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Many physical and engineering systems exhibit cascades of periodic attractors arranged in period increment
and period adding sequences as a parameter is varied. Such systems have been found to yield piecewise smooth
maps, and in some cases the obtained map is discontinuous. By investigating the normal form of such maps,
we have detected a type of codimension-three bifurcation which serves as the organizing center of periodic and
aperiodic dynamics in the parameter space. The results will help in understanding the occurrence and structure
of such cascades observed in many nonsmooth systems in science and engineering.
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I. INTRODUCTION

In the investigations on practical dynamical systems as
diverse as biological autocatalytic processes, optogalvanic
circuits, impact oscillators, electronic switching circuits, and
neural relaxation oscillators, a few typical bifurcation sce-
narios have been reported �1�. These are pure period incre-
ment, period increment with coexistence of attractors, and
period adding scenarios, as illustrated in Fig. 1. In all three
cases, there exists a sequence of periodic attractors, whose
periods form an arithmetic series pn= p0+n�p with a starting
period p0 and an increment value �p. Let �n be the param-
eter value at which the attractor with period pn is created,
and let �̄n be the value at which it is destroyed. The common
property of all three bifurcation scenarios mentioned above
is that �n��n+1 implies �̄n��̄n+1. For the pure period in-
crement scenario �Fig. 1�a�� the parameter value for the an-
nihilation of one attractor is the same as that for the emer-
gence of the next ��̄n=�n+1�, for the period increment with
coexistence of attractors �Fig. 1�b��, the parameter ranges of
the occurrence of attractors with incremental periods overlap
��̄n��n+1�, and for the period adding scenario �Fig. 1�c��
there is a gap between the two ranges ��̄n��n+1�.

In the last case we observe higher-periodic attractors in
this gap, whose periods can be calculated based on pn and
pn+1 using the infinite adding scheme �2,3� as follows. Let �
be the symbolic sequence corresponding to the attractor with
period pn and � the one corresponding to the attractor with
period pn+1. Then, between periods pn and pn+1, there exists
the period pn+ pn+1 �corresponding to the symbolic sequence
���, between periods pn+ pn+1 and pn+1 there exists the pe-
riod pn+2pn+1 �corresponding to the symbolic sequence
��2�, and so on. However, the gap between the two ranges
��̄n��n+1� does not necessarily lead to the period adding
inclusions. For instance, in the gap a complete period-
doubling scenario may occur, including ranges of chaotic
behavior. In situations where high-periodic orbits are not
stable, the dynamics in the gaps may be chaotic without any
periodic inclusions. A typical example for this scenario is
shown in Fig. 1�d�.

The natural question is: How are these bifurcation sce-
narios organized? In probing this question, we note that most

of the systems in which such bifurcation sequences have
been observed yield nonsmooth maps on discrete modeling.
Many of these systems �like the sigma-delta modulator, the
Colpitts oscillator, and some switching electronic circuits�
�4� have been shown to yield maps that are not only piece-
wise smooth, but also have a discontinuity at the border.
Therefore, we investigate this problem using a general model
�5� given by

xn+1 = f�xn,a,b,�,l� = �axn + � if xn � 0,

bxn + � + l if xn � 0.
�1�

In fact, the model �1� represents the piecewise linear approxi-
mation of general piecewise smooth maps in the neighbor-
hood of the point of discontinuity, and all the bifurcation
patterns mentioned above occur in this system. It has been
shown �5� that in this system such characteristic bifurcation
patterns are generated by repeated occurrence of border col-
lision bifurcations.

In this paper we investigate the character of the parameter
space of system �1�. It is known that the parameter combina-
tions for codimension-one bifurcations represent curves in
two-dimensional �2D� parameter spaces and surfaces in
three-dimensional �3D� parameter spaces. When dealing with
2D parameter spaces, the codimension-one bifurcation
curves may intersect, whereby the intersection points repre-
sent codimension-two bifurcations. It has been shown that a
special type of codimension-two bifurcation point may oc-
cur, where an infinite number of codimension-one curves in-
tersect. This phenomenon has been named as codimension-
two big bang bifurcation �BBB� �3,6�. In general, a
codimension-N BBB point is defined as a point in an
N-dimensional parameter space �N�2�, where an infinite
number of codimension-�N−1� bifurcation curves intersect.

