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We present a solution to the problem of partial reflection and refraction of a polarized paraxial Gaussian
beam at the interface between two transparent media. The Fedorov-Imbert transverse shifts of the centers of
gravity of the reflected and refracted beams are calculated. Our results differ in the general case from those
derived previously by other authors. In particular, they obey general conservation law for the beams’ total
angular momentum but do not obey one-particle conservation laws for individual photons, which have been
proposed by �Onoda et al. Phys. Rev. Lett. 93, 083901 �2004��. We ascertain that these circumstances relate to
the artificial model accepted in the literature for the polarized beam; this model does not fit to real beams. The
present paper resolves the recent controversy and confirms the results of our previous paper �Bliokh et al. Phys.
Rev. Lett. 96, 073903 �2006��. In addition, a diffraction effect of angular transverse shifts of the reflected and
refracted beams is described.
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I. INTRODUCTION

Reflection and refraction of a polarized plane electromag-
netic wave at the interface between two homogeneous iso-
tropic media is described by the Snell law and Fresnel for-
mulas �1�. However, real confined fields—wave packets or
beams—consist of an infinite set of plane waves with differ-
ent wave vectors. Clearly each of the waves satisfies the
Snell and Fresnel laws, but their superposition can behave in
an uncommon way. In particular, depending on polarization
of the incident beam, the center of gravity of the reflected or
refracted beam undergoes a transverse shift �TS� and leaves
the plane of incidence. This is the Fedorov-Imbert shift �or
the lateral shift� which has been considered in a number of
theoretical and experimental papers �2–11�. In spite of the
small magnitude �of the order of the wavelength�, TS has a
fundamental meaning: it provides for the conservation of the
total angular momentum �TAM� of the beams, including in-
trinsic, spin part �4,5,7–10,12�. Furthermore, TS allows to
observe the spin-Hall effect of photons: the splitting of a
linearly polarized beam into two circularly polarized ones at
reflection or refraction �3,8�. TS also occurs in the reflection
or refraction of elastic waves �10� and of beams of arbitrary
nature with vortices �11–13�. In the latter case the effect can
be noticeably enhanced owing to a large value of the intrinsic
angular momentum carried by the beam.

Although numerous investigations have been carried out,
the issue of the final formulation of the TAM conservation
law and expressions for TS is still open. Fedoseev �5� has
derived the general expressions for TSs of the reflected and
refracted beams valid for any paraxial incident beam. These
papers, however, do not contain explicit TS values for a par-
ticular �for instance, Gaussian� beam. Recent publications
caused a controversy in the literature. On the one hand,

Onoda et al. �7,9� propose an approach in which TSs of the
reflected and refracted wave packets obey two TAM conser-
vation laws for individual photons. They argue that each
photon in the incident packet can be either reflected or re-
fracted and respective one-photon conservation laws control
these processes. Detailed analytic calculations of TSs for par-
tial reflection of a wave packet in the paraxial approximation
�which are equivalent to calculations of earlier paper �6�� as
well as numerical simulations confirm their results. On the
other hand, in recent paper �8� we have also derived analytic
expressions for fields of the reflected and refracted paraxial
Gaussian beams. Our results indicate that TSs of the reflected
and refracted beams satisfy the general TAM conservation
law for beams, but in generic case do not obey the one-
photon conservation laws. �A fundamental reason for that we
see in the interference and lack of the “which path” informa-
tion in two-channel wave scattering, which cannot be ex-
plored through one-particle considerations �8�.�

In the present paper we resolve a discrepancy between the
results of papers �6,7,9� and �8�. We show that the results
differ because of the distinction in models for the incident
polarized beam. The beams dealt with in papers �6,7,9� pos-
sesses an artificial polarization structure which facilitates the
calculations but cannot correspond to a real polarized beam.
For instance, a pure linearly polarized beam cannot be con-
structed in that model and the incident beam’s field in the
accompanying coordinate system surprisingly depends on
the angle of incidence. On the contrary, a more detailed
analysis corroborates our prior results and validity of our
model of the polarized beam.

II. BASIC RELATIONS AND CONSERVATION LAWS

We will deal with polarized monochromatic electromag-
netic beams. The beam supposed to be semiclassical, i.e., its
characteristic dimensions are large as compared to the wave-
length, which enables one to use the paraxial approximation*Email address: k_bliokh@mail.ru
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and to talk about the beam polarization. In this way, the
beam wave front represents near-plane wave with practically
uniform polarization. �In fact, the plane waves constituting
the beam propagate at different small angles and have
slightly different polarizations. This circumstance plays a
crucial role and will be discussed below.�

Let us consider the partial reflection and refraction of a
polarized monochromatic beam of frequency � at an inter-
face between two homogeneous isotropic lossless media with
refractive indices n1=��1�1 and n2=��2�2 ��i and �i, i
=1,2, are the permittivities and permeabilities of the media�;
see Fig. 1. We will also use relative characteristics n
=n2 /n1, �=�2 /�1, �=�2 /�1. Along with standard coordinate
system �x ,y ,z�, attached to the interface z=0 and incidence
plane y=0, we introduce beam coordinate systems,
�Xa ,Ya ,Za�. In what follows a= �i� , �r� , �t�, and superscripts
�i�, �r�, and �t� point at relation to the incident, reflected, and
refracted beams, respectively �Fig. 1�. In �Xa ,Ya ,Za� coordi-
nate system Ya axis coincides with y axis, whereas Za axis is
directed along the wave vector of the beam’s central plane
wave, kc

a. The origins of all coordinate systems are located at
the scattering point, defined as an intersection of the incident
packet center and the interface z=0. Angles of propagation
between wave vectors kc

a and z axis are denoted as �a. We
will also use notations �Fig. 1�

� = ��i� = � − ��r�, �� = ��t�. �1�

Various conservation laws govern the beam scattering at
the interface. They can be formulated if one imagines that we
deal with a localized wave packet rather than with an infinite
beam. The packet length can be arbitrarily large to make its
spectrum arbitrarily narrow in order to eliminate the distinc-
tion between the packet and monochromatic beam with fre-
quency �. Let ath packet include Na photons, i.e., its field
energy is Wa=Na�a �we use units �=c=1�.

