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RNA folding in the presence of counterions
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We present a general thermodynamic picture of the folding of RNA-like heteropolymer based on the basic
physical principles. The Hamiltonian of the model includes all characteristic interactions explicitly. A particular
attention is paid to the electrostatic interactions whose role in the RNA folding is known to be crucial. In this
paper we study RNA folding with the full Hamiltonian and describe the spin-glass behavior on the level of
tertiary structure. We show that formation of the stable tertiary structure is possible in the random RNA-like
molecule. By including into the model the nonspecific interactions of the RNA molecule with counterions, we
derive the logarithmic dependencies of the melting and freezing temperatures on the ion concentration, which
is consistent with experimental data [R. Shiman and D. E. Draper, J. Mol. Biol. 302, 79 (2000)]. We also infer
that the large RNA folds slower than the hierarchical model predicts, which was observed in the experiments.
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I. INTRODUCTION

The RNA molecule plays a remarkably versatile role in
cellular processes. Its functions vary from serving as a
primer in DNA replication to the catalysis of many important
molecular reactions. For some viruses RNA is also a deposi-
tory of genetic information. Correspondingly, many different
aspects of RNA behavior are being studied intensively: from
mechanical properties to drug binding propensities.

Following one of nature’s most ubiquitous principles,
RNA’s biological function is closely related to its structure.
RNA molecules involved in the replication process utilize
their nucleotide sequence (the primary structure) to code for
proteins. For other functions of RNA the specific folded spa-
tial structures are crucial. The formation of the specific com-
pact folds of RNA is a result of complex physical interac-
tions of different intensity and scale present in the RNA-
solvent system. Understanding the thermodynamics and
kinetics of these processes constitute one of the most impor-
tant research problems of the contemporary biophysics. Be-
cause of the extremely complex nature of the problem it is
impossible to construct a complete theoretical model to in-
vestigate the RNA folding. Here we study the general ther-
modynamic behavior of the RNA molecule by constructing a
Hamiltonian which contains all relevant physical interac-
tions. Before describing the model let us recall some details
of structural organization of RNA.

Chemically RNA molecule is a heteropolymer consisting
of four types of naturally existing nitrogenous bases: A (Ad-
enine), G (Guanine), U (Uracil), and C (Cytosine). The base
pairs (A-U) and (G-C) are called complementary or Watson-
Crick type pairs. These pairs connect with each other by
hydrogen bonds and, when stacked together, they make a
major contribution to the stability of spatial structures of the
polymer. The typical topology forms of hydrogen bonds are
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shown in Fig. 1. Each monomer (base) in RNA carries a
negative charge and hence the electrostatic interactions (both
inter molecular and intramolecular) play an important role in
the stabilization of the structure. Three levels of structures
are distinguished in the RNA molecule: primary structure,
the sequence of nitrogenous bases along the chain; secondary
structure, formed by contacts of the bases; and the tertiary
structure which is composed of the secondary structure ele-
ments.

According to the basic hypothesis the biologically active
RNA structure is encoded in the nucleotide sequence [1].
Thermodynamically this structure corresponds to minimum
of the free energy. The stability of the folded conformation
depends on many factors among which perhaps the most
important one is counterions in RNA environments [2]. It is
believed that without neutralizing the RNA backbone
charges by counterions the collapsed compact structures are
not possible at all because the strong repulsion drives the
molecule to the rodlike configuration.

In the recent decade, RNA structures have been inten-
sively studied [3]. However, the main focus of these studies
is on the secondary structure formation while the tertiary
structure formation remains less understood. The ultimate
aim of the RNA folding investigations is to discover the
relationship between nucleotide sequence and the biologi-
cally functional tertiary structure.

It is known that the folding processes of proteins and
RNA share many common features, but the existing experi-
mental data show that in contrast to proteins, long RNA mol-
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FIG. 1. Three typical pairing types. (a) Bonds (i,j) and (k,[) are
independent; (b) bonds (i,j) and (k,[) are nested; (c) bonds (i,/)
and (k,[) create a pseudoknot.
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ecules exhibit “slow and inaccurate” folding [4,5] accompa-
nied by formation of thermodynamically stable
intermediates, usually understood as misfolding. Thus, long
RNA molecules seem much more similar to random het-
eropolymer than the protein. Thus, modelling a RNA mol-
ecule by a random heteropolymer sounds more reasonable
than the protein.

The basic goal of our present research is to study the
folding thermodynamics of RNA with a full Hamiltonian
which includes all characteristic interactions present in the
dissolved RNA molecule. The question we ask is: what kind
of fundamental information on the RNA thermodynamics
can be derived from general physical principles.

The secondary structure of RNA is stabilized by strong
hydrogen bonds and the “stacking” while the tertiary folds
are governed by relatively weak interactions between the
secondary structure elements. This separation of the energy
scales for RNA secondary and tertiary structures allows one
to investigate the formation and thermodynamics of these
structures separately with some degree of approximation.
Most algorithms for theoretical study of RNA folding are
based on the concept of hierarchical mechanism of folding
[6], according to which the secondary structure is formed
first and is much more stable than the tertiary structure. The
three-dimensional structure is formed through packing of the
elements of the secondary structure, and alters the later only
minimally. However, there are certain indications that the
large RNA molecules fold slower than the hierarchical
mechanism predicts [4]. This means that separating the fold-
ing process into two successive ‘“independent” processes
may appear to be an oversimplification.

In the present paper we examine the behavior of a RNA-
like molecule without assuming any preassigned order of the
folding, and considering any type of possible structures, in-
cluding pseudoknots as shown in Fig. 1(c). The Hamiltonian
of the model includes an explicit realistic electrostatic term.
Using a replica approach [7,8], we derive the logarithmic
dependencies of the melting and freezing temperatures on
the ion concentration, which is consistent with experimental
data [9].

This paper is organized as follow. In Sec. II, we define the
Hamiltonian for a RNA sequence. In Sec. III, we use the
Hamiltonian of Sec. II to calculate the free energy averaged
over all possible RNA sequences. We also use the free en-
ergy to derive coupled equations for physical variables. In
Sec. IV, we use the results of Sec. III to derive equations for
freezing and melting temperatures. In Sec. V, we use the
results of Sec. IV to discuss the dependence of freezing and
melting temperatures on the ion concentration. We also dis-
cuss the folding time problem and the role of repulsion be-
tween parts of the RNA in the structure stabilization of RNA.
In Appendix A, we present a detailed derivation of the free
energy given in Sec. IIl. Appendix B contains calculations
for the four-letter nucleotide sequences.

II. THE MODEL

We describe a RNA molecule with N monomers by a
random Gaussian chain in which N electrically charged
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FIG. 2. Schematic description of a random Gaussian chain with
N=7 beads.

“beads,” representing nucleotides, are connected with elastic
“springs,” (Fig. 2). The monomers are enumerated from 1 to
N. The structure of the molecule is described by introducing

two NXN matrices: (1) The complementarity matrix M
=M}, where M;;=1, if the ith and the jth bases are comple-
mentary (Watson-Crick type) and M;;=0, otherwise; (2) the

contact matrix é‘=||Cij . where C;;=1, if the ith and the jth
bases are hydrogen bonded, and C;=0, otherwise. Thus, the
base pair (i,j) contributes to the secondary or tertiary struc-
ture only if M;;C;;=1. The spatial configuration of the chain
is defined by the set r={r;;i=1,2,---,N} of the radius vec-
tors of the monomers. Hereafter the bold roman letters indi-
cate space vectors. The Hamiltonian of the model reads

N
H{I‘,é,ﬁ;f} =Hg(r) + Hrep(r) —€ E M;;C;;
i<j=2
37(r;—r;)?

N
+ 2 MGy o (1)
i<j=2 26

where 7 is the temperature, ¢ is the linear size of the Watson-
Crick base pair, €>0 is the base pair stabilization energy,
and it is assumed to be the same for the base pairs (G-C) and
(A-U). The energy of “stacking” is not included into the
model explicitly. Note that some other models of RNA sec-
ondary structure consider only ‘“stacking” and neglect the
hydrogen bond energy [10]. We assume that the complemen-
tary pairing is of saturated nature, i.e., each base can be
paired with only one other base.
In (1), the term

N—
3T
Hel(r) = ﬁz (r;— 1'i+1)2 (2)
i=1

describes the energy due to polymeric elasticity with a being
the length of the Kuhn segment of the chain; the term H,,(r)
describes the role of the electrostatic repulsion. In the real
physiological aqueous solutions with solute counterions the
electrostatic interactions is short ranged due to the screening.
In this case the Coulomb interactions can be replaced by an
excluded volume pseudopotential [11,12] v-8(r), where v,
=47lpf?r? is the electrostatic excluded volume. Here I,
=e?/(eT) is the Bjerrum length, f is the fractional charge on
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a monomer, r,=(eT/4mle*)'? is the Debye radius, € is the
dielectric constant, e is the electron charge, I is the ionic
strength of the solution, and &(r) is the Dirac’s function. The
counterions condensation is not the subject of the present
paper and, thus f=1. With this approximation the repulsion
term H,, can be represented as [13,14]

H,op = 27lgfrp >, 8(r;—1)). 3)
i)
In the case of spatially uniform monomer density p one ob-
tains

BH,ep(t) = 271l *rpVp* = 2l f*13,Np, (4)

where V is the volume occupied by macromolecule and p
=N/V.

The third term in (1) describes the energy of saturated
hydrogen-bond interactions. To some degree of approxima-
tion we assume that the energy of base stacking is also in-
corporated in this term implicitly. The justification is that
separating the hydrogen-bond and the stacking interactions
does not affect the basic results.

The last sum in (1) is the energy of the elastic deforma-
tions of the hydrogen bonds. Like the first term, it is calcu-
lated in the approximation of the elastic spring.

Some of the parameters introduced above have been con-
sidered in [15,16]. The persistence length for the one-strand
DNA is estimated as ~20 A which well agrees with results
obtained in [17]. However, in the case of single-stranded
nucleic acids one-strand RNA is more flexible, with a persis-
tence length of ~8-9 A [18-20] in comparison to one-
strand DNA with a persistence length of ~15-30 A [17].
Thus, in the case of one-strand RNA the persistence length

can be estimated as /=8 A. Here the length of the Kuhn

segment is a=~2l. We have introduced the parameter S as a
linear size of the Watson-crick base pair. More accurately, we
understand it as an equilibrium distance between the antipar-
allel chains in the double-stranded regions. Thus, & is of the
order of the diameter of double-strand RNA (about 20 A)
and, consequently, one can use 6~ 10 A for approximate es-
timates. The energy of the base pair stabilization is estimated
as Be=3 (I'=300 K) [15,16].

III. THE PARTITION FUNCTION AND THE FREE
ENERGY

The partition function is a central quantity in thermody-
namics. It is defined as the weighted sum over all configura-
tional states. For a given RNA sequence with Hamiltonian

H{r,C,M} defined by Eq. (1), we carry out integration over
all possible r and summation over all possible C to obtain
the partition function Z(M). We assume that the RNA se-

quence is random, i.e., the entries of the matrix M are inde-
pendent random variables. For the sake of simplicity, here
we describe only the results obtained for two-letter se-
quences (A and U or G and C) from which the entries of the
matrix M;; take values 1 or 0 with equal probabilities. The
real polynucleotides contain four types of nitrogenous bases
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and a question arises about the validity of our results. We
have carried out the corresponding calculations for the four-
letter sequences in Appendix B and found that the whole
picture of discussed phenomena remains the same. More ac-
curately speaking, the coefficients in the expansion over or-
der parameter are changed but none of the terms changes its
sign from positive to negative and vice versa. And this means
that the general behavior of the model is the same.

To average the free energy over quenched disorder of the

entries of M, we use a replica approach [7,8], which requires
averaging the partition function of n replicas of the system
over the distribution of the M entries. After averaging and
carrying out the summation over all entries of the matrix C,

we obtain for the n-replica reduced free energy (see Appen-
dix A for details)

BF(p.[q]) == S[q]+ nBH,e(p) — max G([7.p,q]). (5)
n

Here we denoted by ¢ the set of the equilibrium two-replica
(a and b) overlap parameters,

dulx.y) = <E_ o~ K)oy - r?>>, ©

where (...) means thermal averaging, 7 is some auxiliary
parameter appearing due to the calculation method, and S[q]
is the entropy of the system of n ideal polymer chains under
the restriction =;8(x—1¢)8(y—r)=¢,(x,y). The function
G([7,p,q]) in (5) is given by the equation

+Nn In(1 + 7eP9?)

[

nz(e—ﬁe/2+ )
The quantity M[q]=1/(Nn)Z,.,[dxdx'q’,(x,x') describes
the contribution into the free energy from the inter-replica

overlapping. The value of the parameter #z at which
G([75,p,q]) takes its maximum, satisfies the equation

_nln+e 28 Mlq]
- p53 (7]+ e—Be/2)4'

Gnpah =%

+ Mlq]. (7)

~Bel2)

1 (8)
The equilibrium density of monomers is obtained by

minimizing the free energy with respect to p, with constraint
pV=N,

a BF(p,lq]) 7
0= ————= =27lyf*r} — . 9
dp  Nn s/ 28°p? ©
From Egs. (8) and (9), we find
256/\/1 [q] ne—ﬁe/Z
(e7P2 + p)* =17 p& _47Tplaf2’%- (10)

In Eq. (5) the free energy JF is expressed as a functional of
the order parameter ¢g. By minimizing F with respect to g for
some n we determine the overlaps between the folds of dif-
ferent pure states (replicas) [7,8,21]. In our case the pure
states are characterized by a set of spatial coordinates {r{}. In
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the mean-field approximation the 2-replicas overlap param-
eter reads [21,22]

p (XY
Qab(x’y) R3¢( R )a (11)
where R is the replica overlap scale associated with the dif-
ference between the positions x and y of the monomers in
the replicas a and b, respectively.

The free energy can be minimized over the family of
functions ¢ defined by Eq. (11). Like in the case of random
heteropolymers without saturated interactions [23], we ob-
tain F~-A,/R*+A,/R?, where the contribution —1/R? is
due to the entropy loss for the chain confined in a tube with
diameter R [24], the term M][q] gives the contribution which
scales as 1/R? and A, and A, are some positive numbers.
The free energy has two minima: at R= & and at R=2. The
first one corresponds to two replicas, which coincide at the
microscopic level 6, while the second one describes replicas
which do not overlap at all. It is assumed that here we can
use the one-step replica breaking scheme [23,24] according
to which the n replicas are divided into groups. Each group
consists of x replicas with identical folds, and the replicas
belonging to different groups have completely different
folds. Then the free energy can be estimated from the fol-
lowing equation [21,24]:

BF(p.[q])

N E,Bf(p,x)z(l—1/x)S—g(7],p,x), (12)
n

where S=3 In(a/ ) is the entropy loss per monomer due to
the chain freezing, g(7,p,x)=G(7n,p.q])/(Nn), and
Mlgl=p&73(x-1).

The free energy minimum over the parameter x are found
from the equation

B 28(m+ e P94

2
X
ps’

(13)
There exists some characteristic, so-called “freezing” tem-
perature above which (T=T},) the replicas are symmetric (all
conformations are different), and hence, x=1. In this region
Eqgs. (8), (10), and (13) are reduced to

- 7(n+2)

1=2—S(77+z)4, (14)
g

where z=exp(-Be/2), o=p& <1 is the volume fraction of
the RNA base pairs and w=4lyf*r5 5. By solving this set
of equations one finds the equilibrium values of #, o, and z
which minimize the free energy.

IV. FREEZING AND MELTING TRANSITIONS

Below the freezing temperature the configurational space
of the molecule is drastically reduced. Instead of exponen-
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tially large numbers of conformations, now the state of the
molecule is dominated by only a few low-energy conforma-
tions. The molecule is found in the frozen state [23,25]. This
phase is defined by the condition x=<1. In the replica sym-
metric phase the number of available conformations is ~e",
and x=1. In order to estimate the freezing temperature T} we
first calculate the volume fraction o of base pairs.

From the first two equations of the set (14), we get easily

o= w2,
n=w"?-z, (15)
which imply
o= =-z07 " (16)

From the last equation of the set (14) and Egs. (15) and (16),
we obtain the following expression for the freezing tempera-
ture:

2= expl— @273 = %(1 - Z—S) (a7
Vo w

It is seen from Eq. (17) that the freezing temperature T,
decreases with growing entropy. For a given value of entropy
S, the freezing temperature takes its maximum at w=6S.

Below the freezing transition the RNA-like macromol-
ecule exhibits a glassy behavior (just like the random het-
eropolymers without saturated interactions) which is charac-
terized by slow relaxation [26] and a few dominant folds.
This might be the reason for the experimentally observed
“slow and inaccurate” folding of large RNA [4,5] which was
understood as misfolding.

A convenient quantitative order parameter for describing
the stability of the RNA secondary structure is the degree of
helicity which is defined as the average fraction of the
hydrogen-bonded base pairs and can be represented as

6= <2 M,,C,,> / (N/2). (18)
i<j

The average is calculated through the following transforma-
tions:

J
<%Mijcij>=a(ﬂe) InZ. (19)

Using the known relation In Z=-pF and Eq. (12), we obtain

98
> M;C;\=N——. (20)
<i<j / J> d(Be)

Since in the replica symmetric phase M|[g]=0 [in the
view of M[q]~ (x—1) and x=1], then we can write

g:—ﬁ+ln[1 + nexp(Bel2)]. (21)
20

Combining (15) with (21), we obtain
0=1-zo/2. (22)

Another important quantity characterizing the stability of
the secondary structure is the so-called “melting tempera-
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FIG. 3. (Color online) The dependencies of the inverse freezing
temperature Eg=e€/Ty;, (asterisks) and the inverse melting tempera-
ture E,,=€/T,, (diamonds) on logarithm of the reduced ionic
strength w=In(/5). The range of values uw~—3;—1 corresponds to
the range 1072—1 M for the ionic strength 1.

ture” T, defined as the point, where the bounded and non-
bounded states of base pairs have an equal probability, and
0=1/2. By substituting this value in (22), we find

€
T,=—. (23)

In @
Combining with Eq. (17), we obtain T,,> T} The dependen-
cies of Ty and T,, on salt concentration are shown in Fig. 3.

V. DISCUSSION

In this work we assume a quenched disorder for the RNA
sequence. A rightful question arises about the general differ-
ences between this model and the model with annealed se-
quence. Note that at temperatures 7> Ty, the replica param-
eter x=1. This means that the free energies for quenched and
annealed systems are the same. At the end of the preceding
section we obtained that the melting temperature for this
model is higher than the freezing temperature: 7,,> Ty.. With
this we can speculate that annealed disorder and quenched
disorder give the same melting transition and we can expect
that the logarithmic dependence of the melting temperature
on the ionic strength (Fig. 3) holds also for the annealed
system. On the other hand, we mentioned that quenched dis-
order is a key condition for attaining a freezing transition.

Now we provide some approximate quantitative estima-
tions which follow from the described model. It is easy to
see that the value of the electrostatic parameter w scales with
8 as w=f*/15. The fractional charge f is supposed to be
non-neutralized and f=1. It was mentioned above that the
value 5~ 10 A can be used. Hence, under the normal condi-
tions (7= 300 K and &= 80) and for experimentally used salt
ionic strength interval 7~ (0.01-1) M, one obtains 1/w
~(1073-107").
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The o parameter has the meaning of the volume fraction
of the RNA base pairs. It is obvious from Eq. (16) that o
takes the physically significant positive values only when
1/w>7%. This expression is easily transformed as 1>z%/&°.
Taking into account that Be~=~3 [15,16], one obtains that
72/ 8~=5x 10" A3 and the necessary condition for the o
>0 is I>I" (I"=0.1 M). At the lower ionic strengths it
would be invalid to use this model for the mean-field ap-
proximation of o.

The freezing temperature Ty, takes positive values only if
i< % Taking into account the estimation a =16 A [18-20]
and 6~ 10 A we obtain S=~3 In 1.6. Thus, /< 1/(258) only
if I<I", where I""=3.5x 107 A3 ~0.6 M.

The estimations derived above show clearly that the ter-
tiary structure formation is possible only for the ionic
strength in the interval I"<I<I"", and this is in a good
agreement with the experimental data [9].

The important point of the proposed theory is the “strong
screening approximation” [see Eq. (3)], where the screened
electrostatic potential is substituted by the short-range
pseudopotential v-8(r). As it was shown in [12], this ap-
proximation is valid for the concentration of the added salt
higher than the critical value which satisfies the equation

1/3
o (u)” o

rp )

At room temperatures (7=300 K) the Bjerrum length is Iy
~(0.7 nm and the Debye screening length is rp~1 nm.
Thus, the “strong screening” approximation is valid at ionic
strengths />0.13 M and our results are valid in the interval
of ionic strength I <I<I".

If the solvent contains only monovalent cations, e.g., Na*
or NH, then the electrostatic parameter w can be estimated
as wx1/c, where ¢ is proportional to the concentration of
the counterions. This means that the inverse melting tem-
perature 1/7,, decreases with the logarithm of monovalent
counterions concentration, which has been observed experi-
mentally [9]. In particular, it has been shown in [9] that in
the presence of NH} counterions the inverse melting tem-
perature 1/7,, decreases proportionally with In[NH}], where
[NH;] is the molar concentration of the NHj ions. Thus the
proposed theory is in qualitative agreement with the experi-
mental data.

As mentioned above, below the freezing transition the
RNA-like macromolecule exhibits a glassy behavior charac-
terized by a few dominate folds just like the conventional
random heteropolymers. The experiments on the folding of
the large RNA molecules such as Tetrahymena ribozyme
[27], show that the real folding rates are considerably slower
than it follows from the hierarchical mechanism. It is be-
lieved that in large RNA molecules conformational rear-
rangements are coupled to strong interactions between the
parts of the RNA molecule which can create kinetic traps and
slow down the folding. This glassylike behavior is consistent
with the replica symmetry breaking and frozen phase forma-
tion, predicted in our model. The possibility of the spin-
glass-like behavior of the RNA molecule was, particularly
predicted numerically in [28,29]. However these authors
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used the recursive model which does not consider
pseudoknots and describes only the secondary structure for-
mation.

The more detailed comparison is difficult because our
model predicts spin-glass-like behavior for the tertiary struc-
ture. However, the RNA secondary structure formation is
closely related to interactions between the base pairs, which
stand apart along the macromolecule and the tertiary struc-
ture freezing may be a master to secondary structure folding
(see, e.g., [30]). In the framework of present model by for-
mation of the stable base pair (i,j) as an element of the
secondary structure, the relative location of the i and j bases
is fixed. Then the spatial structure freezing is accompanied
by the secondary structure freezing and the different low-
energy structures in the frozen phase correspond to the stable
tertiary and secondary structures.

The frozen (glassy) phase formation is typical for the ran-
dom heteropolymers at low temperatures [21,23]. The char-
acteristic feature of the RNA folding is the role of the bal-
ance between the chain entropy and electrostatic repulsion.
As it is easy to see from Egs. (16), (17), (22), and (23), the
electrostatic excluded volume v and the effective volume of
the base pair ~ & appear in the thermodynamic characteris-
tics only as the ratio w~wv./& and, consequently have a
competitive influence on the thermodynamics of the model
under consideration. It is obvious from Eq. (17) that RNA
can undergo a freezing transition only if w>2S5, i.e., only at
sufficiently strong electrostatic repulsions. Thus unlike pro-
teins the repulsion between the parts of the RNA plays a
constructive role in the structure stabilization. Apparently,
the reason of the qualitative difference between the role,
playing by the repulsive interactions in the RNA and protein
molecules is the saturated nature of the hydrogen bonds in
RNA, while the protein structures are formed basically by
the ordinary van der Waals interactions. The possible reason
seems to be the following. In the absence of the electrostatic
repulsion a local collapsed structure may occur in which
three and more bases are colliding. At the same time, only
two complementary bases can form a stable pair. The con-
tacts between more than two bases can only increase the
scale of fluctuations of the three-dimensional (3D) structure
and create an additional overlapping between different stable
folds of the RNA molecule. Large scale fluctuations them-
selves indicate instability. Thus, the electrostatic repulsions
facilitate in formation of the stable specific 3D structures by
preventing large fluctuations.

It follows from the conditions oy, =25/w?<<1 that at the
freezing transition point the RNA molecule is not compact
and attains a loose, low-density structure. This can be under-
stood as follows. At the temperatures 7> Ty the RNA mac-
romolecule does not have any stable tertiary structure and
can be presented as the set of double-strand stems, loops, and
other elements of the secondary structure fluctuating in the
space. The thickness of the double-strand stem is ~ &, but the
spatial arrangement of the stems is governed by the electro-
static repulsion ~v. That is why o, % (8 /v )%

We can summarize that the proposed model of the large
RNA macromolecule describes correctly at least qualitatively
some experimentally observed features of the RNA folding,
such as the misfolded states which are slowing down the
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long RNA’s folding and the dependence of the melting tem-
perature on the monovalent salt concentration.
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APPENDIX A: DERIVATION OF THE FREE ENERGY

Here we give a detail derivation of the equation for the

free energy of the Hamiltonian H{r,C,M} defined in Eq. (1).
The conformational partition function of a given sequence
has the following form:

sat

Z(Mm =2, f Dr exp[— BH{r,C,M}], (A1)
C

where B8=1/T, Dr=IIY dr; and

sat N

>=11 X H®<a+1_§Mk1Ck1)~ (A2)

& <=2 Ce{01} k=1

Here O(x) is the Heaviside step function, 0 <<a<1 is some
auxiliary number which is not present in the final result. Its
role is to take into account the restriction Ef; M Cy=<1 (for
any k) which reflects the saturated nature of the complemen-
tary pairing. In further calculations it is convenient to use the
integral representation of the Heaviside step function

(7
O()=—

21

dss™ exp(sx), (A3)

Y-

for arbitrary y> 0. After taking sum over all arrangements of

the secondary structure matrix C the partition function is
transformed into

N

Z(M) = f Ds exp((a +1)2 sk> f Dr exp[— B(H¢ + H,ep) ]

k=1

N
1 1
Xexp|: 2 M,-jln<—+Eexp(—s[—sj)CD(ri—rj))],

i<j=2 2
(A4)

where st:Hf;lsz szst,sl'l and ®(r)=exp(Be-3r?/28%).
Since the value y>0 is arbitrary then one can choose y
> 1 which corresponds to |exp(—s;)| << 1. Then the logarithm
in Eq. (A4) can be expanded up to the fourth order of

exp(=s;).
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N

Z(M) = f Ds exp((a +1)> sk) f Dr exp[— B(Hy + Hyep)]
k=1

N
X exp[ 2 M,‘j<— In2+ exp(— S;— Sj)q)(ri _ rj)

i<j=2

1
- 5 eXp[— 2(S,+SJ)](I)2(I',—I‘J))] . (AS)
According to the definition of the model, the elements of

the matrix M are independent random variables taking values
0 and 1 with equal probabilities. To average the free energy

over quenched disorder of the entries of M, we use a replica
approach [7,8], which requires averaging the partition func-

tion of n replicas of the system over the distribution of the M
entries. The averaged n-replica partition function reads

n N
(Z'(M)),, = f D{s}exp<(a+1)22s;>

a=1 k=1

x f Dr"exp<— B2 [Hel(ra)+Hrep(ra)])

a=1

N n
X exp[ > MijE (—ln2+exp(— 57— s9)

i<j=2 a=1

X®() =2 expl-20s{+ s;)]cl>2(~))] ,

(A6)

where a is the replica index, [D{s}=II'_,[Ds", D{r}
=II'_, [ Dr*, and @(-):q)(r?—r_?).

After carrying out an averaging over disorder and expand-
ing the effective Hamiltonian to the fourth order of the vari-
ables exp(—s{) we obtain

n N
(Z'(M))yy = f D{s}exp((a+ nx > sZ)

a=1 k=1

X f Draexp(_ :82 [Hel(ru) + Hrep(ra)])
a=1

N n
X exp[ > (dnz exp(=s7 = 57)(r{ - rf)

i<j=2 a=1

an é a a a a
=212 expl-2(sf + 5107 ~ xf)
a=1

+fp 2 PO )P} - 1))
a,b=1

b_ b
Xexp(=sf -5 —s; —sj))j| ,

where d,=27"/(1+27") and f,=2""*D[1-27"/(1+27")]/(1
+27"). The last expression may be rewritten in terms of some

(AT)
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order parameters Q, A and m arising from the replica tech-
nique

(Z" (M) = J Disjexp(Wols})
X J D{I'}GXP(— ﬂz [Hel(ra) + Hrep(ra)]>
a=1

dxn%i(x) -B> dxﬁi(x)

a=1

Xexp(.AE
a=1

+C dxdx’éﬁb(x,x’)), (A8)

a,b=1
where Qah(x,x’):EibTx—r;‘)ﬁ(x’—rf)e““?*?, m,(x)=2,;8(x
—r;’)e‘sf and ﬁa(x)=2,-6(x—r§’)e‘25?. The 11, and 7, are den-

sitylike quantities and Qab is the replica-overlap parameter.
Here we have also introduced the notations

27752)3/2

A=d, exp(,Be)( 3

Be d, exp(2Be) (77_62>3/2
- 2 3 )7

2783
C=f, exp(2Be) 3 )

n N dneﬁe
Wolsh=(a+ DX 2 5= == 2 exp(=2s))
a=1 i=1 a,i
d 2Be 2Be
4 e > exp(— 4s?)—f"e

4 2

a,i

XX 2 exp[-2(s¢ +s))].

ab i

(A9)

It is easy to linearize the expression (A8) by using the
Hubbard-Stratonovich transformation. Then one obtains

(Z1(M))yy = J D{w}D{n}D{X}eXp<— ﬁz f dx7;(x)
1
-

26 a,b

1
-2 f dxdx'qoab(x,x')Z)

dx XZ(X)

X f D{r}eXp<—ﬁE [He(r?)
a=1

+Hrep(ra)]> f D{stexp(Ws})
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XeXp(E f dxiit,(x) 7,(X)

a=1

+12 | dxig(x)x,(x)
a=1

+ > dxdx'Qab(x,x’)qoab(x,x’)). (A10)
a,b=1

This transformation introduces the auxiliary fields ¢,;, 7,,
and y,. These fields satisfy the saddle-point equations [22],
i.e.,

7a(X) = (11,(X)),
Xa(x) = (i, (X)),

Pap(%,x") = (0 (x,x")), (A11)

where (---) means thermal averaging. Now it is possible to
factorized integration over the variables {s} by the individual
monomers. After subsequent expansion over the small pa-
rameters exp(—s{) we have

n

f D{s}exp(%{s})exp(E f dXrft (%) 7,(x)

a=1

n
+12 | dxig(x)xo(x)
a=1

+ E dXdX,éub(X7X,)(Pab(X7X,))

a,b=1

N
1
=11 D{p}eXp<— ZE %b(r?,rf)‘lpapb)
i=1 a,b

n

XTI+ 7,(60) +p,].

a=1

(A12)

One can see that

1 n
poa exp(— ZE @ab(r?7r?)_1papb>]._[ [1 + 7711(1.7) +pa]
ab a=1

[n/2]

=2 X o)W1+,

k=0 {ab....}

(A13)

where [---] in the upper limit of the summation means the
next lowest integer and the summation 2, , 1 is carried out
over all possible different pairs of replicas, (¢)* is the prod-
uct of k corresponding terms @, (ré,r?), and (1+ 7)Y has
a similar meaning.

Using these notations the n-replica partition function can
be rewritten as

PHYSICAL REVIEW E 75, 061907 (2007)

(Z"(M))y, = f D{r}GXP(— B2 [He(r) + Hrep(ra)]>

a=1

1 1
X JD{QD}D{W}CXP(—ag fdxvi(X)—%
XD | dxdx’ @2 (x,x")
a,b

+ f dXg. (X)L(X:{e, 7/})), (A14)

where  L(X:{g, p})=In SIS, 429) 01+, X
=(X1,....Xp) and §;...,(X)=211,8(x*~rf{) is the n-replica
overlap parameter.

In the mean-field approximation the w-replicas overlap

parameter may be presented as [21,22]

~ P Xe—Xp X4~ Xp
)>_R3(,U«—l)¢< R ° R "")’

(A15)

<éabc. . .(wab, ). GERNN

where R is the replica overlap scale associated with the
difference between the positions X,,X;,... of the monomers
in the replicas a,b,..., respectively. Here p is the density
of monomers, which is supposed to be constant over
the volume occupied by the system. The replica
overlap parameter is subject to the constraint
Jdx dx,dx. {Gupe--- (X4 Xp» X, ... ))=p. It is easy to show
from equations (A11) and (A15) that in the mean-field ap-
proximation |@"/(1+ 7)®)|=1/R3. Taking into account this
estimation we expand the L(X;{¢, 7}) function as

LX:{e, 7)) = 2 In[1+ 7,(x,)]

(Pab(xaaxb)
(1E<b [1 + na(xa)][l + 7]b(Xb):l .
(A16)

The higher-order terms do not influence the three-
dimensional structure freezing. The contribution to the free
energy from these terms scales as =3 powers of 1/R. From
equations (A14) and (A16) the mean-field approximation of
the n-replica partition function can be obtained

<Z’1(M)>av = eXP<S[6]] - BE Hrep(pa)>exp(_ BFO[p’q])’

(A17)

where p,=p(a=1,-,n) is the replica-symmetric equilibrium
density of monomers, g,,(x,y)=(Z;8(x-r{) 5(y—rf)) is the
equilibrium two-replica overlap parameter, S[q] is the en-
tropy of the n ideal polymeric chains under restriction

3,8(x—1{) 8(y—1{)=q,(x.y), and
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exp(= BFolp.q])

= fD{U}eXP(— %2 deﬂi(X)

1
+2 f dxp, (I 1 + 9,(x)eP]+ 5
2 ’
’ qah(xvx ) )
X E dxdx .
atb (e P+ ) (e PP+ )

(A18)

The 7,(x) fields are replica symmetric. Besides, let us
assume that the system is spatially homogeneous 7,(x)= 7.
Thus we obtain for the n-replica reduced free energy

BF(p.[q]) == S[q] + nBH,e,(p) — max G([7.p,q]),
7

(A19)
where
Nn7]2 H
G(n.[p.ql) =— ——5 +Nnln(1 + 5eP?)
2p6
Nn&®
(A20)

T R

Here M[q]:ﬁEm&b [dxdx'q>,(x,x") describes the contri-
bution into the free energy from the inter-replica overlap-
ping. Equations (A19) and (A20) are Egs. (5) and (7), re-
spectively, in the main paper.

APPENDIX B: RNA MODEL WITH FOUR-LETTER
SEQUENCES

Let us consider the free energy of the RNA molecule with
four-letter sequence. It is easy to see that the difference be-
tween two- and four-letter sequences appears after the aver-
aging over disorder of Eq. (A6). In the case of the four-letter
sequence the probability distribution for each entry M;; has
the form p(M;)=qox(M;—=1)+(1-q) 5, (M;;), where ¢
=1/4. The two-letter sequence corresponds to g=1/2. After
averaging over disorder, Eq. (A6) transforms into

PHYSICAL REVIEW E 75, 061907 (2007)

n N
<Z”(M)>av2fD{s}GXP((a+ ) ESZ)

a=1 k=1

X J Dr¢ 6Xp<— BE [Hel(ra) + Hrep(ra)]>
a=1

N n
Xexp( E In 1+cexp|:2 (—ln2

i<j=2 a=1

+exp(=s{ —s7)P(-)
-3 el 205+ s_?)]q>2<->)] ) . e

where ¢=1%-. After subsequent expansion of the logarithm in
the last equation up to the fourth order of the variables
exp(—s¢) we obtain

n N
(Z'(M)),, = f D{s}exp((a+ n> 2sz>

a=1 k=1

X f Dr exp(— ﬁE [Hel(ra) + Hrep(ra)]>
a=1

N n
X eXp[ > (3,12 exp(— i — s7)D(r{ — r{)
i<j=2 a=1 '

éé [ 2(s{ +s)]1@*(x{ - 1f)
- 2 ~ eXp - Si +S] I'i —l'j

+fo 2 P —r) O} - 1))

a,b=1

Xexp(— s?—sf—s?—sf))], (B2)

where d,=c2"/(1+¢2™) and f,=c2""*D[1=c27/(1
+c2™)]/(1+¢2™). Thus, for the four-letter sequence the ex-
pansion over the order parameters (A8) has the same form
with the coefficients A, B, C obtained by substitution d,
—d, and f,—f,. It is easy to see that the coefficients A, B,
C have the same sign and order of magnitude for the two-
and four-letter sequences and, thus the free energy exhibits
qualitatively the same behavior.
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