By a suitable scaling, system �1� can be reduced to the
three cases l� �−1,0 ,1�. In the 3D parameter spaces of sys-
tem �1� we find some generic bifurcation patterns for these
three cases, which are responsible for the complex bifurca-
tion structures observed in many practical systems. Thus, a
framework for the explanation of these scenarios is provided
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considering several border collision induced codimension-
three bifurcations.

II. AN EXAMPLE

To illustrate the problem, let us consider the dynamics of
the � /� modulator commonly used in analog to digital con-
verters, which can be expressed by the map �7� given by

xn+1 = pxn + s − sgn�xn� . �2�

Here s� �−1,1� is the input signal of the circuit �considered
as a parameter of the model�, x represents the output, and

p�0 is a parameter which describes the nonideality of the
circuit. Figure 2 shows the regions of different dynamical
behaviors in the s	 p parameter space �hereafter called

�/��, exhibiting transitions from periodicity to chaos as
well as a period adding structure. Since the system is piece-
wise linear, the bifurcations can occur only when an attractor
�fixed point or a periodic orbit� collides with the border
x=0, resulting in the destruction of that attractor. This allows
us to calculate the corresponding bifurcation curves analyti-
cally, which are shown in the figure.

FIG. 1. Typical bifurcation scenarios observable in piecewise smooth maps under variation of one parameter: pure period increment �a�,
period increment with coexistence of attractors �b�, period increment with period adding inclusions �c�, and period increment with chaotic
inclusions �d�. Top row: one-parameter bifurcation diagrams; bottom row: the corresponding period diagrams. The scenarios are shown for
system �1� at a=1, l=−1, and b=−0.3 �a�; b=0 �b�; b=0.3 �c�. The scenario �d� occurs in the same system at b=0.46, �=−50, and l=−1.
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FIG. 2. Numerically calculated
bifurcation structures of the � /�
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corresponding to periodic dynam-
ics with different periods as well
as chaotic and divergent behavior.
The numerically calculated insets
show the bifurcation diagrams
along the marked lines.
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In the following discussion, we denote a point x�0 by
the symbol L, a point x�0 by the symbol R, a periodic orbit
corresponding to symbolic sequence � as O�, and its region
of stability in the parameter space as P�. Note, that two
areas P� and P� may overlap, leading to a coexistence of
attractors.

In the left-hand part of Fig. 2 we observe a large area PLR
of period-2 behavior. Below and above this area an infinite
number of bifurcation curves is located, originating from the
points B1= �0,−1� and B2= �0,1�. Thus, B1 and B2 represent
codimension-two big bang bifurcation points which organize
the complete structure of the parameter plane 
�/� for
p�1. The bifurcation curves originating at B1 and B2 bound
the existence areas of stable orbits corresponding to sym-
bolic sequences �, where � may be a basic sequence LRn,
RLn or composite sequences like LRnLRn+1or RLnRLn+1.
This scenario is governed by the infinite sequence adding
scheme, so that between the areas P� and P� there is the area
P�� as discussed in Sec. I.

Varying the parameter s across the border collision bifur-
cation curves as shown in the top inset of Fig. 2, we observe
the period adding scenario. Since the adding process contin-
ues ad infinitum, this scenario includes attractors with arbi-
trary high periods and as a limiting case aperiodic attractors.
These attractors are not chaotic in the sense that they have
negative Lyapunov exponents. Owing to the identical slopes
of the system function on both sides of the discontinuity
point x=0, the Lyapunov exponent is given by ln�p� for any
attractor of system �2�. It is an inherent property of the period
adding scenario, that the size of the parameter area leading to
a specific period decreases towards zero with periods in-
creasing to infinity. As a consequence, the existence areas of
aperiodic attractors are given by curves in the 2D parameter
space, so that these attractors are not robust.

