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Structure of the thermal boundary layer for turbulent Rayleigh-Bénard convection of air
in a long rectangular enclosure
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Measurements of the temperature distribution were performed in the upper (cold) boundary layer of a
rectangular Rayleigh-Bénard cell with aspect ratios I',=5 and I'y=1 using air with Prandtl number Pr=0.71 as
the working fluid. The range of investigated Rayleigh numbers was from Ra=~6X 107 to Ra=~6 X 108, and the
measurements were taken at two different positions with the purpose of understanding the variation of the
properties of the thermal boundary layer along the cell. We present profiles of the mean temperature, rms
temperature fluctuations, skewness, and kurtosis as a function of the distance from the cooling plate from
which we extract scaling exponents and boundary layer thicknesses. Whereas most of these quantities are
found to depend monotonically on the Rayleigh number for the peripheral measurement position, their values
at the central measurement position exhibit a high degree of variability. These observations indicate that the
properties of the thermal boundary layer in large-aspect-ratio convection can have strong spatial variations.
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I. INTRODUCTION

The Rayleigh-Bénard experiment is an interesting model
for the study of turbulence and heat transport whose global
properties such as the Nusselt number as a function of the
Rayleigh number have been investigated in great detail in the
past [1-3]. There are much fewer local measurements within
the thermal boundary layer [4-9], and those measurements
which exist either had a moderate spatial resolution [6,8,9] or
were performed at aspect ratios of order 1 [5]. The purpose
of this paper is to fill this gap by studying the properties of a
turbulent boundary in a large-aspect-ratio cell.

Rayleigh-Bénard convection occurs in a volume that is
heated from below with the temperature 7}, and cooled from
above with temperature 7,. There is hence a temperature
difference AT=T,,—T, between the two plates, which drives
the flow. The boundary conditions are usually assumed as
adiabatic at the sidewalls and isothermal at the top and bot-
tom plates. When this kind of convection takes place in a
rectangular volume, it can be described in detail by four
control parameters, namely, the Rayleigh number Ra, the
Prandtl number Pr, and the two aspect ratios I'y and I',. The
Rayleigh and Prandtl numbers are defined as
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In the given equations we used the following variables: S is
the coefficient of thermal expansion, g is the acceleration of
gravity, h is the distance between heating and cooling plates,
[ is the length of the cell, w is the width of the cell, v is the
kinematic viscosity, and « is the thermal diffusivity. When
the value of Ra is above 109, the so-called turbulent convec-
tion regime in air occurs [10]. The concept of “hard turbu-
lence,” which has been studied in previous works [11], pre-
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dicts a transition from soft to hard turbulence at Ra=4
% 107. Since our Ra range begins at 6 X 107 we are in the
regime of hard turbulence and do not observe the transition
from soft to hard turbulence. It was also generally observed
that large-scale circulations in Rayleigh-Bénard convection
exist above Ra=5 X 107 [12]. This regime is the focus of our
paper.

The goal of the present work is to investigate the variabil-
ity of the thermal boundary layer in air in a Rayleigh-Bénard
experiment with two different aspect ratios, a large one and
one of order unity. More precisely, we use a rectangular con-
vection cell with one large aspect ratio, namely, I",=5, and
one intermediate aspect ratio I',=1. We are interested in the
structure of the temperature field in the region below the
cooling plate, which is referred to as the thermal boundary
layer. Our particular concern is to compare the vertical struc-
ture of the thermal boundary layer at two distant locations.
The motivation for such an investigation is twofold.

First, it is known that in Rayleigh-Bénard experiments
with I',=T" =1 a robust large-scale circulation exists which
is sometimes called “wind” and that the properties of the
thermal boundary layer change along this wind [5,14]. By
contrast, there is no permanent large-scale structure when the
aspect ratio is large [7], and it is therefore interesting to
analyze how strongly the structure of the thermal boundary
layer depends on the horizontal position. A second motiva-
tion for studying Rayleigh-Bénard convection in a cell with
vastly different aspect ratios comes from the fact that the
reliable prediction of air flow in passenger compartments of
airplanes, trains, and buses requires a comprehensive under-
standing of the properties of large-scale coherent structures
in mixed (forced and thermal) convection. Understanding
pure thermal convection, as in the present work, is a prereq-
uisite to accomplish this task. Before describing our experi-
ment and results in detail we briefly recall some basic fea-
tures and open questions regarding the behavior of the mean
temperature profiles 7(z) in Rayleigh-Bénard convection
(where z denotes the distance from the cooling plate).

