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Reconstruction of potential from dynamic experiments
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In experimental studies of a surface by an underdamped mechanical surface force probe the “tip” can return
repeatedly to the same points in space. This causes a problem in using the experimental data to extract
information about the surface structure. We propose an approach which allows one to extract the mesoscopic
surface structure from dynamic experiments with underdamped systems. The approach was tested on numeri-
cally generated random fractal potentials and is applied to extract potential relief from real experimental data.
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INTRODUCTION

In this work we study the problem of how to use experi-
mentally measured time sequences of force to reconstruct the
physical potential responsible for this force. Specifically, the
problem is studied here in underdamped systems. Such a
problem can appear in systems where an inertial contribution
to the measured force is non-negligible. This contribution
has a strong quasirandom impact on the time sequence and
drastically masks the potential force to be reconstructed. This
study focuses on the extraction of surface structure informa-
tion from tribological experiments, a fundamental theoretical
problem in the dynamics of systems with a complex random
(fractal) structure. It has important practical applications,
e.g., in micromechanical and ultrasonic devices [1]. As a
mathematical tool we use the simple Tomlinson model,
widely used as a model of friction [2].

In spite of its simplicity, the Tomlinson model describes
many essential features of tribological systems and has been
utilized by many authors [1,3-15]. Recently developed ex-
perimental tools allow for the investigation of friction at na-
nometer scale and have stimulated many advances in under-
standing the relationship between macroscopic frictional
forces and microscopic properties of systems [1,8,9,13-16].
The Tomlinson equation ordinarily operates with linear ve-
locity dependence of microscopic dissipative forces. Physi-
cally, these forces are stemming from electron or phonon
scattering processes and exist mainly on the microscopic
level. The Langevin-type Tomlinson equation has thus been
proven to provide a good basis in describing tribological
experiments using a surface force apparatus, which moves
and interacts on the atomic potential scale [10-12]. It is con-
versely not enough when we try to extend the study into
mesoscopic scale. This situation appears often in practical
mechanical tribological experiments. The model in its origi-
nal form describes one degree of freedom and assumes a
single contact point. In reality, many asperities are pulled
over many other asperities, rendering the reconstruction of
microscopic potential from such experiments impossible.
The procedure may, however, be applied to reconstruct a
coarse-grained surface structure at mesoscopic scale.

The model should be modified for mesoscopic scales by a
specific renormalization of the velocity dependent friction
and the addition of an effective dry (Coulomb) friction term
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[21]. When the experimental scale is sufficiently far from
atomic, friction becomes almost independent of sliding ve-
locity. In a first approximation it is therefore plausible to
represent friction using only a dry friction force. Neverthe-
less, in a typical scenario the surface force probe (or “tip”)
returns repeatedly to the same space points. This important
problem is related to the underdamped nature of the motion,
characteristic of a mesoscopic scale combined with dry fric-
tion. This fact causes additional difficulty in using the experi-
mental data to extract surface structure information.

In this paper we propose a practical numerical procedure
which allows the reconstruction of surface structure from the
experiment and acquisition of the effective equation’s phe-
nomenological friction parameter in a self-consistent manner.
As an illustration, the approach is applied to an analysis of
real experimental data. The test application results in a frac-
tal structure of the reconstructed potential.

MODEL AND EQUATIONS

Let us start from a generalized equation of motion from
the Tomlinson model in the following form:

Pxlof + (n+ yeff| x/3t|)sgn(dx/dt) + U (x)/dx + K(x — Vi)
=0. (1)

Here a driven plate of mass M =1 and the center-of-mass
coordinate X is pulled by a spring with spring constant K.
U(X) is the effective potential experienced by the plate due
to the presence of an embedded system. The spring is con-
nected to a platform which moves at velocity V. The param-
eter 7y, is responsible for a “standard” velocity dependent
dissipation and 7 is the Coulomb friction constant.