The area of stable periodic and aperiodic nonchaotic dy-
namics mentioned above is bounded by the line where the
Lyapunov exponent is zero, i.e., by the condition p=1. Be-
yond this line, the asymptotic dynamics of system �2� is cha-
otic and after that divergent �see areas Pchaos and Pdiv in Fig.
2, separated from each other by the curves of boundary crises

1,2

c = � �p−2� / p�. The transition to chaos under variation of
the parameter p is illustrated by the bottom inset. In this
paper we seek to explain how such bifurcation structures are
organized.

Using the substitution x→x /2, a→p, b→p,
�→ �s+1� /2, it can be shown that system �2� represents a
special case of the more general model �1�. Thus, the struc-
ture of the parameter plane 
�/� of system �2� can be ex-
plained considering system �1� for l=−1.

III. THE STRUCTURE OF THE PARAMETER SPACE
OF SYSTEM (1)

We now turn our attention to the more general model �1�
in order to explore the underlying mechanism that creates the
bifurcation structures shown in Fig. 1, and observed in many
physical systems.

An inherent property of system �1�, which is reflected
in the structures of its parameter space, is given by the
symmetry

f�x,a,b,�,l� = − f�− x,b,a,− �� + l�,l� . �3�

This symmetry implies that the BBBs described below occur
pairwise and produce identical structures in the parts of the
parameter space, which can be mapped onto each other by
Eq. �3�. Due to the replacement of x by −x, the involved
symbolic sequences are inverted as well. Note also that the
parameters in �1� can be scaled so that the length of the
discontinuity takes the value −1, 0, or +1. These three values
of l therefore suffice in the exploration of the generic bifur-
cation patterns in this system.

A. The case of negative discontinuity

The numerically determined bifurcation structures in the
a	b	� parameter space of system �1� for the case l=−1
are presented in Fig. 3. It shows that two codimension-three
big bang bifurcations at the points B1

−= �0,0 ,0� and
B2

−= �0,0 ,1� determine the dynamics of system �1� in large
parts of the parameter space �8�.

These codimension-three big bang bifurcations are caused
by the intersection of an infinite number of codimension-two
big bang bifurcation curves, which are themselves caused by
the intersection of an infinite number of codimension-one
border collision bifurcation surfaces as presented in detail in
�3�. The stable periodic orbits undergoing these border colli-
sion bifurcations are, like in the case of system �2�, the orbits
corresponding to the basic sequences LRn, RLn or compos-
ite sequence derived from them.

Note, that in the notation B1,2
− we use here, the superscript

− refers to the case of negative discontinuity, i.e., l=−1. Note
further, that not only the stable periodic orbits corresponding
to finite symbolic sequences and the stable aperiodic orbits
corresponding to infinite symbolic sequences but also un-
stable periodic orbits and even chaotic attractors are influ-
enced or organized by the character of these two
codimension-three bifurcations.
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We define the influence region of a bifurcation point as
the contiguous region around it, where the parameter setting
leads to attractors which are topologically equivalent to the
attractors existing in the vicinity of the bifurcation point. In
Fig. 3, in the left-hand part of the influence region of B1

− the
period increment scenario with pairwise coexistence of at-
tractors takes place �as illustrated in Fig. 4�a��, whereas in
the middle part the pure period increment scenario takes
place �see Fig. 4�b�� and in the right-hand part the period
adding scenario occurs �compare Fig. 4�c��. Owing to the
symmetry of the parameter space, in the rear part of the
influence region of B2

− the period increment scenario with
pairwise coexistence of attractors exists, in the middle part
the pure period increment scenario, and in the front part the
period adding scenario occurs.

The influence regions of B1
− and B2

− are separated from
each other by the area PLR, which has a complex 3D shape
and overlaps with the area PRL2 in the left-hand part of the
figure and with the area PLR2 in the rear part. Note that
although the areas PLRn, PRLn are now 3D, the bounding
border collision bifurcation surfaces can still be calculated
analytically.

