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Cells often measure their local environment via the interaction of diffusible chemical signals with cell
surface receptors. At the level of a single receptor, this process is inherently stochastic, but cells can contain
many such receptors which can reduce the variability in the detected signal by suitable averaging. Here, we use
explicit Monte Carlo simulations and analytical calculations to characterize the noise level as a function of the
number of receptors. We show that the residual level approaches zero and that the correlation time, i.e., the
waiting time needed to obtain statistically independent data, diverges, both for large receptor numbers. This
result has important implications for such processes as eukaryotic chemotaxis.
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I. INTRODUCTION

The interaction between an external diffusing stimulus
and cell receptors has long been recognized as a stochastic
process �1�. At the level of a single receptor, this process is
inherently stochastic, but cells can contain many such recep-
tors which can reduce the variability in the detected signal by
suitable averaging. It is therefore of interest to characterize
the residual noise in this measurement as a function of inter-
action kinetics, signal integration time, and receptor number.

In their classic paper on the physics of chemoreception,
Berg and Purcell �2� argued for an irreducible level of noise
encountered whenever a cell utilizes receptors to detect local
concentrations of diffusing molecules. Using heuristic argu-
ments, they proposed that for large receptor number the nor-
malized variance in the estimated concentration c approaches

��c

c̄
�2

�
1

DTc̄R
. �1�

Here D is the diffusivity of the molecule with mean concen-
tration c̄, R is the cell radius, and T is the measurement time,
implemented by the downstream signaling circuitry. This re-
sult was re-derived by Bialek and Setayeshgar by using a
fluctuation-dissipation approach �3�. This leaves the impres-
sion that a cell cannot achieve arbitrary accuracy by increas-
ing its receptor number; its only option would be to increase
the measurement time T, which may be an impractical solu-
tion for a dynamically changing environment. Here we will
show by direct stochastic simulation and by physical reason-
ing that the above result is valid if the measurement time is
much larger than the receptor array correlation time �c but
needs to be revisited when T is smaller than �c. Furthermore,
we will show that this correlation time scales with receptor
number N and hence Eq. �1� will break down if T is held
fixed and the number of receptors is increased.

II. MODEL

We start by focusing on the most common interaction
between a ligand L and a receptor:

L + R0 � R1. �2�

The forward rate k+�L�, where �L� represents the ligand con-
centration, and backward rate k− determine the transitions
between the unoccupied R0 and occupied R1 states and can
be combined to give the dissociation constant Kd�

k−

k+
.

To study the stochastic dynamics of this model, we per-
formed numerical simulations using MCell3, a modeling tool
for realistic simulation of cellular signaling in complex three
dimensional geometries �4�. MCell uses highly optimized
Monte Carlo algorithms to track the stochastic behavior of
discrete molecules in space and time as they diffuse in user-
specified geometries. It can model interactions between dif-
fusing molecules and receptors on cell membranes as well as
molecule-molecule interactions and has been validated ex-
tensively �4�.

In our simulations, we modeled the cell as a 5-�m radius
sphere, rendered by 100 triangles. The surface of the cell was
divided into tiny patches and each patch could hold at most
one receptor. The patch density was taken to be 1000/�m2,
resulting in a receptor size of 1000 nm2. We have verified
that simulations with smaller receptor sizes show no observ-
able differences for the parameters we are considering here.
A variable number of N receptors �N=20 000–300 000�
were randomly distributed on the membrane of the cell. Each
receptor can bind one ligand and the dissociation constant
was taken to be Kd=30 nM and the unbinding rate as k−
=10 s−1. Our cell was placed in a cubic box with sides of
size 30 �m with a ligand concentration of c̄=1 nM, indepen-
dent of the number of receptors �13�.

Each simulation simulated 50 s and the time step was
10 �s. At the start of a simulation, a certain amount of ligand
molecules are released into the box and diffuse freely with
diffusion constant D=200 �m2/s. Once a ligand hits a re-
ceptor, it can either bind to it or be reflected off the mem-
brane. MCell3 calculates the binding probability based on
the reaction rates, ligand diffusivity, receptor size, and time
step. After an initial transient period of 10 s, during which
the system reaches equilibrium, the number of bound recep-
tors was recorded every 1 ms. A typical snapshot of a simu-
lation is presented in Fig. 1. We have verified that our results
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do not change significantly by changing either the time step
size or the box size.

For each simulation, we measured the instantaneous num-
ber of bound receptors Z�t�= 1

N	i
Nri �where ri is a binary

random variable taking the value 0 if the ith receptor is in the
R0 state and 1 if the ith receptor is in the R1 state� along with
its average and variance. In addition, we calculated the cor-

relation function C���=
�Z�t�− Z̄��Z�t+��− Z̄�dt. The latter is
only calculated for ��4 s; for larger values of � the corre-
lation function is overwhelmed by fluctuations. The en-
semble average and variance of these quantities are estimated
by repeating each simulation ten times. The ensemble aver-
age of the correlation function is fit to an exponential, C���
� exp�−� /�c�, to obtain an estimate of the correlation time
scale �c.

III. RESULTS

Figure 2�a� shows the variance �Z
2 of Z as a function of

receptor number. The data are easily fit by the form �Z
2

=A0 /N with the coefficient A0 equal to

A0 =
c̄Kd

�c̄ + Kd�2 �3�

which is just the single receptor variance. This simple finding
arises from the fact that once a molecule binds a receptor, it
cannot affect neighboring receptors no matter how close-by
they are located, until a finite time later when it is unbound.
Hence instantaneous measurements at separate receptors are
uncorrelated and the mean has accuracy that scales as 1 /N.
Thus utilizing a one-time measurement, the cell can attain
arbitrary accuracy in its evaluation of a signal concentration.

To understand why this result appears to disagree with the
Berg-Purcell conclusion, we consider now the time-averaged
measurements,

ZT�t� =
1

T
�

t−T

t

d�Z��� , �4�

where T is the time interval over which the instantaneous
measurement is averaged. As demonstrated in Fig. 2�b�, the

data now do fit the expected finite residual formula �ZT

2

=AT /N+BT; the error cannot be less than BT. The difference
between the instantaneous measurement and the time aver-
aged measurement is more easily appreciated when we write
the variance as �2=A�1/N+1/Nc�. For the time averaged
measurement we obtain Nc=1.1�105 while the instanta-
neous measurement results in a value of Nc that is nearly two
orders of magnitude bigger �Nc=7.6�106�.

How can this occur? The answer is that as long as the
integration time T is longer than the correlation time �c one
needs to multiply the instantaneous data by a factor of 2�c /T
to obtain the time-averaged measurement. To see this, we
start with the definition of the variance of the time-averaged
measurement:

�ZT

2 =
� 1

T
�

0

T

�Z�t� − Z̄�dt�2�
=

1

T2�
0

T

dt�
0

T

ds�Z�t�Z�s�� − Z̄2. �5�

Next, we assume that the correlation function has an expo-
nential decay:

�Z�t�Z�s�� = Z̄2 + �Z
2e−�t−s�/�c,

where �c is the correlation time. Performing the integrals
leads to

�ZT

2 =
2�Z

2�c

T2 �T − �c�1 − e−T/�c�� . �6�

The relationship between the two variances can be simplified

for T��c where it becomes �ZT

2 =
2�Z

2�c

T . Thus to obtain the

ba

FIG. 1. �Color online� Representation of the numerical geom-
etry. �a� A spherical cell is placed at the center of the computational
box. �b� A closeup view of the membrane with its receptors and
diffusing ligands. Bound receptors on the cell membrane are plotted
red cubes, unbound are plotted as white spheres and freely diffusing
ligands are yellow diamonds.
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FIG. 2. Instantaneous measurements of receptor occupancy can
achieve arbitrary accuracy while time-averaged measurements dis-
play a residual noise level. �a� The variance of instantaneous mea-
surements of receptor occupancy as a function of the number of
receptors N. The symbols show the results from our MCell3 simu-
lations which agree very well with the expression �Z

2 = c̄Kd /N�c̄
+Kd�2, shown as a solid line. The error bars here, and in �b�, indi-
cate the standard deviation obtained by performing ten independent
simulations. �b� The variance of time-averaged measurements as a
function of the number of receptors. Shown are the results of the
simulations �symbols� and the fitting formula AT /N+BT with AT

=6.49�10−3, in good agreement with Eq. �10�, and BT=5.83
�10−8. The instantaneous receptor occupancy was averaged over
T=1 s.
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variance of the time-averaged measurement, one needs to
multiply the variance of the instantaneous measurement with
the correlation time. For our system, this correlation time
diverges as N for large receptor number which can be dem-
onstrated directly in our simulations �Fig. 3�. Hence �c
�	N which leads to the residual term

BT =
2	A0

T
, �7�

consistent with our computational data.
Where does this diverging time come from? The receptor

surface density for our cell is obviously 
=N /4�R2. Thus
the expected number of bound receptors per unit surface area
is 
c̄ /Kd, where for simplicity we have considered the case
c̄�Kd, leading to A0= c̄ /Kd. In order for the molecules
bound to these receptors to escape to infinity and hence for
the configuration to be completely refreshed, we must wait a
time equal to the correlation time:

�c =
1

k−
+


c̄/Kd

Jdif f
=

1

k−
+

N

4�DRKd
, �8�

where the first term describes the average time for unbinding
and where the diffusive flux is given by Jdif f =Dc̄ /R. We
have verified these scalings through direct simulations. Com-
bining all these, we immediately find

�ZT

2 =
AT

N
+ BT = �Z

2 2�c

T
=

2A0

NT
� 1

k−
+

N

4�DRKd
� �9�

and thus

AT =
2A0

Tk−
and BT =

c̄

2�DTRKd
2 . �10�

To compare the results we report here with Eq. �1�, we
first need to relate the variance in concentration level ��c / c̄�2

to the variance in the number of bound receptors �ZT

2 . The

average occupancy level is given by Z̄= c̄ / �c̄+Kd� from
which we can derive �c= �c̄+Kd�2�Z /Kd. Hence ��c / c̄�2 is
simply �ZT

2 multiplied by a factor that depends on the average
concentration and the dissociation constant:

��c

c̄
�2

= �ZT

2 � �c̄ + Kd�2

c̄Kd
�2

. �11�

From this expression, and from Eq. �9�, we see that the term
BT is in agreement with Eq. �1� for small c̄. The crucial point,
however, is that this formula is valid only for long-enough
times �T
�c� and does not imply any irreducible diffusive
noise limiting measurement accuracy. In fact, for any fixed
measuring time T, there is a sufficiently large N such that
�c�N�
T, resulting in a variance that scales as 1 /N just like
the variance of instantaneous measurements. This is demon-
strated in Fig. 4 where we have plotted �ZT

2 as a function of
the measurement time T, using Eq. �6�, for different numbers
of receptors. On each curve we have marked the point where
T=�c; the collection of these points for different N is plotted
as a dashed line. Below this line, T is much smaller than �c
and the time-averaged variance approaches the instantaneous
variance �Z

2.
Furthermore, the difference in the noise level estimated

from Eq. �1� and from our formula can become significant.
In Fig. 5 we have plotted ��c / c̄�2 as a function of the diffu-
sion constant as predicted by Eq. �1� �dashed line� and by our
general formulas Eqs. �6� and �11� �solid line�. For small
diffusion constants, where the correlation time becomes
larger than the averaging time, the difference between the
two formulas becomes appreciable and a simple application
of the Berg and Purcell formula would significantly overes-
timate the noise level.
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FIG. 3. The correlation time of receptor occupancy increases
linearly with the number of receptors. Symbols represent the corre-
lation time obtained from fitting the measured correlation function
to an exponential decay function. The solid line shows the linear fit
�c�N�=�0+	N with �0=0.112 s and 	=2.74�10−6 s.
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FIG. 4. �Color online� The time-averaged variance as a function
of the measurement time T for different numbers of receptors. The
symbols represent the points for which the measurement time
equals the correlation time. The collection of these points for dif-
ferent N is drawn as a dashed line. Below this line, the variance
approaches the instantaneous variance �Z

2 while above this line the
variance scales as 1/T.
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IV. ALTERNATIVE REACTION MODELS

It is interesting to note that our conclusions depend on the
interaction details. To study this, we considered an alternate
model in which the diffusing molecule L acts enzymatically
on the receptor:

L + R0 → L + R1, �12�

R1 → R0, �13�

where the forward and backward rates are identical to the
ones in the binding-unbinding model. Now, the fact that the
diffusing particle is not absorbed by the receptor means that
it can act in rapid succession on neighboring receptors,
thereby correlating their response. In the limit of infinite N,
this can happen with infinitesimal time lags and the resulting
correlations limit the achievable accuracy as is shown in Fig.
6 �red curve�. In other words, in this model the variance of
the instantaneous measurement does not vanish for large N
but remains finite.

It is not clear whether there are any direct realizations of
this alternate scheme. However, more complex models in
which the decay of the bound ligand-receptor pair leaves the
receptor at least temporarily in the signaling-competent state
will behave in the enzymatic way whenever the dissociation
rate is fast compared to the final rate of decay. To further
investigate the different limits represented by these two in-
teraction schemes, we invented an interpolating model. In
this model, a ligand binds to a receptor with rate k+�L� and
unbinds with a rate k1. Following the unbinding of the
ligand, however, the receptor remains “active” and decays to
its inactive form with rate k2. Thus this scheme can be writ-
ten as

L + R0 → R10, �14�

R10 → L + R11, �15�

R11 → R0. �16�

To ensure an identical equilibrium concentration we have to
choose

1

k1
+

1

k2
=

1

k−
�17�

and the measurement for the bound receptor state now com-
prises the sum of the two active forms R10 and R11. It is easy
to see that if k2 goes to infinity, we recover the binding-
unbinding model while if k1 goes to infinity, we recover the
enzymatic model. Thus this scheme affords a smooth inter-
polation between the two extreme cases. Indeed, Fig. 6
shows that the variance for this model, plotted as blue tri-
angles, falls between the two limiting cases.

V. DISCUSSION

The new understanding of the way in which fluctuations
limit measurement accuracy will become relevant whenever
cells utilize measurements with integration times less than
the receptor array correlation �c. Of course, such measure-
ments will be strongly correlated. However, the integration
time T is determined by the downstream signaling pathways
and, unlike �c, cannot be varied by changing external param-
eters. Hence cells will sometimes operate in the regime dis-
cussed in this paper. The most intriguing possible example
arises in the case of the chemotactic sensing of f-Met-Leu-
Phe by neutrophils �5�. Eukaryotic chemotaxis is a difficult
task, as the signal is created by a small difference between
front and rear concentrations whereas the noise is due to the
mean occupancy �6�. Typical interaction numbers for this
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FIG. 5. The normalized variance in the concentration as a func-
tion of the diffusion constant using the Berg and Purcell result
�dashed line� and found in this paper �solid line�. For small diffu-
sion constants the widely used formula of Berg and Purcell can
significantly overestimate the noise level. Parameter values are the
default ones with N=100 000 and T=1 s.

FIG. 6. �Color online� The variance of the instantaneous recep-
tor occupancy for three types of receptor-ligand interactions. Black
symbols: binding-unbinding scheme with the default rates �Kd

=30 nM, k+=0.33 nM−1 s−1, k−=10 s−1�. Red symbols: enzymatic
scheme for the same rates. Blue symbols: interpolating scheme with
k+=0.33 nM−1 s−1, k1=20 s−1, k2=20 s−1.
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system are k−�2/s, Kd�15–50 nM, for a cell of radius
6–8 �m �7,8�. The number of receptors is regulated, increas-
ing from N=40 000 to N=150 000 when the neutrophil is
activated by cytokines �9,10�. With a typical small-molecule
diffusivity of 200 �m2/s, we estimate a �c of approximately
1 s, but this could be increased by experimental manipula-
tion of the extracellular medium. Rapidly advancing micro-
fluidics technology �11,12� should enable a test of whether
and when the neutrophil sensing must be thought of as in-

stantaneous, being governed directly by the individual recep-
tor variance.
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