The primary quantity necessary to nondimensionalize the
temperature profiles is the kinematic heat flux ¢, which is
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related to the temperature gradient at the wall as

T
q=r —

pe 3)

z=0

The kinematic heat flux defines a natural scale of tempera-
ture variations within the thermal boundary layer, which we

denote by
30\ 14
Tq=(‘1—) : @)
Bgx

and which constitutes the thermal analog to the friction ve-
locity in turbulent shear flows. This temperature scale has
been used since the very early work on thermal convection
[9,13] and has recently been successfully applied by [15] to
represent temperature profiles in vertical heated walls. T,
together with ¢ define a length scale

3 1/4
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which is the microscale of our problem. Following the pro-
cedure known from shear flows we introduce the nondimen-
sional temperature ®* and length z* via

T-T,

T,

o , Z'= (6)
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For sufficiently high Rayleigh numbers it can be assumed
that there is a range of length scales z which are much larger
than the “inner” length scale 6 and much smaller than the
“outer” length scale & in which the temperature profile has a
universal shape.

The earliest phenomenological theory of turbulent con-
vection which goes back to Prandtl [16] assumes that the
difference between the temperature 7(z) and the temperature
T, far away from the plate (called the bulk temperature)
should be independent of the molecular transport coefficients
« and v. On dimensional grounds, the only combination that
satisfies this condition is

g \13
T(z)—Tb=A<—> , (7)
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where A is a phenomenological coefficient that has to be
determined from experiments. Using the above definition of
nondimensional quantities together with 7),=T,+AT/2 and
the definition of the Nusselt number Nu=gh/kAT, we can
write this profile as

A
0" = 13 +B (8)

with B=Ra"*Pr'/*/2Nu**. An alternative is to assume that
the temperature gradient is independent of the outer length
scale &, which leads to the classical logarithmic scaling law
[15,17,22]

O*=Cln(z*) +D. 9)

There is an ongoing and still unresolved debate in the
turbulent shear flow community as to whether the mean ve-
locity in pipe and channel flows can be equally well repre-
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FIG. 1. Schematic geometry of the Rayleigh-Bénard cell used in
the present work together with flow pattern observed at Ra=6
% 108 in a preliminary flow visualization study using a light-sheet
technique.

sented using a power law scaling [18-20]. In line with these
arguments one should also consider the possibility of a
power law temperature scaling of the form

Ot =Ez ™. (10)

One of the purposes of our paper is to understand which
of these scaling laws is realized in turbulent Rayleigh-
Bénard convection. The representation of temperature pro-
files in wall variables requires a knowledge of the heat flux.
Since we do not have direct access to this quantity, we will
not represent our measurements in terms of ®* and z* but
rather in outer units, namely, AT and h. However, we will
briefly return to this question in the last section.

The main purpose of the present experimental study was
to characterize the temperature distribution in the cell by
means of local temperature measurement at two lateral posi-
tions under the cooling plate. Since the temperature behavior
is connected directly with the flow structure in the cell, a
preliminary flow visualization experiment was performed in
order to select those measurement positions which would
provide a maximum of information about the large-scale cir-
culation. It is generally known that for a rectangular channel
that is quite long compared to its width, the time-averaged
coherent structures have the shape of short cylinders with
fronts to the long channel walls [21]. Results of preliminary
visualization experiments, performed in our cell, confirmed
this statement. The visualization was done using helium-
filled soap bubbles and a laser light sheet. The prevalent
structure we observed at different Ra was a double roll with
a strong upflow or downflow in the middle of the cell. The
observed flow is sketched in Fig. 1. Based on these observa-
tions we selected one position exactly between the two con-
vection rolls and the other one above the middle of one con-
vection roll. The focus of our study is on the comparison of
the data of both measurements positions. In Table I we give
a short overview of the results of four previous studies where
the temperature field, and in particular the scaling of the rms
temperature fluctuations o(z) in the mixing layer, as well as
the thickness of the thermal boundary layer J,,, were inves-
tigated. The first study was performed by Belmonte et al. in
a cubic cell with compressed gases at Pr=0.7 [4]. For Ra
>2 X 107 the results led to a power law dependence of the
form J,;,=Ra” with y=-0.29. The analysis was done using
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TABLE I. Summary of previous experimental results: Scaling properties of the distribution of rms temperature fluctuations o(z) in the

mixing layer and the thickness of the thermal boundary layer &y,.

Reference Working fluid and geometry Ra o(z) S~ Ra”

Belmonte ef al. [4] Water, cubic cell 1.1x10° o~7%8 o~1n(z) y=-0.29
SFg, cubic cell 4X10°<Ra<10"! o~7972 g~In(z)

Lui and Xia [5] Water, cylindrical cell 108<Ra< 10" -0.33<y=<-0.29

Fernandes and Adrian [7] Water, rectangular cell 10’ <Ra<10° o~1n(z)

Du Puits et al. [14] Air, cylindric cell 10°<Ra< 10" o~ 7 0H=p=-03 y=-0.25

the extrapolation method and will be described in Sec. II D.
Another study was performed by Lui and Xia in a cylindrical
cell filled with water [5]. They confirmed the dependence
5,=Ra "% just for the measurement in the central axis of
the cylinder. Toward the cylinder wall the exponent 7y in-
creased and approached the “classical” value y=-0.33. Yet
another work that is relevant to our own investigations was
done by Fernandes and Adrian with emphasis on the rms
scaling in the mixing layer; this will be discussed in Sec.
III D. The latest and most extensive study about Rayleigh-
Bénard convection with emphasis on the structure of thermal
boundary layer was recently published by du Puits et al. for
a large-scale cylindrical cell [14].