Based on these observations, we claim that the complete
bifurcation structure rests on the two codimension-three
BBB points occurring at B1

−= �0,0 ,0� and B2
−= �0,0 ,1�. Be-

cause both codimension-three bifurcations are of the same
type, we will describe only one of them in detail, namely the
one occurring at B1

−. In order to do that, we consider three
parameter planes for fixed values of b in the characteristic
cases b�0, b=0, and b�0.

Case b�0. In the a	� planes one observes period incre-
ment bifurcation structures with coexistence of attractors il-
lustrated in Fig. 4�a�. Consequently, the bifurcation point at
the origin of each plane is a period increment BBB with
coexistence of attractors.

Case b=0. In the a	� plane one observes a pure period
increment bifurcation structure �see Fig. 4�b��. The bifurca-
tion point at the origin is a pure period increment big bang
bifurcation.

Case b�0. In the a	� planes one observes period add-
ing structures �see Fig. 4�c��. Consequently, the bifurcation
point at the origin of each plane is a period adding big bang
bifurcation. In this case parameter values leading to attrac-
tors of increasingly high periodicities accumulate towards
specific curves in the parameter space, corresponding to non-
robust aperiodic nonchaotic attractors as described earlier.

Note, that the plane b=0 separates the period increment
structures from the period adding structures. Figure 3 also
shows that in this plane the separating lines between regions
with two subsequent periods are all codimension-two lines,
i.e., every point on these lines correspond to a codimension-
two bifurcation. Therefore, this plane is denoted as the 2D
characteristic manifold of the described type of codimension-
three bifurcation. Additionally, the line a=0, �=0 is a line of
codimension-two bifurcations as well. For values b�0 each
point on this line represents a period increment BBB with
coexistence of attractors, for b=0 it represents a pure period
increment BBB, and finally for b�0 each point on this line
represents a period adding BBB. Since each of these bifur-
cations is a codimension-two bifurcation, and at the point B1

−
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FIG. 4. Left: two-parameter bifurcation dia-
grams showing numerically determined unfold-
ings of the three types of codimension-two big
bang bifurcations, generating �a� a period incre-
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odic orbits for b=−1, �b� a pure period increment
scenario for b=0, and �c� a period adding sce-
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the type of the codimension-two bifurcation changes, this
point represents a codimension-three bifurcation point. In the
following, the line a=0, �=0 is denoted as the 1D charac-
teristic manifold of the described type of codimension-three
bifurcation. Similar results can be obtained for the second
codimension-three period adding BBB occurring at the point
B2

−. To this point, the following objects form the skeleton of
the bifurcation structure in the 3D parameter space.

Bifurcation point 2D manifold 1D manifold

B1
−= �0,0 ,0� ��b=0� a=0, �=0

B2
−= �0,0 ,1� ��a=0� b=0, �=1

Note that when dealing with specific piecewise smooth
maps, it is necessary to determine these two characteristic
manifolds, because they represent the skeleton of the com-
plete 3D bifurcation structure.

B. The case of positive discontinuity

Next we investigate system �1� for the case l= +1. As
shown in �6�, the structure of the 3D parameter space in this
case is determined by the following four codimension-three
BBBs of the same type as described above:

Bifurcation point 2D manifold 1D manifold

B1
+= �0,−1,0� ��a=0� b=−1, �=0

B2
+= �0,−1, � � ��a=0� b=−1, �=�

B3
+= �−1,0 ,−1� ��b=0� a=−1, �=−1

B4
+= �−1,0 ,−� � ��b=0� a=−1, �=−�

Note that the BBBs B2
+ and B4

+ occur at infinite parameter
values. Nevertheless, it is not only of theoretical interest to
investigate these bifurcations, because a codimension-three
bifurcation typically possesses an extended influence region.
Even in the case where the bifurcation itself occurs at infin-
ity, the influence region reaches finite parameter values. The
structure emerging at this bifurcation point located at infinity
determines the behavior in the domains of finite and practi-
cally interesting parameter values. Hence, in order to make
the overall structure of the parameter space visualizable, we
apply the coordinate transformation �→arctan��� for �
� �a ,b ,��. The resulting structure of the parameter space is
shown in Fig. 5. The character of the bifurcation sequences
induced by B1,2,3,4

+ is similar to those observed for the case of
negative discontinuity, i.e., those shown in Fig. 4.