First, time invariance of the problem leads to the con-
stancy of frequencies in all the packets,

�a = � = const, �2�

and provides for conservation of the total energy, W�i�=W�r�

+W�t�, or, in view of Eq. �2�, of the total number of photons
in the scattering process:

N�i� = N�r� + N�t�. �3�

By introducing the energy reflection and refraction coeffi-
cients R=W�r� /W�i�=N�r� /N�i� and T=W�t� /W�i�=N�t� /N�i�,
Eq. �3� can be written as

R + T = 1, �4�

Note, that the total field energy in ath packet can be esti-
mated as Wa	�a �Ec

a�2Va �with ��i�=��r���1 and ��t���2�,
where Ec

a is the electric field in the center of the wave packet,
Va is the volume of packet, and the volume changes at the
refraction as Va=Vn1 �cos �a � /na cos � �V�V�i��. Then R
�Rc, T�Tc �where Rc and Tc are the energy coefficients for
central plane waves in packet�, and Rc=Rc

2 and Tc

= �n cos �� /� cos ��Tc
2, where Rc ,Tc= �Ec

�r,t� � / �Ec
�i�� are the

amplitude �Fresnel� reflection and refraction coefficients for
the central plane waves. As a result, the conservation law �4�
can be represented in the form known for the amplitude co-
efficients:

Rc
2 +

n cos ��

� cos �
Tc

2 = 1. �5�

Second, the translation invariance of the problem along x
and y axes brings about the conservation of the respective
wave vectors components:

kcx
a = const, kcy

a = const = 0. �6�

This provides conservation of the corresponding components
of the total momentum. The momentum of the ath packet is
pa�Nakc

a, and the conservation law for the total momentum,
px,y

�i� = px,y
�r� + px,y

�t� , with Eq. �6�, also leads to the energy �photon
number� conservation, Eqs. �3�–�5�. The second equation �6�
means that all vectors kc

a are parallel to y=0 plane, whereas
the first equation �6� together with the dispersion law �=ka

=nak0 �n�i�=n�r��n1, n�t��n2, ka=kc
a, and k0 is the wave vec-

tor in vacuum� results in the Snell law:

nasin �a = const or sin � = n sin ��. �7�

Note that Eqs. �2� and �6� can be regarded as conservation
laws for energy and tangent momentum components of a
single, reflected or refracted, photon. For instance, the energy
conservation for one photon gives ��i�=��r� at the reflection
and ��i�=��t� at the refraction, which together implies Eq.
�2�.

Finally, the axial symmetry of the problem with respect to
z axis results in the conservation of z component of the total
angular momentum in the problem. The TAM density �TAM
per one photon�, ja, can be represented as a sum of the orbital
angular momentum and intrinsic �or spin� angular momen-
tum �7–9�:

ja � rc
a 
 kc

a + �c
akc

a/ka. �8�

Here rc
a is the radius vector of the wave packet’s center of

gravity and �c
a� �−1,1� is the mean helicity of the packet,

i.e., the difference between numbers of right-hand and left-
hand photons divided by the total number of photons. If one
introduces a two-component complex unit vector of the po-

FIG. 1. �Color online� The scheme of the wave reflection and
refraction with beam coordinates used in the text.
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larization of the wave packet center, ��c
a�= ��c

+a

�c
−a �, represented

in the basis of circular polarizations �helicity basis�, then

�c
a = ��c

a��̂3��c
a� = ��c

+a�2 − ��c
−a�2, �9�

where �̂3=diag�1,−1� is the Pauli matrix. Taking the geom-
etry of the problem into account, the z component of TAM
per photon, Eq. �8�, equals

jz
a = − yc

akc
a sin �a + �c

a cos �a. �10�

It may seem that, by an analogy with the one-photon en-
ergy and momentum conservation laws �2� and �6�, one-
photon conservation laws for z component of TAM, Eq. �10�,
should also be valid:

jz
a = const, or jz

�i� = jz
�r�, jz

�i� = jz
�t�, �11�

Conservation laws �11� have been proposed in papers �7,9�.
However, in our recent paper �8� and below we show that, in
general, Eqs. �11� are not satisfied for polarized Gaussian
beams. The principal distinction of conservation laws �11� as
compared to Eqs. �2� and �6� is as follows. Conservation
laws for the energy and momentum, Eqs. �2� and �6�, are
written in the zero approximation when the wave packet is
replaced by its central plane wave. At the same time, TAM of
a polarized plane wave vanishes and all nontrivial effects
related to nonzero TAM originate from the confinement of
the packet or beam in the transverse direction �see, for in-
stance �14��. Therefore, when involving a nonzero TAM, one
should remember that we deal with essentially localized
packet which consists of a set of interfering plane waves with
different wave vectors. In general case this does not validate
the conservation law with parameters of the single central
plane wave. Paper �7� argued that the partial reflection and
refraction process consists of one-photon acts of pure reflec-
tion and refraction, and TAM conservation laws �11� must be
fulfilled in each act. However, it is shown in �8� that one-
photon considerations and conservation laws �11� evoke
“which path” information in the process which represents
two-channel wave scattering with interference. It is known
from quantum mechanics that “which path” information
eliminates the interference pattern and, therefore, Eqs. �11�
cannot be applied to the classical wave problem of partial
reflection and refraction of a wave packet.

