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Parsons-Lee and Onsager theories are formulated for the isotropic-nematic transition in a binary mixture of
hard rods and hard spheres. Results for the phase coexistence and for the equation of state in both phases for
mixtures with different relative sizes and composition are presented. The two theories explain correctly the
general behavior observed in experiments and computer simulations for these fluids. In particular, the theory
accounts for the destabilization of the nematic phase when spherical or globular macromolecules are added to
a system of rodlike colloids, and the entrance of the system into a demixed regime at high volume fractions of
the spherical particles. Upon demixing a nematic state rich in rods coexists in equilibrium with an isotropic
state much more diluted in the rodlike component. Onsager theory fails on quantitative grounds for aspect
ratios of the rodlike molecules smaller than 100, and in the cases where the molar fractions of spheres becomes
close to unity. On the contrary, the Parsons-Lee approximation remains accurate down to aspect ratios as small
as 5. The spinodal analysis indicates that the isotropic-isotropic and nematic-nematic coexistences become
feasible for sufficiently large spheres and long rods, respectively. The latter type of coexistence interferes
partially with the isotropic-nematic coexistence regime of interest to the present work. Overall, the study serves
to rationalize and control key aspects of the behavior of these binary nematogenic colloidal systems, which can
be tuned with an appropriate choice of the relative size and molar fractions of the particles.
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I. INTRODUCTION

One of the aims of statistical mechanics is to establish a
link between molecular interactions and phase behavior. This
is a particularly difficult task in the field of liquid crystals,
due the anisotropy of the molecular shapes and interactions,
which are the essential features retained even in the most
simple models. The major importance of molecular shape
has nowadays become a consolidated aspect with interdisci-
plinary recognition. Properties such as the stability of colloi-
dal suspensions or the conformational behavior of polymeric
systems can be controlled with the addition of particles with
the appropriate shape and molar fraction. In biological sci-
ences, it has been established that excluded volume effects
play an essential role in the equilibrium and dynamical prop-
erties of macromolecules in physiological environments
�1,2�.

Historically, Onsager �3� and Maier and Saupe �4� pio-
neered the study of liquid crystals since the early 1940’s. The
original works of Onsager have been revised by several au-
thors �5–10� and have been applied to the study of fluid
mixtures involving rodlike and platelike particles �11–16�.
Onsager theory, despite its inherent limitations, presents one
fundamental advantage with respect to its more accurate
counterparts. The simple second virial approximation on

which the theory relies, provides an intuitive framework for
the understanding of the physical problem in terms of the
steric effects associated to the particular molecular geom-
etries considered. For finite size molecules, Onsager theory
tends to become inaccurate at the high densities typical of
liquid crystal transitions, and numerous more refined ap-
proaches have been developed �17–19�. Among these,
Parsons-Lee �20,21� and scaled particle �22� theories have
been of historical importance. One of the most extensive
theoretical studies to date of the global phase diagram of
polydispersed rodlike particles has been reported by Velasco,
Mederos, and co-workers from Parsons-Lee and density
functional theories �23–25�. These authors characterized in
detail the phase diagram of mixtures of hard rods of different
sizes but devoted, however, limited attention to the specific
case of the rod/sphere mixture object of the present work.

In the present article, we outline an application of On-
sager and Parsons-Lee theories to the particular case of the
binary mixture of spherical and rodlike colloids, modeled by
hard spheres �HS� and hard spherocylinders �HSC�, respec-
tively. This kind of mixtures have received considerable at-
tention in recent years, mainly within the context of the sta-
bility of colloidal suspensions �27–31�. Although the liquid
crystal properties of these binary mixtures have been more
scarcely investigated, significant contributions have been
made to this respect from the experimental and theoretical
points of view. The wealth of the phase behavior of these
systems has been extensively demonstrated experimentally*Email address: bmarhay@upo.es
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by Fraden and co-workers �19,32–36�, as well as by other
groups �37–39�. Experiments typically employ mixtures of
spherical colloids or globular polymers with rodlike par-
ticles, such as the Tobacco Mosaic virus �19,33�, the bacte-
riophage fd virus �32�, nanorods of cellulose �37�, and boe-
hmite �38� or organic liquid crystals �39–42�. The fd virus, in
particular, depending on environmental parameters such as
pH or ionic strength, can have effective length-to-breadth
ratios ranging from a few tens to up to around 100. This
latter value has been established as a rough limit for the
accurate applicability of Onsager theory for pure fluids of
prolate molecules �19�.