In the case l=1, the 1D characteristic manifolds of the big
bang bifurcations B1

+ and B2
+ are parallel to each other and

their 2D characteristic manifolds lie in the same plane, as
shown in Fig. 5. Due to the symmetry �3�, the structure in-
duced by the BBBs B3

+ and B4
+, is identical with the structure

described above.

C. The case of continuous map

For l=0, system �1� is a continuous map for which some
results are presented in �9�. In this case codimension-three

bifurcations of the type described above do not occur. In-
stead, the 3D parameter space is organized by the following
four codimension-three bifurcations which are of a different
type:

Bifurcation point 2D manifold 1D manifold

B1
−0+= �0,−� , � � ���= � � a=0, b=−�

B2
−0+= �−� ,0 ,−� � ���=−� � a=−�, b=0

B1
0= �0,−� ,0� ���=0� a=0, b=−�

B2
0= �−� ,0 ,0� ���=0� a=−�, b=0

Concerning the notation of these bifurcation points, recall
that the superscript is related to the values of the parameter l,
for which the corresponding bifurcations occur. Therefore,
the notation B1,2

−0+ means that these bifurcations exist in all
three cases l�0, l=0, and l�0, whereas the bifurcations
B1,2

0 occur only in the case l=0 �10�.
Because the structures induced by all four bifurcations are

identical, let us investigate the point B1
0 in detail. Figure 6�b�

represents a typical bifurcation scenario, reported for many
practical applications �11,12�. It shows a sequence of peri-
odic dynamics with increasing periods and chaotic windows
between the consecutive periodic windows. This scenario
can be explained from the structure of the plane a	b for a
positive value of � shown in Fig. 6�a�. In this plane each
region PLRn is bounded by two curves: 
LRn corresponding
to the birth of the periodic orbit OLRn, and �LRn correspond-
ing to it becoming unstable. For each n both curves originate
from the point �0,−� �, so that this point represents a
codimension-two big bang bifurcation. Because the structure
of the 3D parameter space is the same for all positive values
of �, the point B1

0 represents a codimension-three bifurca-
tion. This is clearly visible in Fig. 6�c� where the structure of
the 3D parameter space is presented. The cuboid in the
middle part represents the stability area PR of the fixed point
xR=� / �1−b�, whereas the prismlike structure in the front
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FIG. 5. Numerically determined bifurcation structures formed
by codimension-one border collision bifurcation surfaces of system
�1� for the case l=1 induced by the two codimension-three big bang
bifurcations at the points B1

+= �0,−1,0� and B2
+= �0,−1, � �. Note

that the coordinate transformation �→arctan��� for �� �a ,b ,��
has been used to locate the codimension-three bifurcation point
within finite parameter range. B3

+ and B4
+ are not shown for the sake

of clarity of the diagram, but their existence can be inferred because
of the symmetry of the parameter space.
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represents the stability area PLR of the period-2 solution
corresponding to the symbolic sequence LR. The adjacent
3D region to the right of the prism and to the front of the
cuboid, represents the influence regions of the codimension-
three bifurcations B1

0 and B1
−0+. In this region, the stable pe-

riodic solutions with symbolic sequences LRn take place,
whereby between two regions corresponding to successive
sequences LRn and LRn+1 a region with chaotic dynamics is
located as shown in more detail in Fig. 6�a�.

Let us consider additionally the points �LRn, where the
curves 
LRn and �LRn intersect �see Fig. 6�a��. It can be
shown that for increasing n the sequence of these points
converges monotonously to the point �1/2 ,−��. Hence, if
the parameters are varied along an arc with a fixed radius
R�1/2 around the point B1

0, the observed bifurcation se-
quence �similar to the one shown in Fig. 6�b�� becomes trun-
cated. For any radius R�1/2 there exists a number m for
which the distance between the points �LRm and B1

0 is less
than R. Therefore, in the above-mentioned bifurcation sce-
nario only periodic orbits OLRn with n�m are involved.
In contrast to this, for R�1/2 this scenario takes place
ad infinitum.