Nevertheless, the general TAM conservation law takes
place in the problem. TAM of the wave packet equals Ja

=Naja, and conservation law for z component of TAM, Jz
�i�

=Jz
�r�+Jz

�t�, takes the following form:

jz
�i� = Rcjz

�r� + Tcjz
�t� or jz

�i� = Rc
2jz

�r� +
n cos ��

� cos �
Tc

2jz
�t�.

�12�

If conservation laws �11� hold true, then Eq. �12� is reduced
to the same energy �photon number� conservation law
�3�–�5� �9�, but in the absence of Eqs. �11�, Eq. �12� is an
independent conservation law in the problem.

To express Eq. �12� in terms of characteristics of the in-
cident packet, two media, and unknown transverse shifts, one
should find reflection and refraction coefficients as well as
polarization characteristics of the reflected and refracted
waves determined from the Fresnel equations for central
plane waves of the packets. Polarization in the center of the
wave packet can be represented as ec

a= �uXa

+mc
auy� /�1+ �mc

a�2, where u
 are the unit vectors along the
corresponding axes and mc

a is a complex parameter charac-
terizing polarization of the wave packet center in the basis of
waves linearly polarized along Xa and y. Polarization vector
��c

a� introduced above and helicity �c
a are expressed via mc

a as

��c
a� = 	1 − imc

a

1 + imc
a 
��2�1 + �mc

a�2�, �c
a =

2 Im mc
a

1 + �mc
a�2

.

�13�

Quantities Rc, Tc, mc
�r�, and mc

�t� are the functions of polariza-
tion of the incident wave, mc

�i��mc, angle of incidence, �,
and parameters of media. From the Fresnel equations �1� it
follows that

Rc =
��R�c�2 + �R�c�2�mc�2

�1 + �mc�2
, Tc =

��T�c�2 + �T�c�2�mc�2

�1 + �mc�2
,

�14�

mc
a = �c

amc.

Here �c
�i,r,t�=1,R�c /R�c ,T�c /T�c, whereas R�,�c and T�,�c are

the Fresnel reflection and refraction coefficients for central
plane waves linearly polarized along Xa and y axes �i.e., with
the electric field lying in the plane of incidence y=0 and
orthogonal to it, respectively� �1�:

T�c =
2n cos �

� cos � + n cos ��
, T�c =

2� cos �

� cos � + n cos ��
,

�15�

R�c = 1 −
cos ��

cos �
T�c, R�c = T�c − 1.

By substituting Eqs. �9�, �10�, �13�, and �14� into Eq. �12�
and introducing the transverse shifts of the beams’ centers of
gravity with respect to the incident beam’s center, �a=yc

a

−yc
�i�, we obtain

Rc�
�r� + Tc�

�t� = −
2 Im mc

k�1 + �mc�2�
cot � 
1 + R�cR�c

−
n cos2��

� cos2�
T�cT�c� , �16�

where k�k�i�.
Equation �16� indicates that at least one of the TSs, ��r� or

��t�, is nonzero when Im mc�0, i.e., in the case of nonplanar
�elliptical� polarization of the incident wave. It is impossible
to determine two unknown values of ��r� and ��t� from one
conservation law �16�—one has to solve a complete problem
of partial reflection and refraction of a confined wave packet
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or beam. If one-photon TAM conservation laws �11� are
valid, then two Eqs. �11� enable one to find the values of
TSs:

�a =
2 Im mc

k
cot � 
�c

a cos �a/cos �

1 + �c
a2�mc�2

−
1

1 + �mc�2
� .

�17�

These values have been obtained in papers �6,7,9� both from
the conservation laws �11� and as a result of rigorous solu-
tion of the beam scattering problem. However, TSs found in
�8�, likewise through rigorous solution of the problem of
partial reflection and refraction of a Gaussian beam, in the
generic case do not coincide with Eq. �17� and, as was noted
above, fulfill conservation law �12�, but not �11�. The reason
for this contradiction will be elucidated below.

III. TWO MODELS FOR POLARIZED INCIDENT BEAM

When exploring rather heuristic and qualitative consider-
ations in the preceding section, from hereon we will consider
a complete electrodynamical problem of partial reflection
and refraction of a paraxial polarized beam. Above all, we
have to set the field of the incident beam.

It can be constructed in the wave vector representation.
The beam consists of an infinite set of plane waves with the
wave vectors close to the central one, kc. �All quantities in
this section are related to the incident beam and we omit
superscripts �i� throughout the section.� The wave vector of a
partial plane wave from the incident beam can be represented
as k=kc+�, where � is distributed around the zero vector
and in paraxial, linear in �=� /k, approximation one can
reckon ��kc. Note that wave vector k of a partial plane
wave, in general, does not belong to the plane of incidence
y=0 and the angle of incidence corresponding to it differs
from �. To describe propagation of the current plane wave
we introduce the respective coordinate system �X� ,Y� ,Z��
�analogous to �X ,y ,Z� for the central wave; see Fig. 1�, as it
was done similarly in �5,7,9�; see Fig. 2. In so doing, the Z�

axis is attached to the wave vector k, whereas X� axis lies in
incident plane determined for the given plane wave. This
coordinate system will be used exclusively for projections of
the electric field vector, which are independent of position of
its origin.

