
Boundary conditions for fluids with internal orientational degrees of freedom:
Apparent velocity slip associated with the molecular alignment

Sebastian Heidenreich,1,* Patrick Ilg,2 and Siegfried Hess1

1Institute for Theoretical Physics, Technische Universität of Berlin, Hardenbergstrasse 36, D-10623, Germany
2Polymer Physics, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland

�Received 26 January 2007; published 5 June 2007�

Boundary effects are investigated for fluids with internal orientational degrees of freedom such as molecular
liquids, thermotropic and lyotropic liquid crystals, and polymeric fluids. The orientational degrees of freedom
are described by the second rank alignment tensor which is related to the birefringence. We use a standard
model to describe the orientational dynamics in the presence of flow, the momentum balance equations, and a
constitutive law for the pressure tensor to describe our system. In the spirit of irreversible thermodynamics,
boundary conditions are formulated for the mechanical slip velocity and the flux of the alignment. They are set
up such that the entropy production at the wall inferred from the entropy flux is positive definite. Even in the
absence of a true mechanical slip, the coupling between orientation and flow leads to flow profiles with an
apparent slip. This has consequences for the macroscopically measurable effective velocity. In analytical
investigations, we consider the simplified case of an isotropic fluid in the Newtonian and stationary flow
regime. For special geometries such as plane and cylindrical Couette flow, plane Poiseuille flow, and a flow
down an inclined plane, we demonstrate explicitly how the boundary conditions lead to an apparent slip.
Furthermore, we discuss the dependence of the effective viscosity and of the effective slip length on the model
parameters.
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I. INTRODUCTION

The equations of thermohydrodynamics, based on the lo-
cal conservation laws and on simple constitutive relations for
the heat flux and the viscous pressure tensor must be supple-
mented by boundary conditions. Temperature jump and ve-
locity slip boundary conditions have been proposed over a
century ago in order to describe boundary and surface effects
in rarefied gases �1� where the mean free path � of the mol-
ecules can become comparable with the relevant macro-
scopic lengths. For dense fluids, similar effects have to be
taken into consideration in microfluidics and nanorheology
�2–6� where the size of the molecules is no longer extremely
small compared with macroscopic length scales. Especially,
the apparent slip caused by the molecular interaction with the
solid surface was the reason for many theoretical and experi-
mental studies, see for example, �7–12�. For fluids composed
of particles with orientational degrees of freedom, additional
constitutive equations govern the dynamics of the molecular
alignment and again, boundary conditions are needed for
spatially inhomogeneous situations.

In this paper, boundary conditions are formulated for the
second rank alignment tensor describing the orientation of
molecular liquids and nematic liquid crystals and for the ve-
locity slip. The guiding principle, in the spirit of irreversible
thermodynamics, is the same as that originally suggested for
gases �13� viz.: �i� the entropy production at an interface is
inferred from the entropy flux in the bulk fluid, �ii� the
boundary conditions are set up such that the interfacial en-

tropy production is positive definite. The extension to mo-
lecular gas and to molecular liquids was presented in �14,15�.
For a special case meant for isothermal flow of molecular
liquids, polymeric melts, and nematic liquid crystals in the
isotropic phase, it is demonstrated that the coupling between
the alignment tensor and the friction pressure tensor which
underlies the flow birefringence and shear-thinning leads to
an apparent velocity slip even when the velocity obeys a
stick boundary condition. The velocity and alignment pro-
files, as well as the effective viscosities are calculated for
plane and cylindrical Couette and plane Poiseuille flow, as
well as the flow down an inclined plane. The dependence of
these quantities and of the apparent slip velocity on a micro-
scopic length parameter and on the ratio between the first
and second Newtonian viscosities are discussed. In experi-
ments slip lengths and the viscosities of thin films of New-
tonian liquids were measured and studied by Jacobs et al.
�16�. Furthermore, a recent thermodynamic formulation of
boundary conditions building upon the pioneering work of
Waldmann �13� was derived in �17–19�.

This paper proceeds as follows. First, the relaxation equa-
tion for the alignment tensor in spatially inhomogeneous sys-
tems is introduced and the constitutive equation for the pres-
sure tensor are presented in Secs. II A and II B, respectively.
In Sec. III, we show how the entropy production at the in-
terface can be used to impose boundary conditions. The
model equations, the constitutive equations for the pressure
tensor and the momentum balance give us a closed set of
equations. In Sec. IV we consider the isotropic phase where
terms nonlinear in the alignment tensor and in the velocity
gradient are disregarded. In the following sections we dis-
cuss different flow geometries as already mentioned.
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II. THE MODEL EQUATIONS FOR A SPATIALLY
INHOMOGENEOUS FLUID

A. Relaxation equation for the alignment tensor

The alignment of the effectively uniaxial particles with a
molecular axis parallel to the unit vector u is characterized
by an orientational distribution function f�u , t�. The appro-
priate order parameter for a liquid crystal in its isotropic and
nematic phases is the second rank alignment tensor

�1�

The nonlinear relaxation equation for the alignment tensor
a, coupled to the velocity gradient field and an expression for
the contribution to the pressure or stress tensor associated
with the alignment were derived in �21,22�. The generaliza-
tion to a spatially inhomogeneous situation was presented in
�23�, see also �24� for related works.

The equations involve characteristic phenomenological
coefficients viz. the relaxation time coefficient �a�0, as well
as �ap which determine the strength of the coupling between
the alignment and the pressure tensor or the velocity gradi-
ent, dimensionless coefficient �, and parameters for the
Landau-de Gennes potential to be discussed later. These pa-
rameters are linked with the pseudocritical temperature T*,
the nematic-isotropic transition temperature TK with TK
�T*, and with the value of the alignment just below TK.

The equation of change for the alignment tensor a, in the
presence of a flow field v reads �21,22�:

�2�

The symmetric traceless tensor

�a�a� = ��/�a − � · ���/���a�� �3�

In Refs. �22,25� the symbol � was used instead of �. The
special values 0 and ±1 for the coefficient � in �2� corre-
spond to corotational and codeformational time derivatives.
From the solution of the generalized Fokker-Planck equation
one finds, for long particles, ��3/7�0.4.

b = − Da � �a �4�

is used with the alignment diffusion coefficient Da. This iso-
tropic approximation is used for simplicity. It is valid when
the three diffusion coefficients linking the vector, second and
third rank irreducible tensor parts of b with those of ��a are
practically equal. For an experimental situation where the
anisotropy of an alignment tensor diffusion matters cf. �26�.
According to the general principles of irreversible thermody-
namics, a coupling of the vector part of b with the heat flux
vector exists. This is akin to the coupling between the Kagan
vector and the heat flux considered in the kinetic theory of
molecular gases �1,27�. Here such an effect is disregarded.

B. Constitutive relation for the pressure tensor

�
dv�

dt
+ �	P	� = 0 �5�

is decomposed according to

�6�
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In the following, the trace part P is identified with the
hydrostatic pressure linked with the local density and tem-
perature by the equilibrium equation of state. The symmetric
traceless friction pressure tensor consists of an isotropic con-
tribution as already present in fluids composed of spherical
particles or in fluids of nonspherical particles in a perfectly
isotropic state with zero alignment, and a part explicitly de-
pending on the alignment tensor

�7�

with �22�

�8�

The vector associated with antisymmetric part of the pres-
sure tensor appears in the conservation law of the angular
momentum. It vanishes identically for fluids of particles
without rotational degrees of freedom. In the absence of
torques due to external orienting fields the antisymmetric
part of the pressure tensor also vanishes provided that aver-
age rotational velocity of the particles relaxes to the local
vorticity within a time which is short compared with the
relaxation time for reorientation which is determined by �a.
Implicitly, this assumption has already been made in �2�. In
the same approximation, the pseudovector linked with the
antisymmetric part of the friction pressure tensor is given by

p� = − 2
�

m
kBT
�	�a	����

a . �9�

Thus the constitutive law for ��	 will also provide an ex-
pression for the antisymmetric part of the pressure tensor
�29�. In the nematic phase, e.g., the relation p�=0, with �2�
and �9� yields the flow alignment angle.

C. Landau-de Gennes potential

In previous studies the �dimensionless� Landau-de Gennes
potential �=��a�, viz.,

�LG = �1/2�A�T�a:a − �1/3��6B�a · a�:a + �1/4�C�a:a�2

�10�

In a spatially inhomogeneous situation, the potential func-
tion also contains a contribution �inh involving the spatial
derivative �a of the alignment tensor. Again for simplicity,
the isotropic case is considered which implies that, in the
nematic phase, all three Frank elasticity coefficients are
equal. Thus one has, in component notation,

�inh = �1/2��0
2���a�	����a�	� , �11�

with a characteristic length �0. Clearly, the value of the total
potential �=�LG+�inh is higher in a spatially inhomoge-
neous system as compared with a homogeneous one. With
this particular choice, the derivative of the potential occur-
ring in the relaxation equation �2� becomes

�a�a� = Aa + ¯ − �0
2
a , �12�

the ellipses stand for terms nonlinear in a. These may be
disregarded in the isotropic phase.

III. BOUNDARY CONDITIONS

In the spirit of irreversible thermodynamics, Waldmann
�13� suggested to set up boundary conditions such that the
interfacial entropy production is positive definite. For a fluid
in contact with a solid wall moving with the velocity vw one
has �15,35�

�w =� dfT−1�k�
tan�v� − v�

w�tan + ��/m�kBn�b��	��	� .

�13�

Here df is the surface element, n is the outer normal of the
fluid and the superscript tan indicates a tangential component
which is parallel to the surface, e.g., v�

tan=v�−n�n	v	. Fur-
thermore,

k� = n	�P	� − P�	�� �14�

is the friction force density. It is tacitly assumed that P is the
hydrostatic equilibrium pressure, which means that a scalar
pressure associated with the bulk viscosity is disregarded or
that the fluid is practically incompressible, viz., � ·v=0.

Just as in �15�, we follow the notation which Vestner �14�
used for molecular gases where the equations are linear in
the alignment tensor which, in addition, has a different mi-
croscopic meaning. The boundary conditions for the velocity
and the alignment tensor are

�v� − v�
w�tan = Cmvthpkin

−1 k�
tan + Cman�b��	n	, �15�
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�16�

Here the kinetic pressure pkin= �� /m�kBT and the thermal ve-
locity vth=�kBT /m are used as reference values for the pres-
sure and the velocity. The dimensionless coefficients C
specify the boundary behavior, the subscripts m and a refer
to mechanical and alignment, respectively. The diagonal co-
efficients are non-negative, viz., Cm�0, Ca�0. The off-
diagonal ones obey the Onsager-Casimir relation Cam
=−Cma. The slip velocity is �v�=−�v�−v�

w�tan. For Cma=0
and with k�=−�n	�	v�, where � is the shear viscosity, �15�
is equivalent to

�v� = �vn	�	v�
tan, �17�

with the slip length

�v = Cm�vthpkin
−1 � 0. �18�

In the following, it will be demonstrated that the coupling
between the alignment and the flow field leads to an apparent
velocity slip even when Cm=0 and consequently �v=0.

IV. APPARENT VELOCITY SLIP

A. Special case: isotropic phase, small shear rates

Next the equations for the bulk fluid and the boundary
conditions are applied to special geometries where the spatial
dependence is essentially one-dimensional, viz., to a plane
Couette and a plane Poiseuille flow. The attention is focused
on the isotropic phase where terms nonlinear in the align-
ment tensor can be disregarded and on the Newtonian flow
regime where only terms linear in the velocity gradient are
taken into account. The antisymmetric part of the pressure
tensor vanishes in this case. Then, with �6�, �7�, and �8�, the
momentum balance equation �5� reduces to

�
�v�

�t
+ ��P = �iso
v� − pkin

�2
�ap

�a
��, �19�

with

�� = �	�	�
a . �20�

Similarly, the relaxation equation �2� for the alignment tensor
is approximated by

�21�

and it is understood that only terms linear in the alignment
tensor are considered in ��	

a , cf. �12�. The characteristic
length �a associated with the alignment diffusion is defined
by

�a
2 = Da�a. �22�

For stationary situation, application of �	 on �21� leads to

��� − �a
2
��� = − �1/2��2�ap
v�. �23�

Elimination of 
v from �23� with the help of �19�, again for
a steady state where the time derivatives vanish, yields

�1 + �ap
2 /��0�a���� − �a

2
�� = − �iso
−1�ap��P . �24�

The relaxation time �0 is related to the second Newtonian
viscosity �iso by �iso= pkin�0. Similarly, the first Newtonian
viscosity � is linked with the relaxation time �p by �
= pkin�p, and one has �1� �0 /�p=1−�ap

2 / ��a�p�. The abbrevia-
tion

Q =
�ap

2

�0�a
=

�ap
2

�a�p
�1 −

�ap
2

�a�p
	−1

� 0, �25�

is introduced. Notice that �ap
2 / ��a�p��1. The quantity Q

which is a measure for the strength of the coupling between
the pressure tensor and the alignment is linked by the ratio
� /�iso between the first and second Newtonian viscosities by

Q =
�

�iso
− 1. �26�

Now �24� is rewritten as

�� − �2
�� = − �−1�ap��P �27�

with the characteristic length � related to �a by

�2 = �a
2�1 + Q�−1 = �a

2�1 −
�ap

2

�a�p
	 . �28�

The solutions of the homogeneous part of �27� couple with
the velocity field due to �23� via the boundary condition.
Next, this point is discussed for a simple one-dimensional
spatial dependence as encountered in plane Couette and in a
plane Poiseuille flow. The parameter Q can be inferred from
the nonlinear flow behavior, in particular from the non-
Newtonian viscosity in the limits of small and large shear
rates. The stationary solution of �2� in the isotropic phase and
for a plane Couette flow where the boundary effects to be
discussed below are ignored, were presented in �22�. A rep-
resentative example is shown in Fig. 1. The transition from
the first to the second Newtonian viscosity depends on the
parameter �, the limiting values determining Q are not af-
fected by �. The following calculations focus on the effect of
the boundary conditions in the limiting case of small shear
rates, viz. the linear flow regime.

0.1 0.2 0.5 1.0 2.0 5.0 10.0

G

0

0.2

0.4

0.6

0.8

1

H

FIG. 1. Non-Newtonian viscosity for the plane Couette flow in
the isotropic phase for Q=8. Here G=�A−1�a is the shear rate and
H is the viscosity in units of the first Newtonian viscosity �. The
values for � are, from left to right, 0, 0.4, 1.0, and 1.2 �dashed
curve�.
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B. Special case: one-dimensional spatial dependence

For a flow in the x direction and its gradient in the y
direction as it occurs between flat plates which are perpen-
dicular to the y direction one has

�29�

with the shear rate �=��y�, the unit vectors parallel to the
coordinate axes are denoted by ex, ey, and ez. Similarly, the
ansatz

�30�

is made which implies ��= �1/2��2���y�e�
x . The prime indi-

cates the derivative with respect to y. In this special case and
for stationary situation, �21� reduces to

� − �a
2�� = − �ap� . �31�

Similarly, �27� where the momentum balance has been taken
into account, is equivalent to

�� − �2�� = − �ap�−1�P

L
. �32�

For a Poiseuille flow the pressure gradient in the x direction
is given by the ratio of the pressure difference �P and the
length L of the flow device. In the case of a Couette flow one
has �P=0.

The boundary condition �16� for the alignment, at a wall
with the outer normal in the positive y direction now reduces
to

� = − Cavth
−1Da�� = − ca���. �33�

Here �4� and Cam=0 were used. The abbreviation

ca = Ca
Da

�vth
= Ca

�a
�1 + Q

�avth
�34�

was introduced. Next, solutions of the differential equations
�31� and �32�, with the appropriate boundary conditions are
presented for the Couette and the Poiseuille flow geometry.

C. Plane Couette flow

A Couette flow between �identical� plates separated by the
distance 2h is considered. The plates located at y=h and y
=−h move with the velocities vw and −vw, respectively, in
the x direction. Here one has �P=0 and the solution of �32�,
with the symmetry of the setup taken into account, is

� = �0 + �1 cosh�y/�� . �35�

Likewise, for the shear rate the ansatz

� = �0 + �1 cosh�y/�� �36�

is made. For the x component of the velocity one has

v�y� = �0y + �1� sinh�y/�� . �37�

The coefficients �0 ,�1 ,�0 ,�1 must be determined with the
help of �31� and of the boundary conditions.

Now a no-slip boundary condition corresponding to Cm
=Cma=0 is assumed, cf. �15�. This implies vw=�0h
+�1� sinh�h /��. The external shear rate �ext is related to
�0 ,�1 by

�ext = vw/h = �0 + �1��/h�sinh�h/�� . �38�

The boundary condition �33� for the alignment leads to

�0 = − �1�cosh�h/�� + ca sinh�h/��� . �39�

Two further relations are needed for the determination of the
coefficients, viz.

�0 = − �ap�0, Q�1 = �ap�1 �40�

follow from the differential equation �31�. Insertion of these
relations into �39� yields

Q�0 = �1�cosh�h/�� + ca sinh�h/��� . �41�

From this relation and �38� follows

�0 = R�ext, R = �1 + Q
�

h

tanh�h/��
1 + ca tanh�h/��	

−1

. �42�

The resulting solution for the velocity field is

v�y� = Rvw� y

h
+ Q

�

h

sinh�y/��
cosh�h/�� + ca sinh�h/��	 . �43�

Likewise, for � one finds

��y� = − �apR
vw

h
�1 −

cosh�y/��
cosh�h/�� + ca sinh�h/��	 . �44�

The velocity profile is plotted in Fig. 2 for Q=8 and
h /�=9, corresponding to 2h /�a=6. The velocity is presented
in units of the wall velocity vw, the y coordinate is in units of
h, i.e., one-half the separation between the moving plates.
The thick curve pertains to ca=0, the other curves are for
ca=1, and ca=10 �thin curve�. Linear extrapolation of the
velocity in the center towards the wall at y=h, e.g., see the
dashed line shown for ca=0, yields the velocity h�0 which is
smaller than the wall velocity vw. Thus one has an effective
slip velocity

�veff = vw − h�0 = �1 − R�vw = �1 − R�h�ext. �45�

An effective slip length �v
eff is defined by

�1 �0.5 0 0.5 1
v (units of )v

w

�1

�0.5

0

0.5

1

y
(u

ni
ts

of
h)

FIG. 2. The velocity vs the distance in units of h is plotted for
plane Couette flow, cf. �43�. The model parameters are Q=8, h /�
=9, and ca=0 �thick dashed line�, ca=1 �thin line�, ca=10 �thick
line�.
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�veff = �v
eff�ext. �46�

From the relations above follows

�v
eff = �Q tanh�h/��
1 + �ca + Q

�

h
	tanh�h/���−1

. �47�

For ��h, this expression reduces to

�v
eff →

�Q

1 + ca + Q
�

h

. �48�

Clearly, the apparent slip is largest for ca=0. For ca�1, on
the other hand, the simple Couette flow profile is approached
as Fig. 3 implies.

In Fig. 4, the effective slip length in units of h as a func-
tion of the Couette cell size h is displayed. For small ratio
�eff /h, the effective slip length has a significant effect on the
flow. For higher values of the ratio the effect becomes more
and more marginal. The slip effect can be disregarded for
high ratio of the systems length compared to the molecular
length. In the case where we define the effective velocity via
an extrapolation of a small linear part of the velocity profile
the slip length has in principle the same value for higher
values of the ratio h /�. For smaller values the slip length
decreases slightly depending on the parameter value of Q.

An effective viscosity can be defined via the yx compo-
nent of the pressure tensor divided by the external shear rate,
viz,

�eff =
− pyx

�ext = pkin��0��h� −
�ap

�a
��h�	� �ext. �49�

The solutions given above for ��y� and ��y� eventually lead
to

�eff = R� . �50�

In the limit ��h one has

�eff → �
1 + ca

1 + ca + Q
�

h

. �51�

For ca�1, where the simple Couette flow profile is recov-
ered, the effective viscosity becomes equal to the shear vis-
cosity.

In Fig. 5, the effective viscosity is plotted for Q=2, �
=1 and several values of ca=0,1 ,10. It can be recognized
that for high values of the ratio h /� the effective viscosity
approaches the shear viscosity �. But if the magnitude of h is
comparable to �, the effective viscosity is much smaller than
the shear viscosity. This effect depends strongly on the pa-
rameter ca. For high ca, this effect is negligible whereas for
small values of ca the shear viscosity is effected dramatically
by the influence of the boundary conditions, as soon as Q
�0. If the first an the second non-Newtonian viscosity are
equal and therefore Q=0 �no coupling of the alignment on
the velocity�, the effective viscosity is not influenced by the
boundary conditions as expected.

D. Plane Poiseuille flow

Consider now a flow between �identical� flat plates lo-
cated at y=h and y=−h. In the Poiseuille case, the walls are
at rest and the flow is driven by the constant pressure gradi-
ent �P /L, where P= P�x� is assumed. Notice that one has
�P= P�L�− P�0��0 for a flow in the x direction. Taking the
symmetry of the problem into account, the ansatz

��y� = �2
y

h
+ �3 sinh�y/�� �52�

is now made for ��y�. Similarly, for the shear rate one writes

��y� = �2
y

h
+ �3 sinh�y/�� . �53�

With the no-slip condition v�h�=v�−h�=0 taken into ac-
count, the resulting velocity field is given by

0.03 0.1 0.3 1 3 10 30 100
c a

0

0.5

1

1.5

2

2.5

lef
f (u

ni
ts

of
l)

FIG. 3. The effective slip length in units of l is plotted as a
function of the parameter ca for the same conditions as in Fig. 2.
The parameters are Q=8, �=2, and h=3 �thick dashed line�, h
=30 �thin line�, h=300 �thick line�.
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FIG. 4. The effective slip length �47� in units of h vs h is
displayed for plane Couette flow. The model parameter are Q=8
and ca=0 �dashed line�, ca=1 �thin line�, ca=10 �thick line�.
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FIG. 5. The reduced effective viscosity �eff /� as a function of
h / l for plane Couette flow is displayed. The parameters are Q=2
and ca=0 �thick dashed line�, ca=1 �thin line�, ca=10 �thick line�.
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v�y� =
1

2
�2h� y2

h2 − 1	 + �3��cosh�y/�� − cosh�h/��� .

�54�

The coefficients �2 ,�3 ,�2 ,�3 must to be determined from
the differential equations �31�, �32� and the boundary condi-
tion �33� with �34�. In particular, the solution of the inhomo-
geneous equation �32� leads to

�2 = − �aph�−1�P

L
, �55�

the homogeneous part of this differential equation is already
obeyed by the ansatz �52�. The boundary condition �33� leads
to

�2 = − �3�sinh�h/�� + ca cosh�h/��� . �56�

From the differential equation �39� follows

�2 = − �ap�2, Q�3 = �ap�3. �57�

Insertion of these relations into �56� yields

�2 = h�−1�P

L
, Q�2 = �3�sinh�h/�� + ca cosh�h/��� .

�58�

The resulting solution for the velocity field is

v�y� = − �−1�P

L
h2
1

2
�1 −

y2

h2	
+ Q

�

h

cosh�h/�� − cosh�y/��
sinh�h/�� + ca cosh�h/��� . �59�

Clearly, for Q�0 the flow is faster than for Q=0. In Fig. 6
the Poiseuille flow profile is plotted for Q=8 and different
values of the boundary parameter ca. For ca=0, we have a
high slip length, where the flow is much faster than the or-
dinary Poiseuille flow without slip. The flow slows down for

higher values of ca and reaches the Poiseuille flow without
slip in the limit ca→�.

Let V�Q� be the flow velocity in the middle, i.e., for y
=0 as a function of the model parameter Q. From �59� one
infers for the effective slip velocity

�veff = V�Q� − V�0� = V�0�2Q
�

h

cosh�h/�� − 1

sinh�h/�� + ca cosh�h/��
,

V�0� = − �−1�P

2L
. �60�

The solution for � is

��y� = − �aph�−1�P

L
� y

h
−

sinh�y/��
sinh�h/�� + ca cosh�h/��	 .

�61�

The flux J=J�Q� per unit length in the transverse direction is
given by

J = �
−h

h

dyv�y� = 2�
0

h

dyv�y�

= −
2

3
h3�−1�P

L

1 + 3Q

�

h

1 −
�

h
tanh�h/��

ca + tanh�h/��
� .

�62�

When the velocity is not coupled with the alignment �Q
=0� but when a velocity slip characterized by the slip length
�v is considered, the ratio of the flux with and without slip is
given by 1+3�v /h. The relation �62� corresponds to such an
expression, now with an effective slip length

�v
eff = �Q

1 −
�

h
tanh�h/��

ca + tanh�h/��
. �63�

For ��h, this expression reduces to

�v
eff →

�Q

1 + ca
. �64�

In Fig. 7, the dependence of the effective slip length on h
is displayed. As in previous plots the influence is most sig-
nificant for ca=0 and less for higher values. The effective
slip length saturates for relatively small values of the ratio
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FIG. 6. The Poiseuille flow profile �59� is displayed for several
values of the parameter ca: ca=0 �thick line�, ca=1 �thick dashed
line�, ca=10 �thin line�, and ca=� �thin dashed line�. The remaining
parameters are Q=8, h /�=9.
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FIG. 7. The effective slip length �63� vs h is plotted. The same
conditions as in Fig. 6 are considered with parameters Q=8 and
ca=0 �thick line�, ca=1 �thick dashed line�, ca=10 �thin line�.
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h /� to a value given by Eq. �64�. This implies that the ratio
of �eff /h goes to zero as in the Couette flow and for high
values of h the apparent slip could be neglected.

Since J��−1, an effective viscosity for the Poiseuille
flow is defined by

�eff = �J�0�/J�Q��� = �
1 + 3Q
�

h

1 −
�

h
tanh�h/��

ca + tanh�h/��
�

−1

.

�65�

In the limit ��h one has

�eff → �
1 + ca

1 + ca + 3Q
�

h

. �66�

In Fig. 8 the effective viscosity vs h /� is plotted. Again,
for high values of h compared to � we arrive at a region
where the apparent slip effect is not important but for smaller
values of h /� the effective viscosity decreases. The lowest
value of the effective viscosity is �eff=� /9, which is attained
for ca=0. For ca�0, the effective viscosity reaches a mini-
mum and increase after that minimum for smaller values of
h /� again. This behavior can be observed for very small
values of ratios h /� which are not physically relevant here
and might be an artefact of the approximations employed.
The reason is that in the limit h→0 the value �eff depends on
the parameter ca. The limit value is 1 /9 for ca=0 whereas the
limit value is 1 if ca�0.

E. Flow down an inclined plane

For Newtonian fluids, the analysis of the gravity-driven
flow down an inclined plane can be done in a similar manner
as the case of Poiseuille flow. Here, however, different
boundary conditions at the free surface lead to different flow
profiles compared to the Poiseuille flow.

We choose the x and y axis parallel and perpendicular to
the inclined plane, respectively, such that y=0 defines the
solid plane, while the free surface of the fluid film is located
at y=h. The fluid film is assumed to be thin enough such that
variations of the gravity force density F=�g�sin � ,
−cos � ,0� within the fluid layer can be neglected. The angle
that the inclined plane forms with the horizontal axis is de-
noted by �. An illustration is given in Fig. 9

Assuming incompressibility and no mechanical slip at the
bottom plane, the velocity field is again of the form v
=v�y�ex.

At the free surface y=h, we impose the following bound-
ary conditions: First, the scalar pressure p must match the
atmospheric pressure p0. Second, we require that no tangen-
tial stresses exist at the free surface, �Pyx�h=0. Third, the
boundary condition �33� for the alignment flux at the free
surface ��h�=−ch����h� is different from that at the bottom
plane ��0�=c0����0� due to the different interactions the
fluid experiences near the confining wall �c0� and near the
free surface �ch�.