Interestingly, much of the rich phenomenology observed
experimentally remains to a large extent unexplained, al-
though some relevant effects have been reproduced in theo-
retical and computer simulation studies �23–26,30,43–46�.
The main motivation of the current contribution is the eluci-
dation of the capability of Onsager and Parsons-Lee theories
�presented in Sec. II� for predicting, on qualitative and quan-
titative grounds, nematic ordering and demixing transitions
in rod-sphere binary mixtures. Perhaps surprisingly, a sys-
tematic study of this nature has not been performed up to
date for rod-sphere mixtures.

II. THEORY

The Onsager theory for the HSC-HS binary mixture here
outlined represents an extension of the original approach to
the free energy for the pure rod system �3�. It complements
similar approaches applied previously to mixtures of rodlike
molecules without specific attention to rod-sphere mixtures
�5,13�.

Onsager treated the pure rod system formally as a poly-
dispersed mixture by considering particles with different ori-
entations in space as belonging to different molecular species
�3�. It was assumed that the probability distribution for the
orientation of the rodlike particles with respect to a fixed
frame is determined by a single-particle distribution function
f���. In the isotropic phase all orientations are equally prob-
able so that f���= �4��−1, whereas in the nematic phase, due
the axial symmetry of the particles, f���= �2��−1h���, � be-
ing the angle between the molecule and the nematic director
vector.

Onsager’s approach provides a natural means of introduc-
ing the spherical particles in the theory, namely, as one ad-
ditional species of the formal multicomponent mixture con-
stituted by the HSC particles with different orientations.
With these premises, a mimic of the procedure followed by

Onsager leads to the following expression for the free energy
of the binary mixture of Nc freely rotating hard spherocylin-
ders and Ns spheres:

�F

N
= f iso

id + f1 + f2, �1�

f1 = − 1 + ln � + xc��f� + xc ln xc + xs ln xs, �2�

f2 = �
ij

xixj
�

2
� � d�id� j f��i�f�� j�vexc;ij��i,� j� �3�

with

��f� � � f���ln�4�f����d� . �4�

In the above equation, N is the total number of particles, �
the particle density, xc and xs denote the molar fractions of
HSC and HS particles, and f iso

id is the concentration-
independent part of the free energy per particle in units of
thermal energy �T=�−1. The subscripts i , j run on the types
of particles in the mixture, i.e., spherocylinders and spheres.
The functions vexc;ij��i ,� j� denote the physical volume of
space mutually excluded between pairs of HSC-HSC, HSC-
HS, and HS-HS particles, which will be henceforth denoted
by vcc, vcs, and vss, respectively:

vcc��� = 2L2��sin �� + 2��2L + �4/3���3 �
8

�
a�sin �� + vca,

�5�

vcs = �	 �D + ��3

6
+

�D + ��2

4
L
 , �6�

vss =
4

3
�D3. �7�

Here, L and � stand for the length and diameter of the HSC
particles, respectively, D is the diameter of the HS particles,
and ���i ,� j� is the angle between the axes of the HSC
particles.

We introduce at this point the Parsons-Lee formulation for
the rod-sphere mixture, in which a scaling approximation is
considered that takes effectively into account higher virial
coefficients than Onsager theory �20,21,47�. Within the
Parsons-Lee approximation, the integration of the virial
equation for the pressure leads to an expression for the free
energy of the HSC-HS binary mixture similar to Eq. �1� with

f2 = −
1

6�
ij

xixj� d�� dr� � d�id� j f��i�f�� f�gij�r,�i,� j����rVij�r,�i,� j� · r� �8�

�−
1

2
� d�gHS;vm�

ij

xixj� � d�id� j f��i�f�� j�vexc;ij��i,� j� , �9�
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where Vij is the intermolecular potential between a pair of
particles i and j. For hard core interactions, such as the ones
presently considered, an additional approximation must be
assumed in order to obtain an expression for the radial dis-
tribution functions at contact between the different molecular
components gij��ij� �with �ij being the pair contact distance�.
Such contact values arise from the integration of the 	�r
−�ij� functions given by the gradient of the discontinuous Vij