We should specify the polarization of each plane wave,
ẽ= ẽ���. �Here and in what follows the quantities in the wave
vector representation are marked by tilde.� Polarization of
the central wave have been defined above as ec= ẽc� ẽ�0�
= �uX+mcuy� /�1+ �mc�2; it is characterized by the complex
number mc. There are two ways to define polarizations of
other waves.

The first one is to characterize polarization of each wave
by the same number mc but in its own coordinate system
�X� ,Y� ,Z��:

ẽ�I� =
uX� + mcuY�
�1 + �mc�2

. �18�

This way of specifying the polarization was utilized in
�6,7,9�. It can be shown that the basis vectors of coordinate
systems �X ,y ,Z� and �X� ,Y� ,Z�� in the approximation under
consideration are connected by relations

uX� = uX + �y cot � uy − �XuZ,

uY� = uy − �y cot � uX − �yuZ,

uZ� = uZ + �XuX + �yuy . �19�

Hence, polarization vector �18� in the central coordinate sys-
tem of the beam, �X ,y ,Z�, takes the form

ẽ�I� =
�1 − mc�y cot ��uX + �mc + �y cot ��uy − ��X + mc�y�uZ

�1 + �mc�2
.

�20�

In this coordinate system a complex parameter m̃�I�

� ẽy
�I� / ẽX

�I� corresponds to the polarization �18� or �20�:

m̃�I� =
mc + �y cot �

1 − mc�y cot �
. �21�

The second way to specify the polarization, which has
been used in �8�, is to consider polarization of all plane
waves in the projection onto the common coordinate system
�X ,y ,Z�, attached to the central wave. By requiring that
ẽy

�II� / ẽX
�II�=mc and ẽ�II�k=0, we get

ẽ�II� =
uX + mcuy − ��X + mc�y�uZ

�1 + �mc�2
. �22�

Thus, in this model of the beam, the polarization is uniform
in the beam coordinate system:

m̃�II� = mc.

By analyzing Eq. �21�, it can be shown that parameters
m̃�II�=mc and m̃�I� correspond to polarizations with the same
eccentricity of the polarization ellipse but with different

FIG. 2. �Color online� Central and noncentral wave vectors in
the incident beam, attendant coordinate frames, and respective in-
cident planes.
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orientations of the ellipse. In particular, the circular polariza-
tion mc= ± i gives rise to the same circular polarization m̃�I�

= ± i. In the case of linear polarization mc, Im mc=0, the
polarization m̃�I� will also be linear, Im m̃�I�=0, but with dif-
ferent orientation. For instance, if mc=0 or mc=� �which
corresponds to linear polarizations along X or y, respec-
tively�, then m̃�I�=�y cot � or m̃�I�=−1/�y cot �, i.e., polariza-
tion of a plane wave with �y �0 turns out to be inclined with
respect to X or y axes, respectively.

The above examples demonstrate that in actual fact the
polarization structure of the beam of �6,7,9�, Eqs. �18� and
�20�, has a strange and unnatural form in the attendant coor-
dinate system of the beam, �X ,y ,Z�. Specifically, the polar-
ization vector of the incident beam turns out to be dependent
on the incidence angle �. Furthermore, in the model of
�6,7,9� it is impossible to construct a beam totally polarized
along X or y axes, as well as any elliptically polarized beam.
Despite that each plane wave in the model of �6,7,9� has the
same polarization in its own coordinate system, all of them
are differently polarized in the beam reference system, which
brings about a nonuniform polarization in the beam cross
section �see Fig. 3 below�. It is worth noting that there is no
optical device that is able to produce a beam with the polar-
ization distribution �18� or �20�. Indeed, when forming a po-
larized beam, the light passes through a polarizer oriented in
a certain way with respect to common coordinate system
�X ,y ,Z�. One cannot make a polarizer which would be ori-
ented for each plane wave according to its own coordinate
system �X� ,Y� ,Z��. For instance, if a linear polarizer is ori-

entated along X axis, so that it cuts y component of the field,
then the output beam will be polarized exactly as in Eq. �22�,
but not as in Eq. �20�, since at mc=0 ẽy

�II�=0, but ẽy
�I�

=�y cot ��0.
To determine the electric field for the whole incident

beam, one has to set distribution function for the plane waves
or for �. We will consider a beam with Gaussian distribution,
assuming for simplicity that the incident beam is cylindri-
cally symmetric �15�. Then

E�r� 	� � d�Xd�yẼ���exp�i�XX + i�yy + ikZZ� , �23�

Ẽ = ẽ exp
−
�X

2 + �y
2

2kD0
� .

Here D0 is a complex parameter which characterizes the
width and phase front curvature of the beam at Z=0 and kZ

=�k2− ��X
2 +�y

2��k− ��X
2 +�y

2� /2k �16�. In Eq. �23� and in
what follows we write the proportionality sign omitting in-
essential common amplitude factors. By introducing dimen-
sionless integration variables in Eq. �23�, �i→�i=�i /k, Eq.
�23� can be given as

E 	� � d�Xd�yẽ���exp�ik�̃���� . �24�

Here �̃= ��XX+�yy�+ i��X
2 +�y

2� /2D+Z, whereas D�Z�
=D0 / �1+ iD0Z� characterizes the current width and the phase
front curvature of the beam with diffraction in a homoge-
neous medium taken into account �17�. By evaluating inte-
gral �24� by the saddle-point method at k→�, we obtain E
	e exp�ik��. Here e=e�r� and �=��r� are, respectively, the
polarization vector and eikonal in the coordinate representa-

tion, so that e�r�= ẽ��*� and ��r�= �̃��*�, where �* is deter-

mined from the condition ��̃ /��=0:

�X
* = iDX, �y

* = iDy �25�

As a result we have

E 	 e exp
−
kD�X2 + y2�

2
+ ikZ� , �26�

where the two models of the beam polarization of �6,7,9� and
�8� �from Eqs. �20� and �22��, respectively, yield

e�I� =
�1 − imcDy cot ��uX + �mc + iDy cot ��uy − i�DX + imcDy�uZ

�1 + �mc�2
, �27�

e�II� =
uX + mcuy − i�DX + mcDy�uZ

�1 + �mc�2
. �28�

Expressions �27� and �28� characterize the polarization
distribution in the beam cross section. In the second model,

Eq. �28�, the polarization is uniform and is characterized by
the same parameter mc: m�II��ey

�II� /eX
�II�=mc. The polarization

of the first model, Eq. �27�, as in � representation, is featured
by some peculiarities. First, vector e�I� turns out to be non-
normalized:

FIG. 3. �Color online� Scheme of the polarization distribution in
the beam cross section in the models �I� and �II�. A case of linearly
polarized beam, mc=0, is presented.
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�e�I��2 = 1 +
4y Im mcRe D cot �

1 + �mc�2
. �29�

Although the polarization vector was normalized in the wave
vector representation at real �, in the coordinate representa-
tion it is determined by a complex value of �, Eq. �25�.
Second, the beam polarization e�I� is nonuniform in the beam
cross section and is characterized by parameter m�I�

=ey
�I� /eX

�I�= m̃�I���*�:

m�I� =
mc + iDy cot �

1 − imcDy cot �
. �30�

In contrast to Eq. �21�, because of complexity of �*, polar-
ization mc gives rise to polarization m�I� with different eccen-
tricity of the polarization ellipse. However, as before, circu-
lar polarization mc= ± i corresponds to the same circular
polarization m�I�= ± i. This explains the fact that the ap-
proaches of �6,7,9� and �8� bring about the same results in
the case of the circular polarization of the incident beam �see
�8��. For linear polarization mc, Im mc=0, the polarization
m�I� will be elliptical: Im m�I��0. For instance, if mc=0 or
mc=�, then m�I�= iDy cot � or m�I�= i /Dy cot �. Figure 3 de-
picts an example of the polarization distribution in the cross
section of linearly polarized beams of the two models at
mc=0. One can see that the beam of the model of �6,7,9� is
slightly depolarized: Its edges are elliptically polarized with
opposite helicities. Evidently, a real linear polarizer cannot
generate such a beam. On the contrary, the beam of our
model �8� is uniformly polarized along X axis, as it should be
in a real physical situation.

The above argumentation is sufficient to give preference
for the second beam model against the first one. Neverthe-
less, for completeness let us consider the Pointing and angu-
lar momentum vectors in the two beam models. By calculat-
ing the beam magnetic field H=−ik−1� 
E �for simplicity
we here assume �1=�1=1� with Eqs. �26�–�28�, we arrive at
the Pointing vector S	Re�E
H*�:

SX
�I� = SX

�II� 	 �F�2
− X Im D −
2y Im mcRe D

1 + �mc�2
� , �31a�

Sy
�I� = Sy

�II� 	 �F�2
− y Im D +
2X Im mcRe D

1 + �mc�2
� , �31b�

SZ
�I� 	 �F�2
1 +

4y Im mcRe D cot �

1 + �mc�2
�, SZ

�II� 	 �F�2,

�31c�

where F=exp�−kD�X2+y2� /2�. As seen from Eq. �31c�, the
longitudinal Z component of the energy flux density is dif-
ferent in the two models. In the paraxial approximation un-
der consideration �linear in DX and Dy� the absolute value of
the Pointing vector is determined by Z component �31c� only
and its difference in two models is directly related to the
nonunit absolute value of the polarization vector in the first
model, Eq. �29�. The flux of the TAM in the beam is deter-
mined by the integral over the beam cross section: J	��r

S dX dy. It can be easily shown that

JZ
�I� = JZ

�II� = J, Jy
�I� = Jy

�II� = JX
�II� = 0, �32a�

JX
�I� 	

4 Im mcRe D cot �

1 + �mc�2
� � y2exp�− k Re D�X2 + y2��


dX dy =
2� Im mc cot �

k2�1 + �mc�2�Re D
. �32b�

Thus, in the first beam model a nonzero transverse X com-
ponent of TAM is presented, which makes the angular mo-
mentum noncollinear to the energy flux: J�I� �”S�I�. The origin
of this strange result will be clarified in Sec. V. In addition,
as is the case with the polarization vector �20�, the Pointing
vector �31� and angular momentum �32� of the incident beam
in the first model depends, in natural beam coordinate system
�X ,y ,Z�, upon the incidence angle �, which is meaningless
from the physical viewpoint.

IV. FIELDS OF REFLECTED AND REFRACTED BEAMS

Let us recur to the problem of the beam partial reflection
at the interface between two media. The relations between
the electric fields of the incident and scattered beams are
determined by standard boundary conditions: continuity of
tangent components of the electric and magnetic fields. As is
known, for plane waves these conditions yield the Fresnel
equations �1�. Therefore, it is easier to solve the problem in
the wave vector representation by applying the Fresnel equa-
tions to each plane wave in the incident packet.