From the y component of the momentum balance equa-
tion, the profile of the scalar pressure p�y�= p0+�g�h
−y�cos � is found to be the same as for a Newtonian liquid.

Inserting the constitutive relations �6� and �7�, the
second boundary condition at the free surface becomes
�−2�iso�yx�h+�2pkin��ap /�a���yx�h=0. We note, that the ve-
locity gradient need not vanish at the free surface due to the
alignment contribution to the pressure tensor.

In the present case, the stationary solution to �21� reduces
not to �31� but �−���=G�h−y�, with G=�g�ap sin � /�. The
general solution to this equation reads ��y�=�1ey/�+�2e−y/�

+G�y−h�. The boundary conditions lead to the final expres-
sions

��y� =
G�

Z

− ch sinh�y/�� − c0ch cosh�y/��

− �c0 +
h

�
	sinh��y − h�/��

+ ch�c0 +
h

�
	cosh��y − h�/��� + G�y − h� �67�

with Z= �1+c0ch�sinh�h /��+ �c0+ch�cosh�h /��.
The resulting solution for the velocity field is

v�y� = v0
1

2
�2 −

y

h
	 y

h
+ Q��

h
	2 1

Z
F�y/��� , �68�

where v0=�gh2 sin � /� is 2 times the velocity at the free
surface for Newtonian fluids, v�y=h ,Q=0�=v0 /2. The
modification of the flow profile due to the alignment is de-
scribed by

F�y/�� = ch�1 − cosh�y/��� − c0ch sinh�y/��

+ �c0 +
h

�
	�cosh�h/�� − cosh��y − h�/���

+ ch�c0 +
h

�
	�sinh�h/�� + sinh��y − h�/��� .

�69�
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FIG. 8. The reduced effective viscosity �eff /� �65� as a function
of h /� is plotted. The parameters are Q=8 and ca=0 �thick line�,
ca=1 �thick dashed line�, ca=10 �thin line�.

FIG. 9. Sketch of the inclined plane.
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The flux J�Q� down the inclined plane per unit length in
the transverse direction is found to be given by

J�Q� = �
0

h

dyv�y�

=
1

3
v0h�1 +

3Q

Z

�

h
�k1 sinh�h/�� + k2 cosh�h/���	

�70�

with k1=ch�1+c0� /h�− �� /h�k2, k2=1+ �c0+ch�� /h. From
the flux J, the apparent slip velocity is defined by �36�

�veff = � ��J/h2�
��1/h�

�
�gh sin �

, �71�

where the derivative is taken at constant surface shear stress
�in absence of coupling�. From Eq. �70� one finds

�veff = v0
Q

Z
�k1k2 + �ch

2 + k2
2���/h�2 cosh�h/��sinh�h/��� .

�72�

A particularly interesting case is a vanishing alignment
flux at the bottom plane and vanishing alignment flux gradi-
ent at the surface. In this case, the boundary conditions be-
come ��0�=0, ���h�=0, then one has

v��y� =
�g sin �

�
h2
1

2
�2 −

y

h
	 y

h
+ Q

�2

h2�h

�
sinh�y/��

− cosh�y/�� + 1	� . �73�

Note, that the special case �73� can be derived from Eq. �68�
for c0=0, ch→� only in the limiting case h /��1. In this
case, the apparent velocity slip �72� simplifies to

�v�,eff = v0Q��

h
	2
�2 −

�

h
	cosh�h/�� + �1 − 3

�

h
	sinh�h/��� .

�74�

In this approximation the flow profile is very similar to the
plane Poiseuille flow cut in the middle plane and for h /�
�0.1 it cannot be distinguished in graphical diagrams. In the
limiting case h /��1, c0=0 and ch→� the influence of
boundary conditions become smaller and for h /��1000 the
flow profile coincides with the plane Poiseuille flow cut in
the middle for graphical accuracy. In Fig. 10 the flow profile
for the flow down an inclined plane is compared with Poi-
seuille flow cut in the middle �dashed line� between the lim-
iting cases for c0=0 and ch→�. In these regimes the differ-
ence between the Poiseuille flow and the inclined flow
profile is significant and becomes smaller for higher values
of the ratio h /�.

F. Alignment

For the special cases considered in this section, viz., iso-
tropic phase and small shear rates, only the xy component of
the alignment tensor is affected by the flow. The alignment
tensor is written as, cf. �30�,

a�	 = �2a�y�e	
xe�

y� + ¯ . �75�

The ellipses stand for the other components which could be
nonzero, due the influence of the walls. In the isotropic
phase, relation �12� is equivalent to

a − �2a� = A−1�, �2 = A−1�0
2, �76�

where the elastic coherence length � is used. For �=0 the
alignment a�y� is determined by the quantity ��y� as com-
puted above. For ��0, on the other hand, the value of a, i.e.,
of the xy component of the alignment tensor can and must be
prescribed in order to obtain a unique solution for the align-
ment. It is recalled that the boundary condition given above
was not formulated directly for the alignment tensor but
rather for the derivative of the potential function with respect
to the alignment.

As before, the plane Couette flow and plane Poiseuille
flow geometries are treated. In analogy to �35� the ansatz

a�y� = a0 + a1 cosh�y/�� + b cosh�y/��, � � � , �77�

or

a�y� = a0 + a1�y/��sinh�y/�� + b cosh�y/��, � = � �78�

is made for the Couette case. Again it is assumed that the
walls at y=h and at y=−h are identical. The coefficients
a0 ,a1 follow from the differential equation �76�, the coeffi-
cient b is fixed by the value aw of the alignment at the wall.
More specifically, one obtains

a0 = A−1�0, a1 = �1 − ��2/�2��−1A−1�1, � � � , �79�

and

a0 = A−1�0, a1 = − 1
2A−1�1, � = � , �80�

Similarly, for the Poiseuille flow between identical walls
we use, cf. �52�,
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FIG. 10. The flow profile of the flow down an inclined plane is
displayed for several values of the parameter h /�=8, 12, 20 �from
the right to the left�. The remaining parameters are c0=ca=0, ch

=�, Q=8. The dashed line shows one-half of the Poiseuille flow
profile for the same parameter.
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a�y� = a2�y/�� + a3 sinh�y/�� + b1 sinh�y/��

+ b2 cosh�y/��, � � � , �81�

or

a�y� = a2�y/�� + a3�y/��cosh�y/�� + b1 sinh�y/��

+ b2 cosh�y/��, � = � . �82�

The differential equation �76� yields relations for the coeffi-
cients a2 ,a3 which are identical to �79� and �80� with the
subscripts 0, 1 replaced by 2, 3. The coefficients b1 ,b2 are
determined by the alignment at the wall. In Figs. 11 and 12
the xy component of the alignment tensor for the Couette
flow and the Poiseuille flow is displayed, respectively. At the

boundary we used uniaxial alignment a=�3/2aeqnn� . In our
case the director n lies perpendicular to the xy plane. The xy
component of the alignment tensor is then a=0. Figures 11
and 12 show a significant effect on the flow alignment by the
apparent slip parameter ca. In the Couette flow the shape of
the curve is only mildly affected whereas the minima grows.
This means for small values of ca that the flow alignment
angle of the molecules in the middle of the Couette cell
deviates less from the flow alignment angle of the molecules
at the wall. In the Poiseuille case, the alignment solutions are
antisymmetric with respect to the middle plane as a conse-
quence of the symmetry of the velocity profile. As in the
Couette flow, curves for several parameter values ca are be-
tween the limiting curves for ca→� indicated by the dashed

line and for ca=0 �thick line�. High values of the parameter
ca lead to small flow alignment angle in the bulk except for
y=0 where all curves are intersecting.

G. Couette flow in cylindrical geometry

In order to determine material functions of non-
Newtonian fluids, it is common practice to carry out shear
experiments in different geometries �cone-plate or cylindrical
geometry�. Here we consider a fluid between two coaxial
cylinders which are in relative rotation. The inner-cylinder
radius is denoted by ri�0 and the outer cylinder by ro �ro

�ri�. We assume that the cylinders are infinite in extent to
avoid boundary effects from the top and the bottom of the
cylinder. According to the special symmetry we choose polar
coordinates, the appropriate velocity field is taken as

v = �0,u�r�,0�t �83�

and the orthonormal tensor basis

�84�

which is similar to the Cartesian orthonormal tensor basis
used in �37�. Analog to the preceding section we choose a
special Ansatz for the strain tensor � and �,

� =
1
�2

��r�T2, �85�

� = ��r�T2. �86�

With the help of this Ansatz, Eqs. �19� and �21� can be re-
written as

��r�T2 − �a
2T2
r,���r� − �a

2��r�
r,�T2 = − �2�ap��r�T2,

�87�

pkin
�2

�ap

�a
�r,���r� · T2 + pkin

�2
�ap

�a
��r��r,� · T2 = �iso
r,�v ,

�88�

where 
r,� and �r,� are the Laplacian and the gradient in
polar coordinates, respectively. Equation �88� can be rear-
ranged as

�r,� · ��iso� − 1/�2
�ap

�a
pkin��r�T2	 = 0, �89�

when the incompressibility condition is used. The solution of
Eq. �89� is given by

��r� =
1

�iso

�ap

�a
pkin��r� + c/r2 �90�

and leads with Eq. �87� to a Bessel differential equation for
the function �,

��r� − �
r,���r� = c/r2 �91�

or explicitly
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y (in units of l)

-0.4

-0.3

-0.2

-0.1

0

a

FIG. 11. The xy component of the alignment tensor is plotted for
plane Couette flow for several values of the parameter ca. The pa-
rameters are chosen as Q=8, A=1, �=0.3, �=0.2, �ap=0.5, vw=1,
h /�=1, a�h�=0 and ca=0 �thick line�, ca=10 �middle thick line�,
ca=20 �thin line�, ca=� �dashed line�.
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FIG. 12. The xy component of the alignment tensor is plotted
for plane Poiseuille flow for several values of the parameter ca. The
parameters are Q=8, A=1, �=0.1, l=0.2, �ap=0.5, vw=1, h=1,
a�h�=0 and ca=0 �thick line�, ca=1 �middle thick line�, ca=�
�dashed line�.
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r2���r� + r���r� − �1 +
r2

�2	��r� = f�r� . �92�

In our case f�r�=c /r2. The homogeneous solutions are modi-
fied Bessel functions �Bessel functions with pure imaginary
argument� which are denoted as J� �first kind of order �� and
K� �second kind of order ��. The particular solution of the
Bessel equation can be derived by

�p�r� =
�

2
K��r� � rI��r�f�r�dr −

�

2
I��r� � rK��r�f�r�dr ,

�93�

such that the general solution can be written as

��r� = �1I1�r̂� + �1K1�r̂� +
�

2
cl2�K1�r̂� � I1�r̂�/r̂dr̂

− I1�r̂� � K1�r̂�/r̂dr̂	 . �94�

Here we use the abbreviation r̂=r /�. The solution of the
integrals are generalized hypergeometric functions and
Maijer G functions. In principle, it is possible to use the
exact solution of � for further calculations. In many applica-
tions, however, cylindrical Couette flow is considered with
large radii of ri and ro, i.e., ri ,ro�1. In that case, the modi-
fied Bessel functions can be approximated by J��r�� 1

