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We have formulated a generalization of the energy boundary condition for fluid-fluid interfaces that includes
the transport of the Gibbs excess internal energy. A newly measured surface property—the surface thermal
capacity c�—appears in the result, and couples the temperature and velocity fields. If this term is not included
in the energy boundary condition at liquid-vapor interfaces, the energy-conservation principle cannot be sat-
isfied during steady-state evaporation of H2O�l� or D2O�l�. The c� term is possibly important in a number of
other circumstances, and its importance can be determined from the magnitude of two nondimensional
numbers.
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The proper boundary conditions to be applied at fluid-
fluid interfaces are the subject of intense study �1–9�. But
none of these earlier studies have included the transport of
the Gibbs excess internal energy uLV �10� by surface-tension-
driven �STD� convection. The Gibbs approximation treats
the interface as a separate phase with excess moles nLV and
temperature TLV. Recent evaporation studies indicate that
transport of uLV by STD convection is important during
evaporation of both H2O�l� and D2O�l� �11–13�.

For example, when water was pumped into the throat of a
stainless-steel funnel �Fig. 1�, where its temperature was
maintained just below 4 °C, and onto the funnel mouth
where it evaporated steadily and where its temperature was
less than that at the funnel throat, buoyancy-driven convec-
tion was eliminated, since H2O�l� has its maximum density
at 4 °C. If STD convection is neglected, thermal conduction
must supply the energy to evaporate the liquid at the mea-
sured rate. The apparatus indicated in Fig. 1 was used to
determine if thermal conduction fulfilled this role. The
evaporation rate was measured by adjusting the chamber
pressure surrounding the funnel and the rate at which water
was pumped by a syringe pump into the funnel throat so the
water-vapor interface at the funnel mouth did not move.
Thus, the evaporation rate was equal to the pumping rate,
and the latter could be accurately measured �0.05% of the set
value�. The temperature profiles in the liquid and vapor
phases were measured with a microthermocouple mounted
on a positioning micrometer. From these profiles, the energy
transport to the interface by thermal conduction was deter-
mined and compared with that required to evaporate H2O�l�
at the observed rate. When the Marangoni number Ma �14�
was less than approximately 100 �i.e., Mc�, thermal conduc-
tion provided the energy transport required to evaporate
H2O�l� at the observed rate. But when the evaporation rate
was raised, energy transport by thermal conduction fell pro-
gressively further below the required energy transport rate
�see Fig. 1�, reaching a minimum of approximately 40% at
the highest evaporation rate, and indicating there had to be
another mechanism of energy transport.

An approximate energy boundary condition was devel-
oped in which STD convection of uLV was included. This
required the introduction of the surface-thermal capacity
c� ��nLV��uLV /�TLV�nLV� �11,12�. When c� was assigned one
value, energy conservation was completely satisfied in each
of the nine experiments �see Fig. 1�, but the assigned value
of c� was 105 times larger than what a simple estimation of
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FIG. 1. �a� Schematic of the evaporation apparatus and �b� com-
parison of the energy transport required to evaporate the water with
the energy transport by thermal conduction and by STD convection
in the absence of buoyancy-driven convection �12�. The onset of
STD convection occurs at Mc. The vertical scales for the left and
right lines and the position of the same point in the two scales are
indicated by arrows.
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its value indicated. A second set of experiments was under-
taken in which the circular-mouthed funnel was replaced by
one with a rectangular mouth that had a surface area more
than four times larger than the circular-mouthed funnel, and
the experiments were repeated. The value of c� was con-
firmed by the second set of experiments �13�. It was hypoth-
esized that the reason for the surprising magnitude of c�

results from the polar interaction of water molecules. An-
other set of experiments with the circular-mouthed funnel
was undertaken using D2O�l�, another polar liquid. The
value of c� for D2O�l� was found to be a few percent larger
than that for H2O�l� �12�.

Our objective in this study is to carefully derive the en-
ergy boundary condition �EBC� at fluid-fluid interfaces and
to ensure that all effects that could account for the magnitude
of c� have been taken into account. We allow for both inter-
face movement and flow parallel to the interface, and show
that the velocity and temperature fields are coupled by the
EBC, even for the flow of a nonvolatile liquid with negli-
gible viscous dissipation. This coupling comes through c�,
but this effect vanishes if the interface is quiescent. The
equations are general enough to show that c� is a property
not only of water, but of any system with an interface. We
obtain an explicit expression for the interfacial energy dissi-
pation �, and determine the magnitude of the terms appear-
ing in the EBC for water evaporation. Also, we show how c�

modifies the EBC for evaporating menisci in which the in-
terface is moving, e.g., evaporating droplets or thin film
evaporation.

To derive the EBC, we choose a control volume which
includes the interface between two fluids. The total material
volume V is thus bounded by the surfaces of the bulk phases
�VL and �VV with the outward normal vectors n̂L and n̂V,
respectively. The interface, approximated as a Gibbs dividing
surface I, divides V into volumes VL and VV. The portion of
I located inside the volume V is limited by the curve �I. The
unit-normal vector to I, pointing from the liquid to the vapor
is denoted n̂, and the unit tangent vector to I, denoted �̂, is
normal to the intersection of the surface �V and I, and points
out of �I. When changes in the momentum in V due to �1�
traction on the Gibbs dividing surface, �2� body forces, and
�3� interfacial stress are taken into account, the general mo-
mentum balance can be written �15�

d

dt
�

V

�v� dV = �
�V

t� dA + �
V

�X� dV + �
�I

�LV�̂ dl , �1�

where � is the fluid density, v� the fluid velocity, X� the body
force, and t� the traction. The traction is related to the stress
tensor T by t�=Tn̂. For a Newtonian fluid with dynamic vis-
cosity �, T=−pI+2��, where p is the isotropic pressure
and � is the rate-of-strain tensor.

If each of the fields involved, say f�x� , t�, is allowed a
simple discontinuity at I, assumed to have smooth deriva-
tives on either side of I, then the magnitude of the disconti-
nuity may be defined ��f��� f I

L− f I
V. The transport theorem

and surface Gauss theorem �15,16� may be applied to rewrite
Eq. �1� as

�
V
��

dv�

dt
− div T − �X��dV + �

I

�− jev	v�
 + 	Tn̂
 − �� I�
LV

+ 2C̄�LVn̂�dI = 0, �2�

where we have neglected any mass storage in the interface;
thus, the net mass flux at the interface is given by

jev � �L�v� I
L − v� I� · n̂ = �V�v� I

V − v� I� · n̂ . �3�

The surface gradient operator is defined as �� I��� − n̂�n̂ ·�� �
and the mean curvature of I as C̄ where 2C̄��� I · n̂. Equation
�2� holds for any material volume containing a surface phase.
Separating the bulk and the interface portions of Eq. �2�, we
get the Navier-Stokes �NS� equations in the bulk phases:

�idv� i

dt
− div Ti − �iX� i = 0 where i = L or V, �4�

and the interface momentum balance from the interface por-
tion of Eq. �2�:

jev	v�
 − 	Tn̂
 = − �� I�
LV + 2C̄�LVn̂ . �5�

In the absence of any net mass transfer �jev=0�, the scalar
product of n̂ with Eq. �5� leads to the Laplace equation,
which relates the bulk pressure to the surface tension of the
fluid, while the scalar product with �̂ leads to the Marangoni
stress balance equation. However, when there is evaporation,
the modification of the Laplace equation due to vapor recoil
�jev

2 ���L�−1− ��V�−1�� �5� is obtained from the first term of Eq.
�5�.

The conservation-of-energy principle may also be applied
to the control volume V, and if both the excess internal en-
ergy per unit area of the interface, uI ��nLVuLV�, and the

thermal flux vector q� ��−��� T� are included, one finds

d

dt
�

V

��u +

v� 
2

2
�dV +

d

dt
�

I

uIdI

= − �
�V

q� · n̂ dA + �
�V

v� · t� dA + �
V

�v� · X� dV

+ �
�I

�LV�̂ · v� Idl , �6�

where u is the specific internal energy of the fluid, and we
have neglected radiation. In previous energy balance equa-
tions, we emphasize that the term �d /dt��Iu

IdI was neglected
�4,8,9�.

The surface transport theorem �17� may be applied to
write

d

dt
�

I

uIdI = �
I
� �uI

�t
+ �� I · �uIv� I��dI , �7�

and the second surface Gauss theorem used to obtain

�
�I

�LVv� I · �̂ dl = − 2C̄�LVn̂ · v� I + �
I

�� I · ��LVv� I�dI . �8�

The conservation-of-energy principle now becomes
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�
V
��

d

dt
�u +


v� 
2

2
� + div q� − div�Tv�� − �v� · X��dV

= �
I
� jev�u +


v� 
2

2
� + 	q�
 · n̂ − 	v� · Tn̂
 −

DIu
I

Dt

− �uI − �LV��� I · v� I + v� I · �� I�
LV − 2C̄�LVn̂ · v� I�dI ,

�9�

where DI /Dt�� /�t+v� I ·�� I. Equation �9� may be separated
into the bulk-energy equation

�i d

dt
�ui +


v� i
2

2
� + div q� i − div�Tiv� i� − �iv� i · X� i = 0, �10�

and the EBC

jev�u +

v� 
2

2
� + 	q�
 · n̂ − 	v� · Tn̂
 −

DIu
I

Dt
− �uI − �LV��� I · v� I

+ v� I · �� I�
LV − 2C̄�LVn̂ · v� I = 0. �11�

Eliminating the contribution of mechanical energy from the
total by taking the scalar product of v� with the NS equations
�Eq. �4��, and subtracting it from Eq. �10�, the heat equation
in the bulk fluid is obtained. If a similar procedure is fol-
lowed and the scalar product of v� I is taken with Eq. �5� and
the result subtracted from Eq. �11�, one finds as the energy
balance for an element of the interface

	��� T
 · n̂ = jev�u +
1

2
��v� − v� I� · n̂�2� − 	�v� − v� I� · Tn̂
 −

�uI

�t

− v� I · �� Iu
I − �uI − �LV��� I · v� I. �12�

Equation �3�, the relation T=−pI+2��, and the definition
of c� ��nLV��uLV /�TLV�nLV= ��uI /�TLV�nLV� may be intro-
duced to simplify Eq. �12�. After neglecting the variation of

nLV along I, indicating �� I ·v� I=0, one obtains the EBC

	��� T
 · n̂ = jev	h
 +
jev
3

2
� 1

�2� − 2	��v� − v� I� · �n̂


− c�v� I · �� IT
LV. �13�

An additional equation that relates the interfacial velocity to
the bulk velocity and net evaporation flux is given by Eq. �3�.
A final constitutive relation of the form

jev = jev�TI
L,TI

V,PI
V,PI

L� �14�

is obtained from statistical rate theory �18� to close the sys-
tem of equations.

Since earlier investigations of the EBC �4,8,9� did not
include the transport of uLV, c� does not appear in their pro-
posed EBC, but Eq. �13� indicates that the coupling between
the velocity and temperature fields that results from a non-
zero value of c� is possibly important in a number of differ-
ent circumstances. �1� Even for a nonvolatile liquid �jev=0�
with negligible viscous dissipation, thermal flux to the inter-
face is coupled to the velocity field through c�. �2� For a fluid

in a finite container with differentially heated sidewalls
�19,20�, c� appears in the EBC, even in the linear order.
�3� For problems in which the interface is at position �
=��x ,y , t� and evaporation is occurring, v� I · n̂
= ��� /�t� / 
��z−��
, Eq. �13� is general enough to be con-
sidered with the kinematic boundary condition, Eq. �3�. Thus
the equations developed herein may be applied to examine
the stability and evolution of evaporating liquid films. The
EBC appears crucially important in modeling thermocapil-
lary fluid flow and thin film evolution.

The relative magnitude of the terms in Eq. �13� may be
examined by nondimensionalization. Length may be scaled
with d and temperature with 	T. In the experiments �Fig. 1�
�12�, d is the distance between the funnel throat and the
interface on the funnel centerline, and 	T is the difference in
temperature between these positions; speed may be scaled
with 
���LV /�T�nLV
	T /�L, and mass flux jev with �L	T /hVd.
The nondimensional mass flux is denoted Jev. After introduc-
ing these scaling factors, Eq. �13� becomes

��� TL · n̂ − ��V

�L��� TV · n̂�
= Jev� hL

hV − 1� +
Ev2Jev

3

D�
2L ���V

�L�2

− 1� −
16

9

Ma2

Ev PrL2L


��v�L − v� I� · �Ln̂ − ��V

�L��v�V − v� I� · �Vn̂�
− � Ma v� I · �� ITI. �15�

In Eq. �15�, Ev=�L	T /�LhV is the evaporation number; D�

=3�V /2�L is approximately the ratio of densities; L
=8d2hV�L /9��L�2 compares thermal to viscous effects; Ma
= 
���LV /�T�nLV
	Td /�L�L is the Marangoni number. If the
thermal diffusivity is denoted �, PrL=�L /�L�L is the Prandtl
number of the liquid, and if the constant pressure specific
heat of the liquid is denoted cp

L, then a new nondimensional
number �=c� /�Lcp

Ld appears. It determines the coupling be-
tween surface properties and those in the liquid phase. In
general �V /�L ,�V /�L ,�V /�L ,hL /hV
1, and we can de-
couple the hydrodynamic equations of the liquid from those
of the vapor. The values of these nondimensional numbers
for water near 4 °C give Ev�O�10−2�, D��O�10−4�,
L�O�1011�, PrL�O�1�, and ��O�1�.

We can identify three steady-state, water-evaporation re-
gimes in the experiments of �12�. �1� v� I=0, Ma�100: There
is evaporation, but contributions due to kinetic energy and
viscous dissipation are negligible, since Ev2/D�

2L
O�1�,
and Ma2 /Ev PrL2L
O�1�. Under these conditions, Eq. �15�
reduces to the nondimensional Stefan equation

��� TL · n̂ − ��V

�L��� TV · n̂� = Jev� hL

hV − 1� . �16�

and indicates that the energy transport to the interface is by
thermal conduction. The results presented in Fig. 1 support
this conclusion. �2� v� I�0, but v� I · n̂=0 and 100�Ma
�22 000: the boundary between the liquid and vapor phases
is stationary, but there is convection within the surface phase.
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The kinetic energy and viscous dissipation effects remain
negligible because �a� Ev2/D�

2L
O�1�, and �b� Ma

�O�104�; hence Ma2 /Ev PrL2L�O�1�. The resultant EBC
reduces to

��� TL · n̂ − ��V

�L��� TV · n̂� = Jev� hL

hV − 1� − � Ma v� I · �� ITI,

�17�

which is the dimensionless form of the equation used to mea-
sure c� �11–13�. Thus, the new effects do not change the
value determined for c�, and the results in Fig. 1 indicate that
only one value of c� is required to satisfy conservation of
energy in the experiments. �3� v� I�0, but v� I · n̂=0, and Ma
�22 000. There is convection in the interface between the
liquid and vapor phases, but, provided Jev�O�107/3�, kinetic
energy effects remain negligible because Ev2/D�

2L
�O�10−7�; however, the viscous dissipation

� =
16

9

Ma2

Ev PrL2L
��v�L − v� I� · �Ln̂ −

�V

�L �v�V − v� I� · �Vn̂�
cannot be neglected when Ma�O�104�, since

Ma2 /Ev PrL2L�O�1�. In order for kinetic energy effects to
be of importance, jev�107/3�L	T /hVd�0.1 kg/m2 s. The
largest value of jev in the experiments was less than
0.01 kg/m2 s.

In summary, when the transport of uLV by STD convection
is included, the boundary condition obtained from the
energy-conservation principle is given by Eq. �13�, and is
seen to couple the temperature and velocity fields. The im-
portance of this coupling is determined by the relative mag-

nitude of c�v� I ·�� IT
LV. For the conditions considered in

�11–13�, Eq. �15� reduces to the EBC used to determine the
value of c�. As indicated by Fig. 1, if this coupling is not
taken into account, the energy-conservation principle cannot
be satisfied.

Also, c� provides an essential coupling in other areas of
potential application. �1� It appears in the flow of a nonvola-
tile liquid with a temperature gradient along the interface.
�2� For a fluid held in a finite sized container with differen-
tially heated sidewalls, c� appears in the EBC even in the
linear approximation, independently of whether there is
evaporation. �3� For evaporation of a thin liquid film, c�,
through jev, couples the film thickness to the EBC. Finally, in
an arbitrary circumstance, the importance of this coupling
may be determined by examining the relative magnitude of
the nondimensional parameter � Ma.
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