hitherto the main subject of this pa-
per, onto a three-pinhole Young’s interferometer. In this in-
terferometer, coherent radiation illuminates a black screen
that is punctured with three small pinholes, with the resulting
transmitted radiation being observed at a distance that is
large compared to the spacing between the pinholes (see Fig.
1). Note that the assumptions of equal amplitude and a single
wave number, applied in Eq. (6), correspond to uniform co-
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herent illumination of the screen. The following argument is
based on the Rayleigh-Sommerfeld diffraction theory (see,
e.g., [39]).

The Rayleigh-Sommerfeld diffraction integral of the first
kind yields a rigorous solution to the Helmholtz equation
(time-independent free-space Schrddinger equation) in a
vacuum-filled half-space for a field that obeys the Sommer-
feld radiation condition. For a field U” incident on an
aperture A centered on the plane z=0, the wave function U
may be determined at an arbitrary point (x,y,z) in the half-
space z=0. With the boundary conditions that U(x,y,z=0)
~U%(x,y,z=0) when (x,y,z=0) is in A and U(x,y,z=0)
~0 when (x,y,z=0) is not in A, the diffraction integral reads

U(x,y,z):ff Ux',y",00K(x,y,x",y")dx'dy", (36)
A
where

K= Li(M) (37)
270z r

is a propagator and r=/(x—x")>+(y—y’)?+z%. Evaluation of
the derivative gives

= ! Z(ﬁ—%)exp(ikr). (38)
2wr\r r
For a pinhole aperture, U= 8x—x",y-y’,z), and the
wave field U(x,y,z) takes the form of the propagator, Eq.
(38). In general, the pinhole aperture does not produce
spherical waves. However, when the observation point is
such that >\, the first term inside the parentheses domi-
nates the second, giving
K~ ikz
2

5 exp(ikr). (39)
aar

It can now be seen that Eq. (7), which resulted from fac-
toring out a common term of exp(ikr)/r from the simplified
three-spherical-source wave field [Eq. (6)], also results from
instead factoring out a common term of ikz exp(ikr)/2mr?
from a superposition of three “illuminated pinhole” waves of
the form in Eq. (39). Similarly, when one is both in the far
field and close to the z axis, z=r, so Eq. (39) reduces to a
spherical wave function with a constant multiplier, as as-
serted.

We conclude that the analysis of the preceding sections
may be mapped onto the case of a Young’s three-pinhole
interferometer in the far field. The nodal planes of the two-
pinhole Young’s experiment, which are unstable with respect
to perturbations, therefore decay into a nodal-line network of
vortex cores when the third pinhole is added.

J. Three-dimensional nodal-line structure

As previously mentioned, our far-field analysis implies
the nodal lines—produced by either the superposition of
three spherical waves or by coherent illumination of a
Young’s three-pinhole interferometer—to be asymptotically
straight [see Eqgs. (13) and (17)]. When one is not in the far
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(b)

FIG. 10. (Color online) Numerical simulations of nodal line
structures developed by three sources arranged symmetrically at the
corners of an equilateral triangle of side length ry=r3=3\, [cf. Figs.
6(c) and 6(d)]. The region shown is z=0-5\ for a source wave-
length of Ay=r. (a) Three spherical wave sources. (b) Three
pinholes.

field, the nodal lines are curved. Here, we examine this point
in more detail by presenting simulations of the 3D structure
of nodal lines for both the spherical waves and the pinhole
interferometer wave functions [Egs. (3) and (38)].

With reference to Fig. 10, the nodal-line structures are
shown within a volume close to the sources and not corre-
sponding to the far field. Here, the relative phases of the
three sources have been set to zero. The contrast between the
simulations, resulting from the differing forms of the source
waves, is strikingly apparent. Comparing the positions of the
nodal lines between the two figures as they intersect the vol-
ume face at zo=5\, both are asymptotically approaching the
same set of straight lines predicted for the far field (Sec.
III C). In the case of spherical sources [Fig. 10(a)], the simu-
lation is over the positive z half-space, on the implicit under-
standing that the nodal structure is mirror symmetric about
the virtual plane in which the sources lie. In this case, nodal
lines are of two general types: those that pass through the
virtual plane and those that approach the source plane and
without reaching it retreat again. The latter features, com-
monly known as “hairpins”, correspond to annihilating
vortex-antivortex pairs when observed in any plane which is
a tangent to the associated nodal line [40] and are well
known to exist in fields near focal points [41]. For the case of
pinholes [Fig. 10(b)], nodal lines either attach to the source
plane or contain a hairpin structure.

Regions devoid of nodal structure arise close to the source
plane and near a source, where the intensity from that source
dominates the contributions from the others. This may be
understood in terms of the phasor diagram in Fig. 4(a) as an
inability to form a closed triangle. Nodal lines approaching
these regions join in hairpins.

In summary, the 3D nodal-line simulations reveal both the
asymptotic behavior toward the analytically described far-
field structure and, in regions close to the sources, display a
structure of nodal lines distinguished by the different source
descriptions of spherical sources and pinholes.

IV. CONCLUSION

A network of phase vortices was seen to be generated by
the superposition of three stationary-state sources of outgo-
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ing complex spherical waves. We presented an analysis of
the structure of the associated vortex cores (nodal lines) in
the far-field regime. A finite number of vortices was seen to
be generated. Determination of the number of such vortices
was mapped onto the problem of determining how many
points, on a two-dimensional square lattice, lie within a
given ellipse. The equation of the ellipse depends in a known
way on the geometry of the sources. The parameter-space
description also gives some insight into the effects of varying
both the arrangement of the three sources and their relative
phase. Indeed, phase variation of two of the sources provides
a means for precisely positioning one or several vortex cores.
We showed how to map all of the preceding analyses onto
the problem of determining the far-field disturbance that re-
sults when a three-pinhole Young’s interferometer is coher-
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ently illuminated. Last, we relaxed the far-field approxima-
tion to study numerically the curved nodal lines which arise
when one is not in the far field. In contrast to the classical
two-pinhole Young’s interferometer, in which the resulting
diffracted field vanishes over a series of nodal planes, the
three-pinhole interferometer yields a quite different phase to-
pology, permeated with a rich structure of nodal lines that
thread vortex cores.
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