�r
er

and K��r�� 1
�r

e−r �38,39�, so that the integration is trivial and
the general solution for not too small values of ri ,ro is

��r� =
1
�r̂

��1er̂ + �2e−r̂� + �0. �95�

The integration constant was denoted by �0. The coefficients
�1 and �2 are determined by the boundary conditions for the
alignment flow �,

��ri� = ca����ri�, ��ro� = − ca����ro� . �96�

The shear rate ��r� according to Eq. �90� is given by

��r� = − Q
1
�r̂

��1er̂ + �2e−r̂� + �1/r2 + �0 �97�

and the velocity profile can be derived by integration as

v�r� = − Q�����1�ca,�,ri,ro�erfi��r̂�

+ �2�ca,�,ri,ro�erf��r̂�� + �0r − �1/r , �98�

where erf�x� denotes the error function and erfi�z�
=−i erf�iz�. The coefficients �0 and �1 are determined by the
no-slip conditions of the velocity at the boundary ri and ro.

For a better comparison to the plane Couette flow consid-
ered above, we introduce new coordinates. We denote the
variables ro−ri=2h, �= �r �r� �ri ,ro�� and rm=ri+ �ro−ri� /2.
The boundary conditions �96� reduce to

��rm,− h� = ca����rm,− h�, ��rm,h� = − ca����rm,h� .

�99�

We assume for the velocity boundary conditions v�ri=rm

−h�=v�rm ,−h�=−vw and v�ro=rm+h�=v�rm ,h�=vw that is
the outer cylinder is moved by vw and the inner by −vw. In
these coordinates the velocity profile is a function of � and
with the parameters ca ,� ,h ,rm ,vw,

v��;ca,�,h,rm,vw� = − Q�����1�ca,�,ri,ro�erfi���̂ + r̂m�

+ �2�ca,�,ri,ro�erf���̂ + r̂m��

+ �0�rm + �� − �1/�rm + �� . �100�

We analytically calculated the coefficients �1, �2, �0, and �1
with the computer algebra program MATHEMATICA4.1. In Fig.
13, the velocity profile is plotted for Q=8, h /�=9, l=1, and
rm /�=10. The velocity is presented in units of the wall ve-
locity vw and y denotes � /�. The thick curve pertains to the
highest possible boundary effect �ca=0� for Q=8 fixed. For
high values of the coupling of the alignment to the pressure
tensor the apparent slip becomes stronger as Fig. 14 shows.
As in the plane Couette flow, the extrapolation of the veloc-
ity in the center towards the wall is smaller than the wall
velocity vw and for ca→� the flow profile reaches the cylin-
drical Couette flow without apparent slip. In contradistinc-
tion to the plane Couette flow, the velocity profile in cylin-
drical geometry is asymmetric. That is a direct consequence
of the radial geometry, i.e., of the term 1/ �rm+��. In the case
where rm≫h we can approximate 1/ �rm+���1/rm so that
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FIG. 13. The velocity vs the distance in units of h is plotted for
Couette flow in cylindrical geometry. The chosen model parameters
are Q=8, h /�=9, rm /�=10, and ca=0 �thick line�, ca=3 �thick
dashed line�, ca=100 �thin line�.
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FIG. 14. Same as Fig. 12 but for parameters rm /�=11, h /�=9,
ca=0, and Q=10 �thick line�, Q=1 �thick dashed line�, Q=0 �thin
line�.
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our results for the cylindrical Couette flow can be compared
to the results of plane Couette flow directly.

In particular, the velocity profile cannot be distinguished
from the plane Couette flow profile in Fig. 2 if the same
parameter values are used.

V. CONCLUDING REMARKS

In microfluidics, the flow behavior can be strongly af-
fected by boundary conditions. In this paper we show that
boundary conditions derived in the framework of nonequilib-
rium thermodynamics for molecular liquids lead to an appar-
ent slip in the different flow geometries. In a plane Couette
flow as well as in a cylindrical Couette flow, the velocity in
the bulk extrapolated towards the wall is slower than the wall
velocity. The cylindrical Couette flow is influenced by the
radial geometry leading to the nonsymmetrical flow profile,
but qualitatively the effect of the alignment flow at the
boundary gives the same apparent slip and coincides in the
limit for large radii with the plane Couette flow profile. On
the other hand, for Poiseuille flow and the flow down an
inclined plane, the flow in the bulk becomes faster caused by
boundary effects. We have shown for the case of a plane
Couette flow and a plane Poiseuille flow, that as a conse-
quence of the alignment flow boundary conditions, the effec-
tive viscosity decreases if the length scale �h� of the device is
comparable with the slip length. This also applies to the
other geometries.

In all cases the boundary effects are dramatic for values of
h comparable with the length �. On the other hand, if the
systems length is much larger than �, all these boundary
effects are negligible, as expected.

The microscopic interpretation of the boundary conditions
is a challenging problem in particular for complex fluids. The
strong slip limit h�� of the expressions given in this paper
should be taken with caution. Based on experience with rar-
efied gas dynamics, strong deviations from hydrodynamics
require modified differential equations and additional bound-
ary conditions which are not considered here. For simple
fluids, a lower bound on h /� for a hydrodynamic description
has been inferred from molecular dynamics simulations in
�40�.

So far, specific applications were restricted to the isotro-
pic phase and linear flow regime. The nonlinear flow behav-
ior in the isotropic and nematic phase can be studied by
numerical solutions. This is also possible for tumbling nem-
atics as considered in �25,34�. Preliminary results are avail-
able.
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