An important feature of a realistic system is that the me-
soscopic structure of frictional surfaces has fractal character
[17,18]. The structure thereby cannot be characterized by one
definite wave vector (or even a few wave vectors [1,3,8,9])
as normally presumed in applications of the Tomlinson
model. The model must be extended to incorporate a realistic
fractal potential. In numerical simulation it can be generated
in the form [17]

a2
U(X) = Ufractul = UOf qu(‘])COS(qx + §)7 C(Q) = q_ﬁ'

q1

()
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Here ¢, and ¢, are characteristic cutoff wave vectors and
{(x) is a random phase that we assume to be S-correlated
Ua)ilqg))=2mdq-q").

Below, this modified model is applied to simulate friction
on a mesoscopically rough surface. This is certainly a three-
or at least two-dimensional problem, but the main ideas can
be shown well by a one-dimensional system. We have re-
cently shown the model can be adapted to intermediate
scales by the renormalization of velocity dependent friction
and the addition of an effective dry friction force [21]. The
effective potential in this case corresponds to a smoothed
initial potential (obtained by means of exclusion of an appro-
priate number of Fourier modes). It is proven that in studying
mesoscopic friction, one may represent a system using only
dry friction (y—0) [21]. In principle if to analyze mesos-
copic experiments only, one can concentrate on this limit. It
is relatively simple and all the numerical procedure in this
case is more transparent. However, below we will return to
the form (#+ y{dx/t|)sgn(dx/ dt) of general interest also.

In an actual numerical study, the integral in Eq. (2) trans-
forms into a sum: [ dqc(q)—»Eq. Here a discrete step be-
tween the wave vectors Ag is determined by the smallest
vector g;. This corresponds to an inverse maximum system
length [,,, which equates normally to its size [,,,,=L. The
total number N,,, of the terms in the sum is given by N,,
=q2/q1=q2/Aq.

The discrete technique is also logical for an analysis of
experimental data. The data are automatically presented in
the form of limited discrete arrays. This allows us to adjust
the potential according to the actual size of the system, to a
period of time N,, and N, number of space steps available in
the data set. Further, for the general theoretical approach it is
also important to be able to extend a procedure as necessary
to as long time-space runs. That is, numerically generated
fractal potential U,,eq(x) should be extendable to an
infinite run. For this sake, instead of Eq. (2), one may
use the following differential definition of fractal
potential: U e1q(x)/ dx=UpAxZ q,c(q;)sin(gx+ &), where
j=1,2,...,N,des- This procedure naturally extends
U fracra(x) @ potentially infinite number of times, each time
the x coordinate runs out of the array bonds. For numerical
procedure it means that the modified Tomlinson equation

Pxl 9> + 5 sgn(dx/ o) + M fracial(X)/0x + K(x = Vi) = 0
3)

is actually accompanied by an additional differential equa-
tion which is solved in parallel.

RESULTS AND DISCUSSION

If the potential is fixed and external force “turns on” at
some moment in time, Eq. (3) completely defines the motion.
There is then a correlation between the experimentally re-
corded motion scenario and surface potential. However, we
are interested in a solution of the inverse problem which
restores the potential from the dynamic scenario. The inverse
solution is not as straightforward as the direct solution. The
main difficulty stems from the inertia of the system. This is
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FIG. 1. Random potential (a), trajectory of motion in phase
space {X,V} (b), and projection of the force Fpynia[X ()] to the
{F,X} plane (c), shown in dimensionless units. The gray line in
subplot (a) depicts the potential according to a procedure described
in the text. The black solid and dotted lines in the subplot (c) show
numerically generated correct curve F i X] and the curve
Fporeniiall X(2;)] found from the course-grained data. The bold gray
curve in the same plot corresponds to the averaged potential force

Fpotemial(X) =<Fpotential[X(tj)]>~

evident in Figs. 1(a)-1(c). The numerically generated ran-
dom potential is shown together with the trajectory of motion
in phase space {X, V} [Fig. 1(b)] and a projection of the po-
tential component of force F,,.iu[X(2;)] on the X coordi-
nate. Dimensionless units normalized to characteristic micro-
scopic scales and energies of a particular system are used in
these plots for general theoretical study.