Remarkably, the structure induced by the codimension-
three BBB occurring at the point B1

−0+ is identical with the
structure induced by the codimension-three BBB B1

0 de-
scribed above. This is based on the fact that in the case
l=0, a suitable scaling allows to reduce system �1� to the
three cases ��0, �=0, and ��0. It is clearly visible in Fig.
6�c�, that the structure of the parameter space does not de-
pend on the parameter � in the complete interval �0, � �.
Since the structures induced by B1

0 and B1
−0+ belong both to

the parameter interval �� �0, � �, the both BBBs must be of
the same type. Note, that the BBBs occurring at the points B2

0

and B2
−0+, are equivalent to B1

0 and B1
−0+as a consequence of

the symmetry �3�.
Next, let us consider what happens with the topological

structure of the 3D parameter space of system �1� under
variation of the parameter l. For l� �−� ,0� and for
l� �0, � � this structure does not change. In contrast, varying
l from negative to positive values, one observes that the
codimension-three bifurcations B1,2

− are destroyed and B1,2,3,4
+

emerge. Hence, the bifurcation occurring at l=0 is a
codimension-four bifurcation. This bifurcation requires a
more detailed investigation, which remains for future work.

IV. APPLICATION TO THE � /� MODULATOR

With this framework, the bifurcation structure of system
�2� can now be explained easily. The parameter plane p	s
shown in Fig. 2 corresponds in the case of system �1� to the

FIG. 6. �a� Analytically determined structure of the plane a	b
in the region of periodic and chaotic dynamics for l=0 and a suffi-
ciently large value of �. �b� Bifurcation scenario along the arc
marked in �a� calculated numerically. �c� Analytically calculated
structure of the 3D parameter space a	b	� in the case l=0 for
��0. Note that the same parameter scaling as in Fig. 5 is used
here.
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case l=−1, and the diagonal plane �a=b�	�. Because
p�0 and s� �−1,1�, only this region of the plane is relevant
for us, which is marked in Fig. 3 as 
�/�. As one can see,
both codimension-three BBBs occurring at the points B1,2

− in
the a	b	� space belong to 
�/� and correspond to the
points B1,2 in the original system. Remarkably, 
�/� inter-
sects only the adding part of the influence regions of B1,2

− ,
whereas the increment part of these influence regions is not
intersected by 
�/�. This explains why we observe the pe-
riod adding structures shown in Fig. 2 and not the period
increment structures. This is illustrated in Fig. 7, where an
embedding of the plane 
�/� in the influence region of the
point B1

− is shown. As one can see, the lower part of the
bifurcation structure of the plane 
�/� is induced by B1

−,
whereas the upper one is induced by B2

−. For the sake of
clarity, only the intersection of the plane 
�/� with the struc-
ture induced by B1

− is shown in Fig. 7.
Note, that the structure of the area Pchaos with chaotic

dynamics shown in Fig. 2 is also influenced by B1,2 �respec-
tively, by B1,2

− �. This is because the chaotic attractors are
organized by unstable periodic orbits, which emerge at these

bifurcations and become unstable at the boundary of their
influence regions. However, it is beyond the scope of this
paper to discuss this topic in detail.

V. CONCLUSIONS

We thus conclude that the complex bifurcation sequences
observed in nonsmooth systems can be understood in terms
of only a few codimension-three big bang bifurcations, and
their respective characters and influence regions in the pa-
rameter space. When applying this concept to any physical
system exhibiting period-increment and period-adding cas-
cades, one must identify these codimension-three big bang
bifurcation points, and their 1D and 2D manifolds. These
form a skeleton in the parameter space on which the overall
bifurcation structure of the system rests. We have demon-
strated how this idea can be applied to a practical dynamical
system—the � /� modulator, and which explains the under-
lying mechanism behind the structure of bifurcation dia-
grams exhibited by this system.
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