The paper is organized as follows. In Sec. II we describe
our experimental method and procedures. This section con-
sists of four subsections where we specify the experimental
setup, the measurement system, the signal processing, and
the determination of thermal boundary layer thicknesses, re-
spectively. The experimental results are presented in Sec. III,
which is divided into four subsections. Section III A dis-
cusses the long-time temperature series. Secs. III B and III C
discuss the properties and statistical analysis of temperature
profiles. We summarize our analysis in the discussion about
boundary layer thickness in Sec. Il D and conclude our
study in Sec. IV.

II. EXPERIMENTAL METHOD AND PROCEDURES
A. Experimental setup

The configuration of the Rayleigh-Bénard cell used in the
present experiment is shown in Fig. 2(a). The working fluid
is air. The cell is a rectangular box with 2.5 m length, 0.5 m
width, and 0.5 m height. The box is heated from below
(cooled from above) by means of 37-mm-thick water-heated
(water-cooled) plates. The plates are made of aluminum. The
copper pipes, located inside the plates, have a diameter of
20 mm. In order to ensure a low level of temperature non-
uniformities along the plates the distances between the pipes
in the plate are only 30 mm. Two separate water circulation
systems with pumps provide the temperature control of both
plates. The heating plate can be heated up to 100 °C. This
value is limited by the boiling temperature of water and the
temperature stability of the Perspex walls. The minimum ac-
ceptable temperature of the cooling plate is 10 °C, because
of condensation effects that take place below 10 °C. The
heating and cooling apparatuses have an accuracy of tem-
perature adjustment of +0.1 K. The construction of the cool-

ing and heating plates ensures a temperature distribution in-
homogeneity of +0.1 °C on the surface of the plates. This
uniformity is comparable to that in Ref. [14]. The tempera-
ture distribution within both plates is monitored by 40 Pt-100
(platinum resistance thermometer, at temperature 7,=0, the
resistance Ry=100 ()) temperature probes.

The sidewalls of the cell have a thickness of § mm and
are made of Perspex. This transparent material allows optical
access to the cell for future optical flow measurement. In
order to reduce heat losses between the cell and the environ-
ment, the side walls are isolated with Styrodur. An insulating
layer of 180 mm thickness was found to be sufficient to
minimize heat losses through the walls. With the described
temperature interval from the minimal cooling plate tempera-
ture of 10 °C and maximal heating plate temperature of
90 °C, and the distance between the plates £=0.5 m, we can
cover a range of Rayleigh numbers from Ra=~6 X 107 up to
Ra=~6X 108, We define our Cartesian coordinate system as
follows. We place the origin at the center of the lower sur-
face of the cooling plate. The x axis is parallel to the long
side of the upper plate, and the z axis is oriented downward.
Our central measurement position is X,=-50 mm, whereas
our peripheral measurement position is X,=650 mm [Fig.

2(a)].
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FIG. 2. Schematic of the Rayleigh-Bénard cell with central X,
and peripheral X, measurement positions (cut along the longitudinal
axis of the cell) (a); schematic of the thermistor probe positioning
for both measurement positions (b).
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B. Measurement system

To investigate the local temperature profiles, a sensor sys-
tem based on a glass-encapsuled negative temperature coef-
ficient (NTC) microthermistor is used. The microthermistor
has a diameter of 120 wm. The thermistor is mounted on a
4-mm-thick support and a small transistor case, as shown in
Fig. 2(b). Between the pins of the transistor case the sensor is
fixed by a 20-um-thick wire. The sensor can be moved be-
tween z=0.07 mm and z=150 mm with a one-dimensional
(ID) traverse system. The smallest step of the sensor dis-
placement is 10 um. The smallest distance between the sen-
sor and plate wall corresponds to one-half of the thermistor
diameter. A fundamental problem is the correct adjustment of
the sensor at the starting position. The distance between the
plate and the sensor has to be as small as possible, but with-
out any electrical contact with the plate surface. Otherwise
the contact short-circuits and creates signal errors. During
the adjustment the sensor image was zoomed ten times by a
digital camera and displayed on the monitor. The resolution
of the monitor allows an adjustment of the sensor with an
accuracy of 50 um. In order to avoid measurement errors
due to a self-heating effect, a very low current is used for the
thermistor operation. The resistance variance from the ther-
mistor is amplified by a resistance bridge with an internal dc
voltage source. The bridge performs two functions in the
measurement, namely, the transformation of the resistance
variance from the thermistor to a voltage signal and an am-
plification by a factor of 100. The output voltage of the
bridge is measured by a digital multimeter HP3458. This
device has a maximum sampling rate of 333 s™! and a reso-
lution of six digits. The whole measuring system is con-
trolled by a personal computer with LABVIEW software. The
voltage signal from the multimeter is converted into the tem-
perature value and all sampled data are saved on hard disk.
The traverse system with a step motor are operated automati-
cally by a personal computer. The measurement interval is
located in the range 0.07<<z<<150 mm distance from the
cooling plate and is sampled at 34 nonequidistant positions
with 10 wm steps in the vicinity of the plate. The usual mea-
suring time for each position was 1.5 h with a sampling rate
of 200 s, resulting in k=1 080 000 temperature values for
one position. As a result 34 temperature series T;(z) with 1
< i<k represent the raw data for the temperature profile. The
total measurement time for one complete profile amounts to
50 h. All long-time errors caused by remaining environmen-
tal influences are largely excluded by a random selection of
the measurement positions.