potential. One of the simplest choices consists of assuming
gij��ij�=gHS;vm for all relative pair orientations. Here, gHS;vm

stands for the contact value of a pair of hard spheres with
effective diameters corresponding to the same average mo-
lecular volume vm as the mixture under study. For the present
case, vm=xsvs+xcvc, where vc and vs denote the molecular
volumes of the HSC and HS particles, respectively. The in-
troduction of this approximation into Eq. �8� leads to the
above Eq. �9�. Even though several more complex function-
alities for gij��ij� were tested within the present work, none
of them yielded a better agreement between theory and simu-
lation.

The integral on the density in Eq. �9� is solved by means
of the Carnahan-Starling equation for the compressibility of
the HS fluid ZHS �48�:

f̂�
;vm� � � d�gHS;vm =� d�
ZHS − 1

4

=

1

vm

4
 − 3
2

�1 − 
�2 ,

�10�

where 
=�vm denotes the packing fraction of the system.
The combination of the different expressions outlined

above leads to the following compact formulation for the
free energy of the HSC-HS mixture within the Onsager and
Parsons-Lee approximations

�F

N
= f iso

id − �1 − ln � − �xc ln xc + xc��f�� − xs ln xs

− �„xc
2�2ag�f� + vca� + 2xcxsvcs + xs

2vss…
 �11�

with

g�f� �
4

�
� �sin ��f���f����d��

and

� =
�

2
�Onsager� or � =

f̂�
;vm�
8

�Parsons-Lee� . �12�

In the limit L*�1, L*�D* �where L*=L /� and D*=D /��,
the Parsons-Lee expression for � converges to the Onsager
form and, hence, becomes exact.

One of the most crucial aspect in both Onsager and
Parsons-Lee theories is the determination of the orientation
distribution function f��� �or h��� for axial-symmetric sys-
tems�, which minimizes the free energy of the system. Sev-
eral functional forms and variational parameters have been
proposed for this purpose �3,8,49,50�. In this work, we have
followed the alternative approach of minimizing the free en-
ergy with respect to variations in f��� �10�, which leads to
the integral equation

ln�4�f���� = 
 − �
16axc

�
� �sin ���,����f���d� .

�13�

Here, 
 is the Lagrange multiplier, which is determined by
the normalization condition. Equation �13� has always the
isotropic phase solution f���= �4��−1. For the calculation of
the nematic phase solution, we have applied a well-known
self-consistent methodology �5,51�. The method is based on
the even Legendre expansions of h��� and of �sin��, which
by making use of the addition theorem of the Legendre poly-
nomials, and integrating Eq. �13� on the azimuthal angle,
leads to the following expression for the distribution func-
tion:

h��� = �
n=0

�

a2nP2n�cos ��

= K exp	− 32axc��
n=0

�
2

2�2n� + 1
a2nd2nP2n�cos ��
 ,

�14�

where K is a normalization constant, a2n are the Legendre
expansion coefficients for h���, and d2n are the �analytical�
Legendre coefficients for �sin�� �52�.

In order to determine the function h��� of minimum free
energy for a given density and molar fraction, Eq. �14� is
solved iteratively until self-consistent convergence is ob-
tained in the an expansion coefficients. A convergence test
revealed that terms up to 2n=20 had to be included.

Once a converged solution for h��� has been obtained, the
different thermodynamic quantities for the HSC-HS fluid can
be calculated from the corresponding partial derivatives of
the free energy. In particular, it is worthwhile to notice that
the equation of state is given by the following expression:

�p = � + �2d�

d�
�xc

2�2ag�f� + vca� + 2xcxsvcs + xs
2vss


�15�

which becomes fully analytical in the isotropic phase, where
g�f�=1.