Let Ẽa be the electric field of the respective plane wave
with wave vector ka �as before, a= �i� , �r� , �t��, and
�X�a ,Y�a ,Z�a� is the coordinate system attached to ka �simi-
larly to �X� ,Y� ,Z�� coordinate system for the incident beam
in the previous section, Fig. 2�. Then, the Fresnel equations
read

ẼX�a
a = �̃�

aẼX�, ẼY�a
a = �̃�

a ẼY�, �33�

where �̃�
�i,r,t�=1,R� ,T� and �̃

�

�i,r,t�=1,R� ,T� are the Fresnel
coefficients for a current incident plane wave. The relation
between the basis vectors of �X�a ,Y�a ,Z�a� coordinate sys-
tem and �Xa ,Ya ,Za� coordinate system accompanying ath
beam is determined in paraxial approximation analogously to
Eq. �18�:

uX�a = uXa + �y
a cot �auy − �Xa

a uZa,

uY�a = uy − �y
a cot �auXa − �y

auZa,

uZ�a = uZa + �Xa
a uXa + �y

auy , �34�

where, as in the previous section, the wave vector of a plane
wave from ath beam is represented as ka=kc

a+�a and �a

=�a /ka �ka=kc
a�. From the Snell law it follows in paraxial

approximation that
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�y
a =

k

ka�y, �Xa
a =

k cos �

ka cos �a�X. �35�

By using representation Ẽa= ẼX�a
a uX�a + ẼY�a

a uY�a, Eqs.

�33�–�35�, and connection ẼX�= ẼX+�y cot � Ẽy, ẼY�= Ẽy

−�y cot � ẼX �which follows from Eq. �19� and ẼZ���, we
obtain the expressions for components of the ath beam in the
respective beam coordinate system �Xa ,y ,Za�:

Ẽa = ẼXa
a uXa + Ẽy

auy + ẼZa
a uZa, �36a�

ẼXa
a = �̃�

aẼX +
�y

a

sin �a ��̃�
a cos � − �̃�

a cos �a�Ẽy , �36b�

Ẽy
a =

�y
a

sin �a ��̃�
acos �a − �̃�

a cos ��ẼX + �̃�
a Ẽy , �36c�

ẼZa
a = − ��Xa

a
�̃�

aẼX + �y
a�̃�

a Ẽy� . �36d�

The Fresnel coefficients depend on the angle of incidence
of a given plane wave and, therefore, �̃�

a= �̃�
a���, �̃�

a = �̃�
a ���.

In the linear approximation in � one can put

�̃�,�
a = ��,�c

a + �d�̃�,�
a

d�X
�

�=0
�X, �37�

where ��,�c
a = �̃�,�

a �0� and we have taken into account that
expansion of �̃�,�

a in terms of �y starts with square terms. The
correction proportional to �X in Eq. �37� is responsible for
the effect of longitudinal shift of the beam �the Goos-
Hänchen shift� �18� and, as we will see below, it does not
contribute to the Fedorov-Imbert transverse shift to be con-
sidered.

Substitution of Eqs. �20�, �22�, and �23� with Eq. �35� in
Eq. �36� allows to represent the electric field of ath beam as

Ẽa =
�̃�

a

��c
a Ac

aexp
− ka	 �Xa
a2

2D0Xa
a +

�y
a2

2D0y
a 
�ẽa, �38�

where Ac
a=���c

a2
+��c

a2
�mc�2 /�1+ �mc�2sgn ��c

a or Ac
�i,r,t�

=1,Rcsgn R�c ,Tc are the amplitude scattering coefficients for
the central plane wave, Eqs. �14� and �15�, D0Xa

a

= �k cos2� /kacos2�a�D0 and D0y
a = �k /ka�D0 are the param-

eters characterizing the widths and the phase front curvatures
of ath beam along Xa and y axes at Za=0 �19�, and ẽa is the
polarization vector of the current plane wave in ath beam
�20�. Two models of the incident beam, Eqs. �20� and �22�,
yield, respectively

ẽa�I� =
1

�1 + �mc
a�2

��1 − m̃a�y
a cot �a�uXa + �m̃a + �y

acot �a�uy

− ��Xa
a + m̃a�y

a�uZa� , �39�

ẽa�II� =
1

�1 + �mc
a�2
�
1 − m̃a�y

a cot �a	1 −
cos �

�̃a cos �a
�uXa

+ 
m̃a + �y
a cot �a	1 −

�̃a cos �

cos �a 
�uy

− ��Xa
a + m̃a�y

a�uZa� . �40�

Here m̃a= �̃amc, �̃a= �̃�
a / �̃�

a, whereas mc
a=�c

amc ��c
a=��c

a /��c
a �

is the parameter of polarization of the central plane wave of
ath beam, Eq. �14�. For the central plane wave, �=0, both
polarizations �39� and �40� equal

ec
a = ẽc

a = ẽa�0� =
uXa + mc

auy

�1 + �mc
a�2

. �41�

Fields �38�–�40� can be converted into coordinate repre-
sentation similarly to Eqs. �23�–�26�:

Ea�r� 	� � d�Xa
a d�y

aẼa��a�exp�i�Xa
a Xa + i�y

ay + ikZa
a Za� .