C. Profiles

Due to the vigorous heat transport processes in turbulent
Rayleigh-Bénard convection, the mean temperature suffi-
ciently far away from the walls is often approximately equal
to

T,=T,+—. 11
b c 2 ( )

Even though this is not always the case in our experiment,
probably due to large-scale flow structures, we use this nomi-
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nal bulk temperature to normalize our temperature fields.
Our primary measurement data are time-series of tempera-
ture which we denote as Ti(z). This abbreviation stands for
the ith value of temperature taken from the sensor that is
located at position z. For the dimensionless representation of
data we use the quantity ©,(z) defined as

_ Ti(Z) =T,

0, .
i(2) T T.

(12)

The profiles of the normalized mean temperature ®(z) are
calculated from the time series ©,(z) by

K
0= -3 0. (13)
i=1

We further characterize the temperature field by calculat-
ing the profiles 2(z) of the standard deviation. These quan-
tities have the dimension kelvin and are defined as

LK 12
3(2)= (EE [Ti(z) - T(Z)]2> : (14)
i=1

The standard deviation enables us to calculate the nondimen-
sional rms temperature fluctuations defined by

2(z)

o(z) = AT (15)
This quantity will later be used for the characterization of
the flow in the mixing zone and the definition of one of
several boundary layer thicknesses. The profiles s(z) and k(z)
of skewness and kurtosis, respectively, give us additional in-
formation about the flow structure and provide additional
possibilities to define the boundary layer thicknesses. The

skewness s(z) is calculated by

K
; [T(2) - TP

i=1
S(Z) = g T P ( 1 6)
whereas the kurtosis k(z) is defined as
K
| 2 [T - T
i=1
k(z) = X 4 (17)

D. Boundary layer thicknesses

The concept of a boundary layer plays a key role in tur-
bulent thermal convection. It is desirable to characterize the
structure of the thermal boundary layer by a small number of
quantities that can be extracted from the profiles 0(z), o(z),
5(z), and k(z) defined in the previous section. These quanti-
ties, which we refer to as boundary layer thicknesses, will be
defined next. Belmonte et al. [4] and many other investiga-
tors define the thickness 9§y, of the thermal boundary layer as
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FIG. 3. Temperature time series from position X, at three different z (from left to right, z=1.4, 16, and 150 mm), for Ra=5.6 X 107 (a)

and Ra=6x 108 (b).

5m=( 49 (18)

dz

-1
z—0>

This definition tacitly assumes ©(z)|,_o=0 (isothermal
plates). The boundary layer thickness so defined can be in-
terpreted as the distance from the wall at which the extrapo-
lation of the linear portion of the mean temperature profile
equals the bulk temperature. Belmonte et al. [4] found a
power law dependence of the boundary layer thickness &, on
Ra which is given in Table I. The quantity J,, cannot be used
in our experiment because our measured temperature profiles
do not obey ®(0)=0. This effect has already been observed
in other Rayleigh-Bénard experiments with air [14] and will
be explained in detail in the discussion in Sec. III B. A sec-
ond boundary layer thickness can be defined using the maxi-
mum of the rms profile o(z). The mathematical description
of this definition is

8, ={z:0(z) = max}. (19)
Belmonte et al. [4] found that for Ra>2X 107 this maxi-
mum is located exactly at J,,. The quantity J, will be used
below to characterize our boundary layers.

Two other boundary layer length scales based on the pro-
files of skewness and kurtosis will be applied. They were
already discussed by du Puits et al. [14]. The first one is
defined by the point where the skewness of the temperature
fluctuations vanishes, whereas the second one is the point at
which the kurtosis is equal to that of a signal with Gaussian
distribution. In mathematical terms,

8,={z5(z) =0}, & ={zk(z) =3}. (20)

The length scales so defined will be discussed in detail in
Sec. III C.