The coexistence between the isotropic and nematic phases
can be characterized by solving the system of equations pI

= pN, �c
I =�c

N, and �s
I =�s

N, where the superscripts I and N
indicate the isotropic and nematic phases, respectively. In
this system of equations, the unknown quantities are the
packing fractions of the two phases and the molar fraction of
spherocylinders in the nematic phase xc

N. The choice of xc
I

instead of xc
N led to equivalent results but with a slower con-

vergence of the iterative method. The numerical solution to
the coexistence equations was carried out following the pro-
cedure outlined in Ref. �51�. Only for the fluids of shorter
particles �L*�20� the present work employs the more effi-
cient genetic algorithm described in the appendix below.

We finally describe an extension of the methodology out-
lined above in order to incorporate an evaluation of the range
of stability of the I-I and N-N phase coexistences in the

USE OF PARSONS-LEE AND ONSAGER THEORIES TO… PHYSICAL REVIEW E 75, 061701 �2007�

061701-3



HSC-HS fluid. In a pioneering study based on scaled particle
theory, Lekkerkerker and Stroobants characterized these
types of coexistence for binary mixtures of hard rods and
polymers �54�. It will be shown that within the HSC-HS
geometries scoped in the present work, the I-I coexistence is
not relevant and the N-N coexistence becomes stable for a
well delimited range of particle geometries. Otherwise, the
phase diagram will be dominated by I-N coexistence, which
will therefore constitute the main concern of the investiga-
tion.

Spinodal curves delimiting the region of possible occur-
rence of I-I and N-N coexistence were calculated extending,
to the frame of Parsons-Lee theory, the formalism proposed
by van Roij and Mulder within Onsager approximation
�12,55�, which relies on the stability conditions of a mixture
in a thermodynamic phase expressed as

�	2�F/N

	v2 �
x

� 0,

�	2�F/N

	x2 �
v

� 0,

�	2�F/N

	v2 �
x
�	2�F/N

	x2 �
v

− �	2�F/N

	x	v
�2

� 0, �16�

where x is the molar fraction of one of the components and
v=1/�. The application of the above inequalities to the
Parsons-Lee expression for the free energy given by Eq. �11�,
with �= f̂�
 ;vm� /8, leads to lengthy expressions which are,
however, straightforward to obtain. The explicit dependence
of � on the composition of the mixture through vm must be
taken into account. This is in contrast to Onsager theory
where � is only dependent on �.

If any one of the three inequalities of Eq. �16� becomes
negative the homogeneous mixing of the binary system be-
comes unstable and, consequently, a demixing transition is
produced. Hence, the spinodal curve in a given binary mix-
ture separates the region of the phase diagram where the
inequalities of Eq. �16� are fulfilled from the region where
any of the three inequalities is not satisfied. For the present
study, the spinodal was determined in an overwhelming ma-
jority of cases by the last inequality, which combines the
mixing and mechanical stabilities of the system. Only occa-
sionally the second inequality �mixing equilibrium� was
found to be limiting. No evidence for breaking of the me-
chanical stability condition expressed by the first inequality
was detected.

III. RESULTS AND DISCUSSION

Figure 1 illustrates typical isotropic-nematic coexistence
diagrams predicted by Parsons-Lee theory for the HSC-HS
mixture. The graphs depict the packing fractions, 
=�vm, of
the coexisting isotropic and nematic states plotted as a func-
tion of the volumetric fraction of spheres xv�xsvs /vm in
each of the phases. The particular cases of HSC with L*

=300, 20, and 5 and HS with D*=10, 2, and 1, respectively,

are chosen to illustrate the behavior of different molecular
geometries. In each of the 
-xv diagrams tie lines joining
some of the coexisting states are drawn for reference.