Phase portrait technique, applied in Fig. 1(b), is often
used in the closely related studies of dynamics in periodic or
nonperiodic potentials (i.e., studies of the Frenkel-Kontorova
model [19,20]). It allows one to record and observe clearly
the whole dynamic history of very complex systems. In this
particular case we can read from the plot how external force
F,,=K(x—V?t) pulls a probe from one local minimum of the
potential to another. The probe leaves its current minimum
when the force exceeds a barrier and then flies to some other
minimum determined by the next local equilibrium. After
overcoming the barrier it falls down with a nonzero velocity
which it maintains for a while due to inertia.

Again, if the scale is sufficiently far from atomic, the
friction becomes nearly independent of the sliding velocity
and can be approximated by a dry friction force. As a result,
the scenario is defined by a complex combination of the
external force F,,, potential relief U(x), and friction force
F pyicion= 1 5gn(dx/ dt). Despite neglecting the velocity depen-
dent part of the dissipation v, in Eq. (3), the energy of this
externally driven system does not grow with time. The be-
havior of the system is stabilized due to the friction force
F fyiction= 1 5gn(dx/ dt), which provides a dissipative force at
every moment of the process.

Nonlinearity of the potential and changeable balance of
all the forces produces extremely complex dynamic behav-
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ior. It is difficult to predict both the position of the next local
equilibrium and the number of oscillations before the next
stop. The flow line repeatedly visits the same positions of the
space X with different velocity at every visit.

Despite the complexity of this motion, one may formally
accumulate numerical (or experimental) arrays of the coordi-
nate X(¢;) and force F,,(t;) and combine them according to a
discrete analog of Eq. (3) as follows:

Fpotential = Fpntential[x(tj)] = (Xj+1 + Xj—l - ZXJ)/dtjz

where dt;=t;,~t;; V;=(X;;,—X;)/dt;. Formally applied, the
numerical procedure is to completely define the function
FpotemialE anracml(X)/&X' One can PlOt the array Fpotential as
a parametric function of the coordinate Fpia
=F poeniall X(t))], as done in Fig. 1(c). The plot gives a visual
representation of the actual spatial dependence of F,yia
and provides a basis for further operations.

Due to a loss of information caused by discrete imple-
mentation, the force F,.iq always has a few close, but still
different values at every coordinate point. Black solid and
dotted lines in Fig. 1(c) show the true (original) numerically
generated curve F,,.,.[X] and the curve of less refined
F poreniial X(¢;)] for a comparison. A magnified portion of the
data shown in a rectangle within Fig. 1(c) makes the fine
structure of the force more readily visible.

The procedure mainly involves calculating the number of
values in every segment of the coordinate array {X(/)}, accu-
mulating the total sum of the force impacts from all the visits
of the same segment, and normalizing this sum according to
the number of visits. Applying this procedure to the whole
array yields an averaged potential force Fpppniq(X)
=(Fpotentiall X(¢,) ). The bold gray curve in Fig. 1(c) corre-
sponds to the result obtained. Now we can use this mean
force F,penia(X) to find the effective potential by integration
as follows:

X

dXFpotential(X) . (5)
Xo

Ueff(X) =

The gray line in Fig. 1(a) depicts the reconstructed poten-
tial structure to compare it with the generated structure, rep-
resented by the black line. To simulate naturally limited in-
formation of an experimental array, this potential is restored
using N/“%““d/N =102 points of the numerically produced
dependencies calculated according to dynamic Eq. (3). This
results in a loss of information, causing reconstructed poten-
tial to deviate from the exact initial potential. It is worthy to
note, though, that even for the very significant reduction of
information N"*/““’/N,=107 the result still reproduces the
correct potential quite well. This is important in the context
of further applications, where we are always limited by ex-
perimental data and do not know the correct potential a pri-
ori to compare with.

The reduction of information is important also in a con-
text of thermal noise which exists in any real system. The
noise term is not written in Eq. (1) of the article, but we
checked its role in numerical simulations. To some extent it
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FIG. 2. A family of potentials restored from the procedure at
different trial # values. Numerically generated correct potential is
shown by the black line. Restored potential corresponding to the
known exact 7" value is represented by the bold gray line.

plays here the same role as a dynamic chaos in the system
under consideration and opens just an additional channel for
the chaotic impacts. When temperature noise is relatively
weak it causes fluctuations of the scanning probe inside of
every potential minimum only. The procedure, which is
based on a coarse grained description, averages additional
random impacts to the velocities as well, and the result al-
most does not depend on the noise. As is expected, we found
a threshold effect of the temperature. When random impact
to kinetic energy exceeds a potential barrier the probe can
uncontrollably jump from one minimum to another and re-
stored potential starts to diverge from a correct one.