III. EXPERIMENTAL RESULTS

A. Time series of temperature

We start to describe the experimental results with a dis-
cussion of temperature time series. As mentioned earlier,
long-time series at 34 different positions were measured for
each Ra. Due to the high sampling rate, we can observe all
fluctuations even on the smallest scale and get detailed infor-
mation about the temperature field at every measurement po-
sition. In the example in Fig. 3 the high temporal resolution
of our measurement can be seen. For comparison the results
of two different Ra, namely, Ra=5.6 X 10 [Fig. 3(a)] and
Ra=6X 10® [Fig. 3(b)] are shown. The normalized tempera-
ture is plotted over a time interval of 30 s. The value ©O(z)
=0 corresponds to the temperature of the cooling plate and
the value ®(r)=1 corresponds to the idealized bulk tempera-
ture. The changing of the temperature signal character along
the z axis is a clear illustration of the three-layer model pro-
posed by Castaing er al. [11]. First we look at the results of
higher Ra, which are shown in Fig. 3(b). In the first diagram
(z=1.4 mm) the fluctuations are comparatively large and are
distributed nearly symmetrically around the mean value. The
influences of the wall and the mean flow are thus approxi-
mately balanced and the measurement point is probably lo-
cated at the boundary between the mixing and diffusive lay-
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ers [11]. By contrast, the temperature signal from the same
measurement point at a lower Ra [shown in Fig. 3(a)] is
smooth and shows a behavior that is characteristic of a tem-
perature field in the diffusive layer. In the next diagram, cor-
responding to a distance of z=16 mm, the temperature is
close to the bulk temperature but shows strong negative
spikes. This indicates that cold plumes in the mixing zone
cause a strongly nonisothermal flow. We observed the same
plumes at lower Ra, with the difference that the motion of
the plumes was much slower. For z=150 mm the fluctuations
of the temperature signal are found to be small at both values
of Ra and represent a relatively constant bulk temperature in
the strongly mixed core. Notice that in Fig. 3(b) the tempera-
ture for z=150 mm is slightly above the nominal bulk tem-
perature, probably due to upflow of hot air.

B. Profiles of mean temperature

We now turn to the discussion of the mean temperature
profiles. Because the height of our cell is constant, we plot
these profiles as a function of the nondimensional distance
from the cooling plate z/h. When the profiles are plotted
using linear scales for and z/h, we observe the well-
known shape in our measurements, as expected. The tem-
peratures increase very quickly within the boundary layer
below the cooling plate and converge toward a nearly con-
stant value in the bulk. This representation of the profiles is
not shown here. An important characteristic of the profile
should, however, be mentioned. If the temperature profile is
extrapolated from the measurement position closest to the
wall (z=70 um) to the wall (z=0), we obtain a nonzero
value of ©(0). The higher Ra, the stronger the deviation.
This effect can be interpreted at as a consequence of the
finite size of the thermistor whose diameter is approximately
125 pum. In the immediate vicinity of the cooling plate a
high-temperature gradient occurs. Because the thermal con-
ductivity of the sensor is much higher than of air, the vertical
heat flux through the sensor caused the measured tempera-
ture to be a local average of the true temperature gradient.
The same phenomenon was already observed by du Puits et
al. [14] in experiments with air at higher Rayleigh numbers.
However, our main conclusions regarding the structure of the
boundary layers outside the diffusive layer are unaffected by
this finite-sensor-size effect.

The question whether the temperature profiles outside the
diffusive region obey a power law or a logarithmic law was
already mentioned in the introduction of this paper. We an-
swer it by using the so-called diagnostic functions I'(z)
=d(In ®)/d(In z) and E(z)=d®/d(In z), which were already
used by Zanoun and Durst [19] for the analysis of velocity
profiles in shear flows. Constancy of I indicates a power law
profile whereas constancy of E is a characteristic of a loga-
rithmic profile. An analysis of the diagnostic functions for
our temperature profiles led to the result that for the over-
whelming majority of cases a power law provides a better
approximation than a logarithmic law. We therefore present
our profiles in Figs. 4 and 5 in a double-logarithmic form.
The inset of Fig. 5 shows the behavior of the power-law
diagnostic function for selected Rayleigh numbers.
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FIG. 4. Comparison of the temperature profiles at two different
measurement positions X, (O) and X, (@) for Ra=1.5X 108 (a) and
4.7% 108 (b).

In Fig. 4 we compare the temperature profiles for equal
Ra measured at the central and peripheral positions. It can be
seen that in all cases there are regions in which the tempera-
ture profiles (in double-logarithmic representation) are linear,
which indicates power law behavior. It can further be seen
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4
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938 slope 0.64

slope 0.52

10° 10 10
distance in z/h
FIG. 5. Temperature profiles at the peripheral measurement po-
sition X, for different Rayleigh numbers: Ra=(O) 2.3 X 108, (O)
3.7X 108, (V) 4.7x 108, and (<) 6 X 108 (slopes are shown for the
lowest and highest Rayleigh numbers). Inset: power law diagnostic
function I' for the displayed profiles.
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TABLE II. Summary of scaling exponents for the profiles of the
mean temperature and of the rms temperature fluctuations as ob-
tained by the measurements at positions X, and X),.

-1
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Position Ra a B

X, 6x108 0.57 -0.43
47%108 0.56 -0.55
3.7% 108 0.56 -0.56
23%x108 0.51 -0.58
1.5% 108 0.57 -0.44
8.2 107 0.56 -0.58
5.6x107 0.60 -0.63

X, 6 10 0.52 -0.44
47%108 0.54 -0.44
3.7%108 0.58 -0.64
2.3%108 0.64 -0.67
1.5% 108 0.68 -0.67
8.4 % 107 0.62 -0.73
5.7%107 0.60 -0.77

that the curves for the different measurement positions can
exhibit considerable differences as in Fig. 4(a) for Ra=1.5
X 108, but can also be quite similar as in Fig. 4(b) for Ra
=4.7x108. In spite of a comprehensive analysis of the dif-
ferences between the mean temperatures at the central and
peripheral measurement positions we have found no system-
atic dependence of the disparity of the profiles on Ra. A
similar statement applies to the profiles of the higher-order
moments, discussed in the next section. We propose that a
possible reason for this fact comes from the shape of the
large-scale flow structure. The central measurement position
is located at a stagnation point (in case of upflow in the
middle of the box) or in a converging flow (in case of down-
flow in the middle of the box), whereas the peripheral posi-
tion is in a region of persistent mean flow as shown in the
sketch in Fig. 1. This explains why we observe a higher
variability of the statistical properties of the temperature field
at the central measurement position. Let us now analyze how
the profiles evolve with increasing Rayleigh number. In Fig.
5 four temperature profiles, measured at the position X,,, are
shown. When Ra increases, the slope of the profiles de-
creases. This implies that the curvature of the profiles (in
linear representation) rises. The slopes for the profiles at
Ra=2.3%10% and 6 X 10® are also given in Fig. 5. The mea-
sured values of the scaling exponents « [appearing in ®
~z% cf. Eq. (10)] for both measurement series are summa-
rized in Table II. In our results from the central measurement
position X,. the value of a changes without any distinct ten-
dency. By contrast, at the peripheral position X, we observe
a systematic decrease of @ when Ra is increased from Ra
=1.5X 108 to 6 X 10%. This shows that the scaling properties
of the mean temperature profile can vary significantly in con-
vection with one large aspect ratio.

Before discussing the profiles of higher-order moments, a
comment on the behavior of the temperature profile far away
from the wall is in order. In our measurement the tempera-
ture profiles reach the bulk with a temperature which is not

a) 10 ‘
0o Slope -0.44
..eg. Opo
® ° °N
8 )
—_— e °
e
N 8
g °
© . slope -0.67
.
102} e ]
oS
=5
..
10" 10° 10” 10" 10°
distance in z/h
b) 10"
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FIG. 6. Comparison of the profiles of the rms temperature fluc-
tuations o(z/h) measured at two different measurement positions X,.
(O) and X, (@) for Ra=1.5X% 108 (a) and 6 X 10% (b).

exactly equal to the bulk temperature, i.e., @ #1 for z/d
—1/2. A similar effect, which is likely the reason for this
observation, has been earlier observed in a cubic cell [23,24].
An in-depth analysis of this phenomenon was performed by
Gluckmann et al. [23] in a small water cell at 7 X 10°<Ra
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ML &SI
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X A b4
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-2
10 ) 3
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FIG. 7. Profiles of rms temperature fluctuations at position X,;
Ra=8.2X 107 (A), 2.3 X 103 (O), 3.7 x 103 (0O), 4.7 X 10% (V), and
6X 108 (0).
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<3 X108, using liquid crystal imaging for temperature field
visualization. The results show that the temperature in the
upper half of the cell (near the cooling plate) tends to be
higher than the mean temperature of the cell, and that the
lower half (near the heating plate) is cooler than the average.
This so-called inversion of the mean temperature can be
caused by the shape of the large-scale flow patterns and the
direction of the flow field. As already explained in Sec. I, the
dominant flow structure in our cell was a double roll with a
strong upflow or downflow in the middle of the cell. With the
changing in the flow field direction, temperature can be dis-
torted, resulting in inversion.

C. Profiles of higher-order moments

There are three phenomenological theories for the shape
of o(z) inside the mixing layer, namely, Priestley’s [13] clas-
sical prediction

0'~Z_1/3, (21)

the so-called N I theory (Castaing et al. [11]; Deardorff and
Willis [8])

o~ Z—1/2’ (22)

as well as the \ II theory [11] (see also Fernandes and Adrian
[7]), which predicts

o~ In(z). (23)

The first two predictions are particular cases of the more
general relation o~ z°. We are interested in the question of
whether one of these relations describes our experimental
data.

In Fig. 6 we compare the profiles of o(z/h) for both mea-
surement positions at equal Ra and see quite different behav-
iors. In particular, the z position of the maximum and the
slope of the decrease are important. In Fig. 6(a) the compari-
son for profiles at Ra=1.5X 10® is shown. We can see no-
ticeable differences between them. They have different
slopes and the locations of their maxima are at different val-
ues of z. In Fig. 6(b) o(z) measured at Ra=6X10% are
shown. The shape of the profile is virtually the same. A sys-
tematic analysis of differences between the o profiles for
both measurement positions did not show any systematic de-
pendence on Ra. In Table II we list the complete set of all
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FIG. 9. Profiles of skewness s(z/h) (a) and kurtosis k(z/h) (b)
for four different values of Ra at position X,: Ra=2.3 X 10% (O),
3.7% 108 (O), 4.7 % 108 (V), and 6 X 108 ().

experimentally determined scaling exponents . The N I
theory predicts a value of 8=-0.5. We observed this value
just for a part of our range of Ra. This range is different for
the two measurement positions. At position X,,, 8 reaches the
vicinity of —0.5 just for two values of Ra, namely, Ra=4.7
X 10% and 6 X 108. For X, the range of Ra where 8~-0.5
holds is much larger, namely, from Ra=1.5X10% up to Ra
=6 X108 A semilogarithmic view of rms profiles for five
values of Ra from 8.2 X 107 up to 6 X 10%, measured at posi-
tion X, is shown in Fig. 7. We focus our observations on the
part of the profiles that begins after the maximum of profiles

PHYSICAL REVIEW E 75, 066303 (2007)

is reached. In this example we can clearly see that with in-
creasing Ra the slope decreases. The results for both mea-
surement positions are shown in Table II. The data show that,
if the decay of the rms temperature fluctuations obeys a
power law, the exponent is closer to the prediction of the \ I
theory than to Priestley’s formula. It should be mentioned,
that the decrease of some rms profiles for Ra below 10® are
also consistent with a logarithmic function o~1In(z) as pre-
dicted by the A II theory. Hence our experiments do not
provide an unambiguous answer as to whether a logarithmic
or a power law decay of the rms temperature fluctuations
holds.

The skewness reflects the asymmetry of the sampled data
distribution around the mean value. Figure 8 shows the pro-
file of the skewness at the central and peripheral measure-
ment positions. Near the wall the value of the skewness is
small and positive. For higher z there is a point where it
vanishes, in which case the distribution of the sampled data
is symmetrical. The symmetric fluctuations at the point
where s(z)=0 show that the influences of the cooling plate
and the bulk are counterbalanced in some respect and com-
pensate each other. This position is equal to the length scale
O, which has been defined in Sec. II. In the following part of
the profile, the skewness decreases strongly under the influ-
ence of the cold plumes in the mixing zone. After reaching
the minimum, it returns to the value s(z)=0. In this case
symmetrical fluctuations are caused by a perfectly mixed
fluid in the core. After reaching s(z)=0 the skewness profile
becomes positive again under the influence of hot plumes
ascending from the heating plate. Because of the limitation
of our measurement range in the z direction, we were not
able to reach the value s(z)=0 in the core, but we can clearly
observe the tendency of skewness to become zero for z
—h/2.

The kurtosis is a measure of the “peakedness” of the prob-
ability distribution of a real-valued random variable, in our
case the temperature. The kurtosis profiles plotted in Fig. 8
show two different kinds of behavior depending on whether
one is close to the wall or not. In the first case, the near-wall
region, the profile values fluctuated weakly around the value
k(z)=3. Distributions with k(z)=3 are called mesokurtic, one
case being the Gaussian distribution. In the k(z)=3 position
we define also the boundary layer length scale §,. In the
second region, after reaching the minimum, the kurtosis in-
creases. In Fig. 8 we compare profiles of skewness s(z) and
kurtosis k(z). Similar to the behavior of the rms temperature
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FIG. 10. Boundary layer length scales versus Rayleigh number for the measurement positions X, (¢ ) and X,, (@), determined using rms

(a), skewness (b) and kurtosis (c).
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TABLE III. Values of the boundary layer thicknesses at different
x positions calculated from the profiles of rms temperature fluctua-
tions, skewness, and kurtosis.

X position Ra 8y (mm) &, (mm) & (mm)

X, 6x108 3.8 2.15 4.97
4.7x108 4.9 2.84 7.71
43x108 5.32 3.36 8.3
3.7% 108 5.6 3.51 8.77
2.3x%108 6.82 4.1 10.48
8.2x 107 7.09 476 10.17
5.6 107 8.4 6.49 14.4

X, 6108 3.78 232 5.53
47x108 4.07 241 6.33
3.7%x 108 5.73 3.28 8.49
2.3x%108 7.14 3.96 9.92
1.5x 108 8 4.47 11.77
8.4 % 107 9.6 5.83 13.42
5.7%107 10.2 6.38 15.29

fluctuations, there are cases of agreement as in Fig. 8(a) as
well as disagreement as in Fig. 8(b).

We can see for the measurement at Ra=4.7 X 10® [see Fig.
8(b)] that, in the region close to the wall, s(z) and k(z) are
closer to the Gaussian values 0 and 3, respectively, for posi-
tion X, than for X,,. The data from X, in the near-wall area
differ from a Gaussian distribution and are probably affected
by the strong large-scale flow.

In Fig. 9(a) the profiles of skewness s(z) for four different
values of Ra measured at X, are compared. In our results s(z)
reaches a minimum in the range —1.4<<s<-1.8 for all in-
vestigated values of Ra. These results are comparable with
the results of Belmonte e al., who obtain a skewness mini-
mum in the range —1.6<s<-1.8 for 10’<Ra<10° [4]. We
also have observed that the magnitude and position of the
extremum of skewness, caused by the maximum of signal
asymmetry, hardly changes with Ra.

In Fig. 9(b) kurtosis profiles k(z) measured at four differ-
ent values of Ra are compared. At Ra=6X10% and 4.7
X 108 the kurtosis attains the maximum of k= 6.5. The maxi-
mum of the kurtosis indicates the fewest coincident data dis-
tributions in this area. It indicates intensive disintegration of
cold plumes, which impact the flow. After reaching the maxi-
mum, the profile returns toward the Gaussian value k=3 in
the core.

At lower Ra the maximum of k(z) moves toward the cell
center and cannot be measured because of the limited z range
in our measurements.

PHYSICAL REVIEW E 75, 066303 (2007)
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FIG. 11. Comparison of boundary layer length scales with pre-
vious experiments: Belmonte er al. (<), du Puits er al. (A), and
present work (@). All length scales are made nondimensional using
the height of the relevant cell.

D. Boundary layer length scales

Using the definitions introduced in Sec. I D we compute
the values of the boundary layer length scales for all inves-
tigated values of Ra. The results are summarized in Table III.
Let us compare the results for the two measurement positions
and discuss how the boundary layer length scales depend on
Ra.

The boundary layer length scales in both measurement
positions change continuously for the investigated range of
Rayleigh numbers. Generally, the width of the boundary
layer is reduced with the increase of Ra.

The boundary layer length scales are summarized in Fig.
10 as functions of Ra. A significant difference between the
results from X, and X, can be recognized immediately. At the
peripheral position X, we observe a monotonic and continu-
ous decrease of all three length scales, which can be approxi-
mated with a power law 6, ;=C) ;3 >X Ra%s The scaling
exponents are summarized in Table IV. It can be inferred
from this table that the exponents are nearly identical as their
values are between —0.42 and —0.44. In contrast to the ob-
servations at the peripheral measurement position, the
boundary layer length scales at the position X,. show a con-
siderable scatter and their dependence on Ra cannot be de-
scribed by a simple function. The difference of the properties
of the thermal boundary layers between our two measure-
ment positions is one of the main findings of the present
paper. One possible explanation could be based on the shape
of the large-scale structures that we observed by optical flow
visualization. The prevalent convective flow structure con-
sists of two convection rolls, as sketched in Fig. 1. X, is
located at the center of the cell. In this area, between two
convection rolls, we observe an intensive upflow or down-
flow leading to the formation of stagnation points close to
the plates. The unstable flow structure in this area might
cause strong variability of the statistical properties, which
were used for determination of &, ;. By contrast, X, is lo-

TABLE 1V. Scaling of the boundary layer thickness.

X position 8;=C; X Ra»

5S= C2 X Ra% 6k=C3 X RaY

5,=23468 X Ra~043

8,=17814 X Ra™0% 5, =26972 X Ra™04?
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cated above the middle of a roll structure. The stable char-
acter of the flow gives rise to well-defined statistical proper-
ties and good agreement between different scales. In Fig. 11
we compare our results for , from position X, with &, from
Belmonte et al. [4] and &, measured by du Puits et al. [14].
Thereby &,,/h is the boundary layer normalized to the height
of the relevant cell. Despite the differences in the
geometry—a small cubic cell in [4], a large-scale cylindrical
cell with aspect ratio close to unity in [14]—we can see a
good agreement of the results.

IV. CONCLUSION

We have studied the profiles of mean temperature, rms
temperature fluctuations, skewness, and kurtosis in turbulent
Rayleigh-Bénard convection in an elongated rectangular cell.
Despite our modest Rayleigh numbers as compared to some
experiments listed in Table I, our work probes turbulent
Rayleigh-Bénard convection by means of temperature pro-
files with very high spatial and temporal resolution. It is
particular importance that the measurement was performed at
two distinctive positions in the cell with a special geometry,
which had not been studied before to our knowledge. The

PHYSICAL REVIEW E 75, 066303 (2007)

main result of our work is the observation that the properties
of the thermal boundary layers can vary significantly along
the long side of the cell. We have further demonstrated that
the dependence of the mean temperature on the vertical co-
ordinate can be approximated by a power law with an expo-
nent « that decreases with increasing Rayleigh number, in
agreement with recent findings of du Puits er al. [14] at
higher Rayleigh numbers. Our analysis of the decay of the
rms temperature fluctuations with increasing distance from
the wall did not lead to a clear answer as to whether this
decay obeys a power law, as suggested by Priestley, or a
logarithmic law. Our observations show that the structure of
the large-scale flow has a significant influence on the prop-
erties of the thermal boundary layer. We believe that velocity
measurements are necessary to shed new light on the struc-
ture of the large-scale flow.
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