A first inspection of Fig. 1 already reveals the occurrence
of two different coexistence regimes for any given molecular
geometry. In the low xv region, the isotropic and nematic
branches evolve close to each other and present only a slight
composition asymmetry. On the other hand, as the concen-
tration of spheres is sufficiently increased, a turning point is
observed, where the nematic branch attains a maximum xv
value. Beyond the turning point, the binary fluid enters a
demixed coexistence regime with a very asymmetric molar
fraction of the two components in the isotropic and nematic
states. This leads to a phase diagram with a reentrant nature;
at �fixed� low volume fraction of spheres, upon increasing 

the system evolves from the isotropic phase to a I-N coex-
istence region, then to a nematic region and again to a I-N
coexistence region. For the HSC-HS systems of Fig. 1 with
L*=300, 20, and 5, the nematic coexistence branch reaches
maximum values of xv�0.43, 0.16, and 0.074, respectively.
In fact, as the isotropic branch evolves to the limit xv→1, the
volumetric fraction of spheres in the corresponding nematic
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FIG. 1. Typical isotropic-nematic coexistence diagrams pre-
dicted by Parsons-Lee theory for the HSC-HS fluid. The packing
fractions are represented versus the volumetric fraction of spheres
xv= �xsvs� /vm in the coexisting isotropic and nematic states. Tie
lines joining some of the coexisting states are included for illustra-
tion. The results shown correspond to binary mixtures with the val-
ues for L*=L /� and D*=D /� indicated in each panel. The inset in
the bottom panel compares the Parsons-Lee coexistence curves with
the isotropic �solid symbols� and nematic �open symbols� boundary
states reported in Ref. �43� from Monte Carlo �NPT-MC� simula-
tions at constant composition.
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state of coexistence becomes progressively smaller and tends
to vanish.

In the demixed regime, the relative magnitude of the
packing fractions of the coexisting states depends on the
relative sizes of the HSC and HS particles. This is notewor-
thy since in the mixed regime the I-N coexistence implies
systematically a greater packing fraction in the nematic
phase. Figure 1 shows that for L*=300, D*=10 the sphere-
rich isotropic branch eventually becomes more compact than
its nematic counterpart. For the other two cases L*=20, D*

=2 and L*=5, D*=1, the demixed nematic states are always
denser than the isotropic ones. Furthermore, the coexistence
diagram for L*=5, D*=1 displays a nonmonotonous behav-
ior of the packing fraction in the isotropic branch. It will be
shown below that this feature is associated to the demixing
regime mixtures with small D /L ratios, where the isotropic
branch becomes less dense as it expels HSC particles.

The appearance of highly partitioned isotropic and nem-
atic phases in rod-sphere mixtures was originally predicted
theoretically by Flory �53�. In fact, coexistence diagrams in
qualitative agreement with the ones shown in Fig. 1 have
been observed experimentally for different systems
�19,32,33,35–41�. Lekkerkerker and Stroobants �54� de-
scribed in detail this qualitative behavior for mixtures of col-
loidal rods and flexible polymers, guided by scaled particle
theory. It is therefore gratifying to confirm that Parsons-Lee
theory �and also Onsager theory as shown below� captures, at
least on qualitative grounds, the behavior observed in real
systems on the basis of depletion interaction effects.

Figure 1 also shows that at low values of xv within the
mixed regime, the nematic phase is perturbed by the intro-
duction of spherical particles on the dominant bulk of rodlike
particles. Any increment in the fraction of spheres results in
a systematic displacement of the I-N transition toward higher
packing fractions of both coexisting states. This type of re-
tardation of the nematic phase has been found in a recent
simulation study of the HSC-HS mixture with L*=5 and
D*=1 �43�, and appears to be a general effect for small and
moderate values of xv. Figure 1 �bottom panel� illustrates the
fair agreement existing between the Parsons-Lee coexistence
diagram and the NPT-MC simulation data of Ref. �43� in the
small xv regime �xv�0.07� for the particular case of the L*

=5, D*=1 mixture. A similar level of quantitative agreement
is found for the coexistence pressures �not shown�. Figure 2
shows snapshots corresponding to NPT-MC simulations of
nematic states for the L*=5, D*=1 HSC-HS fluid with xv
values in the mixed and demixed regimes. The simulations
corroborate the theoretical predictions by showing that the
mixed case maintains the bulk structure of the nematic phase
of the pure HSC fluid, whereas a clear segregation of the
rodlike and spherical molecules takes place at high xv.

A question that emerges at this point is whether the de-
mixing transitions predicted in the present theoretical treat-
ment are stable with respect to liquid crystalline transitions
other than the nematic one. The most plausible situation to
this respect would be the entrance of the fluid into a lamellar
phase in which the HSC and HS particles arrange in alternate
layers. