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Statistical analysis of coherent structures in transitional pipe flow
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Numerical and experimental studies of transitional pipe flow have shown the prevalence of coherent flow
structures that are dominated by downstream vortices. They attract special attention because they contribute
predominantly to the increase of the Reynolds stresses in turbulent flow. In the present study we introduce a
convenient detector for these coherent states, calculate the fraction of time the structures appear in the flow, and
present a Markov model for the transition between the structures. The fraction of states that show vortical
structures exceeds 24% for a Reynolds number of about Re=2200, and it decreases to about 20% for Re
=2500. The Markov model for the transition between these states is in good agreement with the observed
fraction of states, and in reasonable agreement with the prediction for their persistence. It provides insight into
dominant qualitative changes of the flow when increasing the Reynolds number.
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I. INTRODUCTION

The visualization of turbulent flows and boundary layers
via sophisticated experimental methods like particle imaging
velocimetry has led to the identification of a rich variety of
prominent coherent structures, such as waves, streaks, hair-
pin vortices, and lambda vortices [1-4]. These extended co-
herent structures significantly influence large scale momen-
tum transport and Reynolds stresses, and figure prominently
in turbulence research.

Studies on internal flows in confined geometries have
highlighted the dominant role of structures containing pro-
nounced downstream vortices and have led to the proposal of
a three-step self-regenerating mechanism for turbulence
[5-13]. Downstream vortices transport liquid across the
mean shear gradient and create regions of fast or slow-
moving fluid, so-called high- and low-speed streaks. The
streaks generated by this lift-up process become unstable to
the formation of normal vortices, which feed their energy
back to downstream vortices through a nonlinear interaction
mechanism. This closed self-regeneration mechanism ap-
pears to be a generic dynamical feature of turbulent shear
flows. The process was identified in direct numerical simu-
lations of plane Couette flow in narrow cells where trans-
verse modulations are constrained [6,8,13], but it can also be
detected in time-correlation functions in fully turbulent flows
[14].

In its purest form this self-regenerating cycle gives rise to
a periodic solution to the equations of motion. However, in
most coherent structures the flow is not strictly periodic and
always perturbed by background fluctuations. Examples of
exact coherent states have been given in simple models,
where they correspond to periodic orbits [ 15-18], and, in the
full flow, through the numerical identification of three-
dimensional coherent states in channel flows [11,19-26] and
traveling waves in pipe flow [27-29]. In all these cases, the
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coherent structures are dominated by pairs of counter-
rotating downstream vortices and associated streaks which
are regularly arranged in azimuthal direction. The flow fields
are invariant under discrete rotations around the pipe axis.

Since all exact coherent states constructed so far are lin-
early unstable it came as a surprise that they could be di-
rectly observed in experiments [30]. In this work we follow
up on this experimental observation with a study of the ap-
pearance and persistence of these structures in numerical
simulations of pipe flow. In particular, we show how they
can be detected, how frequently they appear, and how long
they persist.

The traveling waves observed in pipe flow are of particu-
lar interest because they are believed to form a backbone for
the turbulent dynamics near the onset of turbulence. Since
the laminar parabolic profile is linearly stable for all Rey-
nolds numbers [31-38] the transition cannot proceed through
states bifurcating from the laminar profile. The turbulent mo-
tion which in many pipe-flow experiments is observed for
Reynolds numbers beyond about 1800, must hence arise via
a nonlinear transition scenario [5,9,39-42]. The traveling
waves are then the simplest persistent nonlinear structures
around which the turbulent dynamics can form. Together
with their stable and unstable manifolds they can give rise to
the basic building blocks of chaotic dynamics, such as hy-
perbolic tangles and Smale horseshoes. While it is unlikely
that one will be able to identify an individual traveling wave
in a time series, it is possible to identify a visit to their
neighborhood, as identified by the appearance of similar
structures in the flow.

In the present paper we propose a way to detect the visits
to the neighborhoods of coherent states, and use it to infer
information about the structures underlying turbulence. To
distinguish different parts of state space and different flow
topologies, we introduce projections onto lower dimensional
subspaces that capture salient features of classes of coherent
states, and study the recurrences to these subspaces: This is
weaker than identifying individual traveling waves but suffi-
cient to discriminate between various flow regimes. On the
technical side, the reduction in resolution also lowers the
requirements on the length of the time traces and helps to
improve the statistical significance.
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The outline of the paper is as follows. In Sec. II we briefly
describe the spectral code underlying the simulation of the
flow. In Sec. III we describe the projection used to detect and
characterize the coherent structures in direct numerical simu-
lations of pipe flow close to the threshold of turbulence. In
Sec. IV we analyze the statistics of the occurrence of coher-
ent structures, and in Sec. V we explore their physical prop-
erties. We close with a discussion and outlook in Sec. VI.

II. SIMULATION OF PIPE FLOW

We consider an incompressible Newtonian liquid in a pipe
of circular cross section subject to no-slip boundary condi-
tions at the walls. The flow is forced by a uniform pressure
gradient which is adjusted to keep the flux constant at any
instant of time [30,43,44]. In other words the integrated vol-
ume flux through a cross section of the pipe is constant, and
the Reynolds number

2 R
Re = Hu)R

14

(1)

is externally controlled in order to be independent of the flow
state of the liquid. Here (u,) denotes the mean downstream
velocity, R is the pipe radius, and v is the kinematic viscosity
of the liquid. In our simulations the pipe is L=10R long, and
we use periodic boundary conditions in the downstream di-
rection: physically, this corresponds to a numerical represen-
tation of the interior of a turbulent patch.

The Navier-Stokes equations are written in cylindrical co-
ordinates (r,¢,z) and solved with a pseudospectral scheme.
In doing so dimensionless units where lengths are measured
in units of the radius of the pipe and velocities in units of 2
times the mean downstream velocity (i.e., the center line
velocity of the equivalent parabolic laminar profile) are used.
Time is measured in units of R/2{u.).

All three components of the velocity field (u,,u,,u,) are
decomposed into Fourier modes in azimuthal and down-
stream direction. Chebyshev polynomials are used for expan-
sion in the radial direction. The velocity field is thus written
as

u, C,

u(p = 2 d’n,m,j ctp . (2)
n,m,j

uz Cz n,m.,j

Here the spectral basis functions are

1 .

(vbn,m,j(r’ ©,7) = ﬁel(nqwmkzz)]"j(r)’ (3)
where 7 denotes the jth normalized Chebyshev polynomial
[45,46], and kzzzf. In physical collocation space the veloc-
ity fields are represented by the values of the fields at the
corresponding Gauss-Lobatto grid points.

A fourth—fifth-order Runge-Kutta-Fehlberg scheme with
adaptive step-size control is used to evolve the solution in
time [47], and the action of the Navier-Stokes operator is
computed via a pseudospectral scheme. The transformation
between spectral and physical space required by the pseu-
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FIG. 1. The coherent vortices are expected to be most prominent
in cross sections perpendicular to the pipe axis, as the shaded plane
in this figure. In experiments, the velocity fields in this cross section
are obtained by stereoscopic particle image velocimetry [30].

dospectral scheme is performed by fast Fourier transform
(FFT) based routines. Constraints (incompressibility, regular-
ity, and analyticity) as well as no-slip boundary conditions
are enforced by a Lagrangian projection mechanism [48].
The simulations presented in this work are carried out
with n Fourier modes in azimuthal and m Fourier modes in

downstream direction, where %+M< 1. Consequently, we

2=
consider up to 49 Fourier modes in azimuthal and up to 45 in
the downstream direction [54]. 47 Chebyshev polynomials
are used for the expansion in the radial direction, adding up

to a total of 3 X 49X 23X 47~1.6X 10> components.
III. DETECTION OF COHERENT STRUCTURES

The traveling waves [27,29] we want to detect are domi-
nated by vortices aligned along the axis, and corresponding
streaks in the downstream velocity components. The down-
stream vortices and streaks are most prominent in cross sec-
tions of the pipe perpendicular to the axis. As in the experi-
ments [30], where stereoscopic particle image velocimetry
was used to extract the velocity fields, we will focus on the
velocity fields in cross sections perpendicular to the pipe axis
(Fig. 1). For the traveling waves it makes no difference
whether we focus on one cross section and follow the time
evolution or whether we freeze the flow at one instance of
time and move the cross section along the axis. The same
applies for a transient appearance of these structures: in a
fixed cross section they will come and go, and in a frozen
flow they would be present in some regions along the axis
and absent in others. In the analysis presented below we
work, as in the experiments, with the time evolution in cross
sections at a fixed position in the laboratory frame. Typical
examples of cross sections with high- and low-speed streaks,
i.e., of regions of high and low downstream velocity, are
shown in Fig. 2. The structures are best visible when a ref-
erence profile is subtracted. In previous works [30] the lami-
nar profile with equal mean velocity was subtracted. Here we
use the mean turbulent profile. It is obtained as the average
over azimuthal angle and time of the downstream velocity at
a fixed radius.

A. Characterizing the symmetry of coherent states

As mentioned in the introduction the coherent traveling
waves identified so far have highly symmetric arrangements

066313-2



STATISTICAL ANALYSIS OF COHERENT STRUCTURES...

FIG. 2. (Color online) Deviation u—{u), of the instantaneous
velocity field u from the mean turbulent profile (u), for a pipe flow
at Re=2200. The shadings (colors) indicate the downstream veloc-
ity component according to the scale specified by the (color) bar to
the right, and the in-plane velocity components are indicated by
arrows. The two panels show (a) a case where no clear structure is
observed and (b) one with a fourfold streak.

of vortex pairs. By transporting fast-moving fluid from the
center to the walls and slow-moving fluid from the wall to
the center region, these pairs of vortices generate elongated
regions of fast- and slow-moving fluid. We therefore focus
on the appearance of symmetric arrangements of high- and
low-speed streaks schematically indicated in Fig. 3. The trav-
eling waves also show that the high-speed streaks close to
the walls are fairly stable and do not move much in the
azimuthal direction over one period. This simplifies their de-
tection amidst the fluctuations of the total velocity field.

The rotational symmetry of the pipe entails that patterns
should be considered identical when they only differ by a
global rotation around the pipe axis. A detector for coherent
states should take this into account and be invariant under
global rotations. We therefore suggest to use an azimuthal
correlation of the downstream velocity u, at a chosen radius
r and axial position z,

C(p) = (u (r, . 2)u (r, @ + h,2)) 0, 4)

where ( ), denotes averaging over ¢. By a straightforward
calculation one verifies that this correlation function is in-

FIG. 3. (Color online) Sketch of the regular arrangement of
high- (dark red) and low-speed (light blue) streaks in coherent
structures. When analyzed at a fixed radial position close to the wall
[(green) dashed line at radius 0.81], all currently known traveling-
wave solutions show high-speed streaks that are equidistantly ar-
ranged on the circumference, i.e., they show an N-fold rotational
symmetry. Typical states contain N low-speed streaks close to the
center, and 2N high-speed streaks close to the wall [27]. However,
states containing N low- and N high-speed streaks were also found
[29].
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FIG. 4. (Color online) (a) Azimuthal correlation functions evalu-
ated at r=0.81 for the velocity fields shown in Fig. 2. When no
clear structure is observed in the cross section, the correlation func-
tion only shows an autocorrelation peak at ¢=0 (red circles). When
a fourfold symmetry is present, e.g., for t=1217.2, the correlation
functions has additional peaks at ¢==+7 and  (yellow boxes). (b)
For a threefold symmetric state (not shown), the additional peaks
appear at ¢==+ 27”

variant under global rotations. Moreover, it reliably uncovers
periodic structures in the azimuthal direction.

Whenever the system approaches a coherent state show-
ing N high-speed streaks close to the wall, the correlation
function C(¢) shows N peaks separated by an angular dis-
placement 277/N. In particular, the fourfold structure of the
downstream velocity field, Fig. 2(b) results in a clear four-
fold structure of the correlation function, which is shown in
Fig. 4(a). In addition to the autocorrelation peak at ¢=0 the
correlation function shows peaks at ¢=J_r757,77. Similarly, a
flow with a threefold symmetry gives rise to peaks at ¢
=0,+ 27 [cf. Fig. 4(b)].

By following C(¢) in time one can detect the lifetimes of
structures, their decay, and the subsequent emergence of new
patterns. An example is given in Fig. 5, which shows the
decay of a four-streak state and the emergence of a six-streak
state within about 1 pipe radius.

B. Automated structure detection

The correlation function C(¢) signals the proximity of the
flow to a coherent state by evenly spaced peaks. Its deriva-
tives highlight both minima and maxima of the correlation
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FIG. 5. (Color online) Azimuthal correlation function plotted as
a function of downstream position in the pipe. One clearly observes
the transition from a four-streak state to a six-streak state. The tran-
sition is quite sharp and happens within a spatial range of a single
pipe radius.

function (see Fig. 6) and emphasize flow structures of com-
parable (azimuthal) streak gradients. Since C(¢) is an even
function in ¢, its derivative is odd. It should have substantial
overlap with the sine function of the appropriate periodicity.
In order to automatically detect evenly spaced maxima and
in order to count their number we therefore define the scalar
measures Zy via a scalar product of the derivative of the
correlation function and sin(N¢) [55],

Zy(1) E—J d4C($) sin(N¢p) d¢p. )

-

This reduction of information to a scalar quantity contains
one parameter, the radius r at which the correlation functions
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are determined. For the Reynolds numbers considered here
we find r=0.81 to be convenient [56]. At this radius, which
is indicated by a dashed (green) line in Fig. 3, the coherent
structures under investigation show a pronounced regular ar-
rangement of high-speed streaks.

By following time traces of Zy for different N we can
study the prevalence of structures of certain multiplicity and
the transitions between them. Examples are given in Fig. 6.
The top frames show d4C(¢), the derivative of the azimuthal
correlator with respect to the angular coordinate ¢, as a func-
tion of the azimuthal coordinate ¢ and the time ¢. The four-
fold structures have eight zeros in their derivative (from four
maxima and four minima), and the sixfold structures have 12
zeros. Parallel nodal lines indicate the presence of these
structures for times of about 10 natural time units.

The lower frames in Fig. 6 show the time evolution of the
corresponding scalar projectors Zy. The indicator Z, shows
pronounced peaks when the fourfold symmetric patterns are
observed in the correlation function and Zg peaks when the
sixfold structures appear; conversely, one is small when the
other one is large. One also notes considerable fluctuations
due to the residual background turbulence. In general, values
of Zy smaller than about 0.01 cannot be considered signifi-
cant indicators of a structure and belong to background fluc-
tuations. On the other hand, comparison of the top and bot-
tom frames in Fig. 6 suggests that a threshold Zy>0.013
signifies the presence of coherent structures with N-fold

symmetry.
Armed with this threshold, we collapse the scalar time
series Zy(r) for N=2,...,8 to a single discrete indicator,

N(t), which assigns to a cross section at time 7 the number N
of symmetric streaks and corresponding vortices it contains.
N takes the values 0,2,3,...,8, where N=0 is assigned to
cases where all Zy remain below the threshold. The maximal
value 8 is an empirical limit, in that states with eight or more
vortices were rarely realized for these Reynolds numbers.

FIG. 6. (Color online) The de-
rivative of the correlation function
d4C(¢) as a function of ¢
and time ¢ (top), and of the
corresponding scalar measures
Z4 [(blue) solid line] and Zg [(red)
dashed line] in the bottom part.
The shading (color coding) in
the top graphs runs linearly

0.02

Zy

0.01

\

~
/ ,\/ﬂ\}' N/

from —0.005 [(blue), dark grey]
to 0.005 [(red) medium grey].
Nodal lines appear in white.
Besides  irregular, featureless
correlation functions at, e.g.,
t=1200,...,1208 and around
t=1230, there are long stretches of
time where the function shows
a distinct fourfold (e.g., at
t=1210,...,1220) and sixfold
symmetry (e.g., around r=1334
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FIG. 7. (Color online) Comparison of the statistical weight of coherent structures with N-fold symmetry in transiently chaotic time series
of flows with different Reynolds numbers: (a) Re=2200, (b) Re=2350, (c) Re=2500. The (red) dark bars in the front are directly calculated
from the simulation output, and the (green) lighter bars in the background are the prediction of the Markov model.

IV. STATISTICAL ANALYSIS OF THE TIME SERIES

Based on the time series Zy(t) we now explore the statis-
tical properties of the occurrence of coherent structures in
pipe flow. The aim of this statistical analysis is twofold: we
want to see how frequently structures of a certain multiplic-
ity are present and we want to study the extent to which a
Markov approximation can describe the switching between
states.

A. Probability distribution of coherent states

Figure 7 shows the probabilities of detecting a coherent
state of N-fold symmetry in time series taken at different
Reynolds numbers Re close to the transition to turbulence.
For Re=2200 about 24% of all cross sections fall into the
categories N=3, 4, 5, and 6. For Re=2500, the fraction de-
creases slightly to about 20%. This high fraction explains the
ease with which coherent structures were picked out of ex-
perimental cross sections [30], and underlines their signifi-
cance as building blocks of the turbulence in the transition
region.

With increasing Reynolds number the weight of states
with large N increases. These structures are much closer to
the walls where they give rise to steeper gradients in radial
and azimuthal direction and consequently larger friction. As
these structures have more spatial degrees of freedom, it is
less likely that they appear in perfect symmetry. Hence, their
correlators have smaller amplitudes, and it would be interest-
ing in forthcoming work to probe for the structures with a
localized correlator.

B. Markov model for transitions

The typical persistence time of a pattern in Fig. 6 is about
5 to 10 time units, and the transition between the four-streak
and six-streak state shown in Fig. 5 takes about 1 time unit.
When discretizing time in order to describe the transitions
between different patterns, the sampling time scale should
therefore not be much longer than about 5. Otherwise one
misses states. On the other hand, if the time steps are much
shorter than unity, one begins to probe the continuity of the
time evolution. As representative examples in this interval

we explored the discrete dynamics of discretized time se-
quences with a time spacing of 7=1.4 and of 7=2.4. Since
different 7 lead to results which cannot be distinguished
within our error margins, we will in the following present
data for 7=1.4 only.

By considering the underlying flow at multiples of the
time unit 7 its continuous dynamics is transformed into a
discrete time series. The conditional probability that one en-
counters an N'-streak state in the following snapshot, when
currently facing an N-streak state defines a transition matrix
Tyy- Its indices N and N’ take the values O (when there is no

streak), and N=2, ...,8 when Zy exceeds its threshold value.
For the Reynolds number Re=2200 we find
T(T=1.4)

090 0.26 0.26 0.27 0.38 0.55 0.71 1.00
0.00 0.73 0.00 0.00 0.00 0.00 0.00 0.00
0.02 0.00 0.72 0.01 0.01 0.01 0.02 0.00
0.04 0.01 0.01 0.71 0.03 0.03 0.07 0.00
0.03 0.00 0.01 0.01 0.57 0.03 0.00 0.00
0.01 0.00 0.00 0.00 0.01 0.38 0.04 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(6)

The columns of the matrices add up to 1 because each state
must go to one of the eight admissible states in the next time
step,

> Tyn=1. 7)

N'=0,2,3,....8

Our statistics is based on more than 17 000 snapshots from
nineteen independent runs for Re=2200, and more than
15 000 snapshots from eight and nine runs at the higher Rey-
nolds numbers Re=2350 and Re=2500, respectively. In or-
der to reflect this statistical uncertainty in the transition prob-
abilities, they are given with a precision of 0.01. In
particular, an entry 0.00 means that the transition probability
is smaller than 0.005. For the lowest Reynolds number Re
=2200 the N=8 class is observed only once, and it immedi-
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p(N,n)

0.001

FIG. 8. (Color online) Distribution of the persistence time of coherent structures with N-fold symmetry for the data also shown in Fig.
7. Following Eq. (9) the slope of the straight lines is determined from the diagonal elements of the transfer matrix. Time is measured in units
of the sampling time 7=1.4. [N=4, open (blue) circles and (blue) dotted line; N=>5, (red) filled boxes and solid (red) line; N=6, open (green)

triangles and (green) dashed line.]

ately relaxed into the N=0 state (cf. rightmost column of
T;;). As a consequence, all entries in the lowermost row of
the transition matrix (6) vanish. Despite its rare occurrence,
the N=8 state is included in the analysis because its statisti-
cal weight increases with Reynolds number: It reaches 0.4%
at Re=2500.

C. Invariant distribution and lifetime of coherent states

To check that the Markovian dynamics generated by the
transition matrices faithfully represents the continuous dy-
namics, we first calculate the invariant probability distribu-
tion e, defined as the eigenvector to the eigenvalue 1, i.e.,

e=Te. (8)

Figure 7 shows that the ey faithfully reproduce the relative
frequencies in the original data. Consequently, there is no
indication of correlations in the succession of the coherent
states detected in the numerical data. This allows us to inter-
pret differences of the macroscopic features of the flow at
different Re in terms of changes of the properties of indi-
vidual coherent states and the change of their weight. A com-
parison of the histograms for the different Re shows that the
number of visited coherent states increases upon increasing
Re. Section V addresses the question whether the increasing
complexity of the flow patterns is entirely due to this effect,
or whether there is also a noticeable contribution from
changes of the individual coherent states.

Except for N=8 the highest transfer probabilities in each
column appear along the diagonal of 7. These elements de-
scribe the persistence of flow patterns from time step to time
step. Therefore, the probability density function p(N,n) to
observe the pattern for n consecutive time steps scales like

p(N,n) ~ (Tyy)". )

Figure 8 shows data for the lifetime calculated from direct
numerical simulation of the flow, together with the prediction
from the Markov model, which is shown as straight lines in
the semilogarithmic plot of lifetimes. Since long persistence
times are exponentially suppressed this comparison requires
very long time series to check the prediction with reasonable
statistical accuracy. Within these limitations there is a very
good agreement between the data and the prediction.

V. PHYSICAL PROPERTIES OF DETECTED STATES

The different flow patterns also affect the velocity and
fluctuation statistics. As examples we consider the Reynolds
stresses s..=(u.u.), s,=u,u,), and s..=(u.u,). Taking aver-
ages over ¢, but not over time, provides probability distribu-
tion functions (pdfs) runs of temporal variations of these
quantities (dashed lines in Fig. 9 labeled as “combined”), as
well as conditional pdfs referring to states with a fixed num-
ber of streaks (solid lines labeled as “state 3” through “state
6”) and the turbulent unstructured state (solid lines labeled as
“state 0”"). The overall pdf can thus be decomposed into con-
tributions of the previously discussed high-symmetry coher-
ent states and a turbulent remainder (state 0). To emphasize
the role played by the coherent states in changing the shape
of the distribution of the considered component of the Rey-
nolds stress the abscissa is always normalized to its overall
temporal average. For instance, s, is normalized by its aver-
age s, and the resulting normalized stress is denoted §,.
=s../s... By definition the mean of the §.. distribution is
therefore unity. However, the conditional pdfs for specific
states will in general have means different from one. If the
mean is larger than one, the state shows—on average—larger
stress components than the temporal average value of the
component. Table I lists both the absolute and the normalized
mean values of all pdfs shown in Fig. 9.

A. Probability distribution functions at fixed Re

From a physical point of view the interest of the decom-
positions of the total pdf into conditional ones for turbulent
and individual coherent states lies in the insight it gives into
how the coherent states contribute to the exceptional statis-
tics of fluctuations in turbulent flow. We first consider the
decomposition of the pdfs at fixed Re, i.e., we discuss the
trends in the mean of the data shown in individual panels of
Fig. 9.

On the average the detected coherent states generate much
stronger Reynolds stresses than those found for the unstruc-
tured turbulent state 0. Consequently the coherent states shift
the means and the maxima of the combined pdf to slightly
larger values. Compared to the pdf of state O (dashed black
line) the coherent states add a fat tail to the combined pdf
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FIG. 9. (Color online) The axial velocity fluctuations (top), radial velocity fluctuations (middle), and radial momentum transport (bottom)
for flows at Reynolds numbers Re=2200 (left), Re=2350 (center), and Re=2500 (right). Different lines refer to the overall time-averaged
signal (dashed black, left axis), and the one averaged only over turbulent states, where no streaks are detected (solid black, left axes). The
other lines (in color) give the respective contributions of states with a given number of streaks (right axis). The histograms are normalized
with respect to their integral, i.e., the overall distribution (dashed line) is normalized to unity, and all other distributions (given by solid lines)
add up to the overall distribution. Their norm consequently amounts to the weights shown in the histograms in Fig. 7, and the position of
their maxima indicate for which values they most strongly contribute to the overall signal.

(black solid line) on the side of larger values of the stresses.
In order to gain insight into the mutual importance of the
different states we discuss the trends in the mean and
maxima as a function of the number of streaks N.

The normalized stress §,, characterizes the intensity of
streak structures in the flow field by estimating their down-
stream velocity. The maxima and mean values of its pdf
decrease in the order N=3, 4, 5, and 6. This can be inter-
preted as follows: The product of typical gradients of u, with
the length scale over which the gradients persist is of the
order of magnitude of the typical velocity fluctuation in

downstream direction. Consequently, the azimuthal compo-
nents of the gradients of u, are of the same order of magni-
tude in all coherent states, and their typical length scale de-
creases like N7,

The radial component §,, measures the typical fluctuations
of the radial velocity component, i.e., it characterizes the
strength of the vortices. For this stress there also is a clear
trend in the position of the maxima and mean values with N,
but with the sequence reversed: the highest value for the
maximum appears for N=6, and it decreases towards N=3.
This finding suggests that stronger vortices are needed to
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TABLE 1. The temporal mean (tot) of the Reynolds stresses s,,={u.u.), s,.={u,u,), and s, =(uu,) in units of 4{u_)?, and those of the
corresponding conditional pdfs for disordered motion (state 0) and coherent states with N=3, ... ,6 streaks, respectively. In addition also the
corresponding relative values §;; are given which are normalized with respect to the overall temporal mean of the considered component of

the Reynolds stress. The related pdfs are shown in Fig. 9.

Re 2200 2350 2500
ij 10%s;; $ij 10%s;; $ij 10%s;; §ij
2z tot 105 1.00 103 1.00 96 1.00
0 98 0.94 98 0.95 92 0.95
3 134 1.28 136 1.32 130 1.35
4 122 1.16 121 1.18 119 1.24
5 117 112 114 111 111 1.15
6 116 111 110 1.07 106 1.10
rr tot 1.05 1.00 1.46 1.00 2.02 1.00
0 0.98 0.94 1.42 0.97 1.98 0.98
3 0.95 0.90 1.31 0.90 1.47 0.73
4 1.24 1.18 1.55 1.06 1.95 0.96
5 1.42 1.35 1.71 1.17 2.26 112
6 1.80 171 1.90 1.29 2.47 1.23
zr tot 4.73 1.00 5.62 1.00 6.51 1.00
0 4.29 091 5.26 0.94 6.19 0.95
3 5.34 113 6.23 L11 6.32 0.97
4 6.12 1.29 6.74 1.20 741 1.14
5 6.51 1.38 7.09 1.26 7.95 1.22
6 7.23 1.53 741 1.32 8.24 1.27

maintain the smaller streaks in coherent states with larger N.

From a physical point of view the Reynolds stress s, is
the most interesting of the three quantities. After all, it re-
flects the strength of the radial momentum transport. Hence
it provides direct insight in the friction factor in the turbulent
flow [49], and it also immediately reflects the role of the
coherent states in the flattening of the laminar flow profile in
radial direction. In view of the opposite scaling of the radial
and axial velocity components observed in §,. and §_, re-
spectively, its N dependence results from a most subtle bal-
ance. Indeed, the counteracting trends almost cancel, leaving
only a very weak decrease in the position of the maxima in
the sequence N=6, 5, 4, and 3.

B. Drift of the mean with Re

In order to explore how the components of the Reynolds
stress change with Reynolds number, and which physical ef-
fects generate the observed trends, one observes that the
mean X of a combined pdf P(x)=3yeyPy(x) with [dxP(x)
=1, [dxPy(x)=1, and 2 yey=1 is the weighted average of the
means Xy of the conditional distributions Py(x),

)?=fdxxP(x)=EeN dx x Py(x) = >, ey Xy
N N

In Fig. 9 the conditional pdfs eyPy(x) are plotted together
with their sum P(x) for x=§.., §,,, and §,,, respectively, and

the abscissa is scaled such that x=1. The shift in the mean of
P(x) therefore arises as an average of the distance of the
mean Xy from unity with weights ey previously discussed in
the framework of the Markov model (cf. Fig. 7). There are
two physical effects underlying the observed changes in the
statistics with Re: (1) the change of the mean of conditional
pdfs of the different states, and (2) the change in the statis-
tical weights of the states. We will disentangle these contri-
butions now for the physically most interesting case of s.,.

Both visual inspection of the conditional pdf in Fig. 9
(bottom row), and the values of the normalized mean values
in Table I show that there only is a slight drift of the coherent
states’ pdfs with Re. In contrast, as observed upon discussing
Fig. 7 their weights show pronounced changes. The non-
trivial evolution of their weights with Re suggests that the
coherent states contribute to the change of the overall mean
mainly by the change of their statistical weights ey. This
becomes particularly clear when plotting the relative change
As_./s,, of the position of the mean when increasing Re from
2200 to 2350 and from 2350 to 2500, respectively (Fig. 10).
In the first interval this change is dominated by the one of
state 3 while state 6 hardly contributes, and in the latter
interval these two states take just the opposite roles.

We thus conclude that our statistical analysis allows us to
identify the contributions of classes of coherent states to the
anomalous statistics of turbulent pipe flow, and to disen-
tangle the changes with Re into changes of the statistical
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FIG. 10. (Color online) The solid black line shows the contri-
bution of the states with streaks to the shift of the expectation value
of s, when Re is increased from 2200 to 2350 and from 2350 to
2500, respectively. The shift results from those in the restricted pdfs
for states with 3, 4, 5, and 6 streaks, which are shown by broken
lines (the colors match the choice adopted in Fig. 9).

weights of the states, and the comparatively smaller ones due
to the Re dependence of the properties of individual states.
These findings suggest that turbulent transients close to Re
=2000 are dominated by coherent states with only a few
streaks. In contrast, at higher Re successively more coherent
states with larger number of streaks affect the time series.

VI. DISCUSSION

In this section we want to summarize the results from the
present simulation of pipe flow and point to the parts that
could be useful in analyzing other shear flows as well.

The automatic detection algorithm for coherent states,
which was first used in [30] and was expanded on here, is
fairly robust. It can be generalized to other flows as well. The
algorithm systematically searches for structures that show a
symmetric azimuthal arrangement of high-speed streaks
along the wall which is topologically very similar to the one
observed in exact coherent states reported in [27,29,30]. The
detection is based on a Fourier-mode decomposition of the
radial velocity. Because the detected states have the same
symmetry structure also in the other components of the ve-
locity field, the results should be robust against details of the
implementation of the detector. Different projectors con-
structed following the outline in Sec. III should lead to simi-
lar results. For extensions to larger Re it might, however, be
valuable to consider extensions to asymmetric expansions of
the flow field, e.g., by using wavelet [50,51] or Gabor
[52,53] representations to extract basic units of coherent
structures which contain only a single pair of vortices.

In principle, one can obtain more accurate information
about the statistical properties of the flow by including more
degrees of freedom and subsequent extensions of the sub-
space of projection. In practice, however, the refinements are

PHYSICAL REVIEW E 75, 066313 (2007)

limited by the available data set, because more degrees of
freedom require many more data points in order to guarantee
statistically reliable results.

Irrespective of the chosen detector, the present method
can be used to quantitatively analyze coherent structures in
turbulent flow: the automatic projectors give information
about the probability to observe certain coherent structures,
their lifetimes, and the transitions between these different
states. A number of observations can thus be made.

(1) The coherent states carry a considerable statistical
weight of =20%. This shows that even though the states are
linearly unstable, they influence the flow for a considerable
part of its evolution. These numbers explain a posteriori why
the states could be observed in the experiments by Hof et al.
[30].

(2) Upon increasing Re from 2200 to 2500 the combined
statistical weight of all detected coherent states decreases
only weakly. However, there is a clear shift toward states
with a larger number of streaks.

(3) Due to their prevalence the coherent states signifi-
cantly influence the turbulent dynamics at low Re. This
opens a route to modeling turbulence by exploring dynami-
cal interconnections between coherent states. To this end we
considered the dynamics as a random walk between a limited
number of coherent states, and extracted the transfer prob-
abilities between states from the numerical time series. The
predictions of the Markov dynamics agree very well with the
numerically observed frequency of occurrence and the life-
time of the coherent states.

(4) The decomposition of the Reynolds stresses into con-
tributions arising from irregular motion and contributions
from coherent states with three, four, five, and six high-speed
streaks allowed us to study the contribution of different
structures to the radial momentum transport. Trends in the
changes of the radial momentum transport with Re could be
explained in terms of substantial changes of the individual
dynamical importance (statistical weights) of the states while
the properties of individual states change only slightly. Both
effects could be separated based on our statistical analysis.

We conclude that the methods presented in the present
paper can be used to quantitatively analyze and describe tur-
bulent dynamics close to the transition to turbulence. Obvi-
ously, they can be extended to projectors which provide a
still more detailed characterization of the flow, and they can
be used in other flows as well. Since the approach does not
make use of specific features of our numerical setup, it
should be applicable to the analysis of numerical and experi-
mental data alike.
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