Also noteworthy is that the discrete analog of the dynamic
Eq. (4) and said procedure involve previous knowledge of a
correct parameter 7. In the case of a real experiment this
value is not known in advance. However, as we show below,
it can be found within the course of the same procedure that
restores the potential.

The equation of motion and phase portrait in Fig. 1(b)
show directly that if the constant # is chosen incorrectly, but
the time data sequence corresponds to a real physical sce-
nario, the friction component F;.,,, =7 sgn(dx/dt) of the
total force will systematically either overestimate or under-
estimate kinetic impact on the total potential. As result, the
potential U (X)=/ §0dXF potential(X), integrated using recon-
structed force, will systematically increase (or decrease)
along the coordinate X.

To observe this discrepancy, we have performed such a
calculation for a numerically generated potential and an array
of different parameters 7. It produces a family of the poten-
tials corresponding to different # values, presented in Fig. 2.
The numerically generated correct potential is shown here by
a black line. Only one 7 corresponds to the correct %" value
(known here in advance) and only one potential lies close to
the correct one. This potential is shown by the bold gray line
in the figure. All other curves stray either up or down along
the space coordinate X, as expected.

This observation gives a receipt which allows one to re-
store both the microscopic friction force and the correct sur-
face potential from the same tribological experiment. It is
applied to the processing of real friction data obtained from
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FIG. 3. Experimental data of (measurable) external force F,,,
=K(x-V1) (a) and coordinate X(z;) (b) used to apply the proposed
procedure. Coordinates are measured in millimeters, time in sec-
onds, and force in newtons. A magnified view to the curve X(tj) is
shown in the rectangular inset to subplot (b). A corresponding piece
of the main plot is enclosed by a second rectangle.

experiments described below. We used the experimental
setup set forth in [17]. A steel sample was dragged along a
steel plate with a spring, the coordinate of the sample was
measured with a laser vibrometer at a frequency of 10° mea-
surements per second, and the spring force was measured
with a force sensor. The results are summarized in Figs. 3-5.
Experimental data of (measurable) external force F,,=K(x
—Vt) and coordinate X(z;) being used to apply the above
procedure are presented in Fig. 3(a) and 3(b), respectively.
The coordinate in the plot is measured in millimeters, time in
seconds, and force in newtons. The coordinate X(;) grows
linearly with time, making its fine structure essentially indis-
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FIG. 4. A family of potentials U,(X) restored using experimen-
tal data at different trial 7 values. The mean value of the potentials
(U,g(X)) is plotted versus 7 in the inset. The expected correct value
of 7=7" corresponding to the (U,g(X)) closest to zero, (U,AX))
=0, is marked by the gray circle. The potential U,;{X) correspond-
ing to this value is shown by the black line in the main plot.
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FIG. 5. Fourier transform of the potential U,(q) and its log-log
plot, shown in the rectangular inset, which illustrates that U,;{q)
has a fractal spectral density C(g)gP.

tinguishable in Fig. 3(b). To make it clearer, we again in-
clude a magnified portion inside a rectangle within Fig. 3(b).

A family of the potentials U,{(X) restored using the ex-
perimental data for different trial 7 values is shown in Fig. 4.
The correct result must follow a real physical potential,
which should be approximately horizontal. In other words, it
does not systematically grow or decrease and its mean value
is closer to zero than mean potentials corresponding to other
incorrectly chosen 7 values.

We have calculated the mean values of the potentials
<U,AX)> at different constants 7 and plotted them in the
rectangular inset to Fig. 4. The value of 7=7" has been
estimated from the condition <U,;(X)> =0. This value is
marked by the gray circle in the inset. The resulting potential
U,iAX) corresponding to the value 7= 17" is shown by the
black line in the main plot.

It is well known that the majority of the physical surfaces
have universal fractal structure,[17,18] and physical potential
is expected to have a fractal spectral density C(g)>g?. It is
interesting to analyze from this point of view the potential
obtained. To do this, we have calculated the Fourier trans-
form of the potential U,(X)— U,Aq). The result is pre-
sented in Fig. 5. It has almost perfect power-law shape which
can be checked additionally using a log-log plot, shown in
the rectangular inset. The distribution of points in the inset
deviates from the straight line at high and low wave vectors
q. This is quite natural for the restricted set of the experi-
mental data, which is used to restore the potential, and lim-
ited on both sides by the length of the recorded run and
minimum space-time resolution. The same procedure has
been repeated for a number of experimental data sequences.
In all cases, qualitatively, it gives the same results. An effec-
tive exponent 3 recovered from the logarithmic plots lies in
the interval 0.75< 8=<1.0, which is in agreement with the
results found in other approaches.

Our experiments were performed on a mesoscopic level.
We therefore assumed that the dominant frictional force is
velocity independent dry friction 7 sgn (dx/df), and the only
unknown parameter to be found is 7. In general case (espe-
cially in nanoscale systems) the friction force can have a
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FIG. 6. Total deviation of the potential U,;(X; %, y) from trial
one accumulated along an interval of motion {X}: D(7%,y)
=Zy|U(X)-U,AX:7,7)| as a function of the parameters 7 and 7.

velocity  dependent  contribution of the  form
y|ox/dt|sgn(dx/ df). Tt is important to generalize the above
algorithm to include both contributions to friction. To this
end we repeated all the procedure varying both parameters 7
and vy [for the same numerically generated dynamic set x(z)].
If we fix one of the parameters (let us say z=const) and vary
v, we obtain qualitatively the same families of the potential
such as shown in Fig. 2. The results of these calculations are
summarized in Fig. 6. It presents the total deviation of the
potential U,(X;7,7y) from the trial one accumulated along
the interval of motion {X} as follows:

D(n,7) = 2 |UX) = UydX; 7,7)|
X

as a function of the parameters 7 and vy. For an arbitrary pair
of the parameters, the restored potential U,A(X;7,y) grows
or decreases with the coordinate X. Numerical simulation
shows that there is a line y=7(7) at the parameters plane
(7,7) along which U,(X;7,y) matches U(X) almost per-
fectly.

It means that both contributions to the friction similarly
affect the reconstructed effective potential. If one of the pa-
rameters is wrong and systematically either overestimate or
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underestimate kinetic impact on the total potential
UW(X ;7,7) another one can be chosen to compensate its
deviation from the correct one. In other words, we can re-
store the correct potential without knowing the detailed fric-
tion law, in formally the same procedure as before. We fix
some value of one of the parameters » or y and adjust a
second one to get almost horizontal resulting potential. This
procedure does not provide correct damping constants, but it
restores the correct potential.

Let us discuss briefly the influence of thermal noise on the
quality of potential reconstruction. Thermal noise can be de-
scribed by an additional stochastic term in Eq. (1). To some
extent it plays the same role as dynamic chaos in the system
under consideration or roughening the data due to accuracy
of measurement. As the reconstruction procedure is robust to
these factors, we expect that it will not be too sensitive to
thermal noise. We have made additional simulations with
thermal noise which gave the following results. (a) When
thermal noise is relatively weak it causes fluctuations of the
scanning probe inside of every potential minimum only. The
procedure which is based on a coarse grained description
averages additional random impacts to the velocities as well,
and the result almost does not depend on the noise. (b) When
random impact to Kinetic energy exceeds a potential barrier,
the probe begins to jump from one minimum to another and
restored potential starts to diverge from a correct one.

In summary, we have proposed a method which allows
the reconstruction of surface structure from dynamic experi-
ments in the case of underdamped systems where the probe
repeatedly returns to the same coordinate positions. The ap-
proach is studied in detail on numerically generated random
fractal potentials where all the results and approximations are
under complete control. It is applied further to real experi-
mental data for which a physical potential relief is extracted
with satisfactory accuracy.
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