�42�

By substituting Eq. �38� and kZa
a �ka− ��Xa

a2
+�y

a2
� /2ka, inte-

gral �42� can be represented as

Ea 	 Ac
a� � d�Xa

a d�y
a �̃�

a

��c
a ẽa��a�exp�ika�̃a��a�� . �43�

Here

�̃a = �Xa
a Xa + �y

ay + i	 �Xa
a2

2DXa
a +

�y
a2

2Dy
a
 + Za, �44�

whereas parameters

DXa
a �Za� =

D0Xa
a

1 + iD0Xa
a Za

, Dy
a�Za� =

D0y
a

1 + iD0y
a Za �45�

characterize the current widths and the phase front curvatures
of the beam along Xa and y axes with the diffraction phe-
nomena taken into account �17�. Evaluating integral �43� by
the saddle-point method at ka→�, we obtain Ea

	 ���
a /��c

a �Ac
a exp�ik�a�ea. Here ea�r� and �a�r� are, respec-

tively, the polarization vector and eikonal in the coordinate

representation, with ea�r�= ẽa��a*
� and �a�r�= �̃a��a*

�, where

�a*
is determined from ��̃a /��=0:

�Xa
a*

= iDXa
a Xa, �y

a*
= iDy

ay . �46�

Coordinate representations for other quantities are defined
similarly: ��,�

a �r�= �̃�,�
a ��a*

�, ma�r�= m̃a��a*
�=�amc, and

�a�r�= �̃a��a*
�=��

a /��
a. In so doing, from Eqs. �37� and �46�

it follows that

��,�
a �r� = ��,�c

a + i�d�̃�,�
a

d�X
�

�=0
DXa

a Xa. �47�

As a result we have
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Ea 	
��

a

��c
a Ac

aea exp
−
ka�DXa

a Xa2
+ Dy

ay2�

2
+ ikaZa� , �48�

where the two models of the beam polarization �from Eqs.
�39� and �40��, respectively, yield

ea�I� =
1

�1 + �ma�2
��1 − imaDy

ay cot �a�uXa

+ �ma + iDy
ay cot �a�uy − i�DXa

a Xa + maDy
ay�uZa� ,

�49�

ea�II� =
1

�1 + �ma�2
�
1 − imaDy

ay cot �a	1 −
cos �

�a cos �a
�uXa

+ 
ma + iDy
ay cot �a	1 −

�a cos �

cos �a 
�uy

− i�DXa
a Xa + maDy

ay�uZa� . �50�

Equations �38�–�40� and �48�–�50� describe wave vector and
coordinate representations of the electric fields of the inci-
dent, reflected and refracted beams, thereby solving the prob-
lem of the Gaussian beam scattering at the interface in the
two models. At a= �i�, as it should be, they are converted to
Eqs. �20� and �22�–�26� introduced for the incident beam. As
is shown in �3,8�, the reflected and refracted beams in both
models do not represent pure polarization states anymore. In
particular, for linearly polarized incident beam, Eq. �22� with
mc=0, Fig. 3�b�, the scattered beams will have a nonuniform
polarization distribution resembling that in Fig. 3�a�.

V. TRANSVERSE SHIFTS

To determine TS of the center of gravity of ath beam we

introduce field �48�–�50� integrated over Xa coordinate: Ēa

	�EadXa �21�; it enables one not to take the longitudinal
shift into account. Under integration, linear in Xa terms van-
ish �higher-order terms should be neglected� and for the first
and second beam models, Eqs. �49� and �50�, we have

Ēa�I� 	
Ac

a

�1 + �mc
a�2

exp
−
kaDy

ay2

2
+ ikaZa�


 ��1 − imc
aDy

ay cot �a�uXa + �mc
a + iDy

ay cot �a�uy

− imc
aDy

ayuZa� , �51�

Ēa�II� 	
Ac

a

�1 + �mc
a�2

exp
−
kaDy

ay2

2
+ ikaZa�


 �
1 − imc
aDy

ay cot�a	1 −
cos �

�c
acos �a
�uXa

+ 
mc
a + iDy

ay cot �a	1 −
�c

a cos �

cos �a 
�uy

− imc
aDy

ayuZa� . �52�

Note that expression �52� is equivalent to the formulas for
the electric fields of beams unconfined along Xa, which have
been derived in paper �8� �Eq. �4� therein�.

The transverse y coordinate of the center of gravity of ath
beam, yc

a, is defined as the position of the maximum of func-

tion f�y�= �Ēa�2. For a paraxial Gaussian beam such a defini-
tion is equivalent to the projection of the field onto the cen-
tral polarization vector �41�, which have been used in �6,8�.
In the linear approximation in Dy

ay the square of the absolute
value of fields �51� and �52� can be written as

�Ēa�I,II��2 	 Ac
a2

exp�− kaRe Dy
a�y − yc

a�I,II��2� , �53�

where, in two models, yc
a equals

yc
a�I� =

2 Im mc
acot �a

ka�1 + �mc
a�2�

, �54�

yc
a�II� =

cot �a

ka�1 + �mc
a�2��Im mc

a
2 − ��c
a + �c

a−1
�

cos �

cos �a�
+ Re mc

a Im Dy
a

Re Dy
a ��c

a − �c
a−1

�
cos �

cos �a� . �55�

It is worth noting that yc
�i��II�=0, whereas yc

�i��I�

=2 Im mc cot � /k�1+ �mc�2��0. That means that the center of
the incident beam of the model of �6,7,9� is shifted from y
=0 plane �despite the fact that the initial Gaussian distribu-
tion had a maximum at y=0�. The shift yc

�i��I� originates from
the form of polarization vector �20� in the beam coordinate
system. Indeed, it has �y-dependent coefficients at uX and uy,
which implies that each plane wave in the incident beam has
its own �y-dependent phase that shifts the center of gravity of
the beam. It is the shift yc

�i��I� that leads to non-zero X com-
ponent of TAM of the incident beam, Eq. �32b�. Indeed, this
component vanishes in the coorinate system shifted to the

beam center of gravity: JX
�I��	���y−yc

�i��I��SZ
�I�=0, cf. Eqs.

�31c� and �32b�
TS of ath beam �relative to the incident beam� equals

�ya=yc
a−yc

�i�. It can be given as a sum of two terms, �ya

=�a+�a, where

�a�I� =
2 Im mccot �

k 
�c
acos �a/cos �

1 + �c
a2

�mc�2
−

1

1 + �mc�2
� ,

�56�

�a�I�
= 0, �57�

�a�II� =
Im mc cot �

k

2�c
a cos �a/cos � − 1 − �c

a2

1 + �c
a2�mc�2

, �58�

�a�II�
=

Re mcIm Dy
a cot �

k Re Dy
a

�c
a2

− 1

1 + �c
a2

�mc�2
. �59�

Here we endeavored to express TSs in terms of parameters of
the incident beam and Fresnel coefficients. TSs �a are the
desired Fedorov-Imbert shift. Equation �58� coincides with
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the analogous Eq. �5� in paper �8�, but differs from Eq. �56�,
which represents the TS obtained in papers �6,7,9�. TS �a�I�,
Eq. �56�, coincides with Eq. �17� and, hence, fulfill one-
photon TAM conservation laws �11� as well as general TAM
conservation law �12� and �16�. TS �a�II�, Eq. �58�, also sat-
isfies the general conservation law �12� and �16�, but in the
general case does not fulfill one-photon conservation laws
�11� �with Eqs. �10� and �13��. The results of approaches of
�6,7,9� and �8� coincide, �a�II�=�a�I�, only when �mc � =1
�e.g., for circularly polarized incident wave, mc= ± i� and in
the trivial case of linear polarization, Im mc=0, �a=0; see
also �22�. In other cases, the difference between shifts �56�
and �58� is of the order of the TS itself �a fraction of the
wavelength� and, hence, can be detected with an accuracy of
nowaday experiments �2�. Remarkably, Eqs. �56� and �58�
follow from the general expressions of �5� when substituting
the incident beam field from Eqs. �20� or �22�, respectively.

The second summand in the transverse shift of the second
model, �a�II�

, can be regarded as a small angular transverse
shift inclining the plane of the beam propagation with respect
to y=const plane. Indeed, assume that Im D0y

a =0, which cor-
respond to the situation where the beam focus is located at
Za=0. Then from Eq. �45� it follows that �Im Dy

a /Re Dy
a�

=−D0y
a Za and shift �a�II�

grows linearly with Za. Taking into
account that D0y

a �� /w2 �where � is the wavelength and w is
the beam width in the focus�, the angular shift �a�II�

can be
estimated as �a�II�

��2Za /w2, while the linear shift �a��.
Both shifts become of the same order at the distance of the
order of the Rayleigh range, Za�w2 /�. The angular shift
vanishes in the model of �6,7,9�; see Eq. �57�. At the same
time, the possibility of such shift has been pointed out in �5�,
Eq. �19� therein, but neglected in subsequent calculations
due to diffractionless approximation used. Concrete expres-
sions of the angular shift have been first calculated by Na-
salski �2� for the reflected beam. The linear �Fedorov-Imbert�
shift is a geometrical optics effect, whereas the angular shift
is a diffraction phenomenon quadratic in the wavelength.
That is why the latter one cannot be accounted for by simple
particle �or geometrical optics� considerations and respective
conservation laws. Note that �a�II�

�0 only at Re m�0, i.e.,
when the polarization ellipse is inclined with respect to y
axis. This gives an additional asymmetry of the field relative
to y=0 plane, which can cause the angular shift. As far as we
know, the angular transverse shift, Eq. �59�, for the general
case of partial reflection and refraction is calculated here
explicitly for the first time.

VI. CONCLUSION

We have examined the problem of partial reflection and
refraction of a paraxial Gaussian electromagnetic beam. We

paid special attention to the transverse shift of the centers of
gravity of the reflected and refracted beams as well as to the
conservation laws for angular momentum of the field. It has
been shown that the discrepancy between the results of pre-
vious papers �6,7,9� and �8� occurs not due to calculation
errors, but owing to essentially different models of the polar-
ization structure of the incident beam. Simple, on first sight,
model of �6,7,9� describes an unnatural beam which cannot
be produced by real polarizers. First, the electric field of the
incident beam in the coordinate frame attendant to its center
is dependent on the incidence angle. Second, the polarization
distribution in the plane orthogonal to the beam axis is non-
uniform. Such a beam is, in fact, slightly depolarized. Fi-
nally, the angular momentum vector of the beam is inclined
with respect to the beam axis. At the same time, a model of
the beam we have proposed in �8� is free of all these draw-
backs and fits for a real physical beam passed through a
respective polarizer.

Detailed calculations of the partial reflection and refrac-
tion of the Gaussian beam confirmed the expressions for the
transverse shifts obtained in �8�. These shifts satisfy the con-
servation law of the normal component of the total angular
momentum in the problem. However, they do not obey, in
the general case, one-photon conservation laws suggested in
�7,9� �see also �8��. It is worth noting that the difference
between the results of papers �6,7,9� and �8� reveals itself
only for elliptically polarized incident beam and in the pro-
cess of multichannel scattering. In the case of circularly po-
larized incident beam or at the total internal reflection both
models result in the same transverse shifts.

In addition to linear Fedorov-Imbert transverse shifts, we
have calculated transverse angular shifts of the reflected and
refracted beams, which are related to the beams diffraction.
These angular shifts are absent in the model of �6,7,9�.

Note added in proof. Recently, a Comment �22� appeared
that confirms our conclusions. It is shown there that TSs both
from papers �6,7,9� and from paper �8� are in agreement with
the general expressions of �5�, but differ from each other due
to the difference in the incident beam fields. It is also noticed
there that a general-form wave packet does not satisfy one-
photon TAM conservation laws.
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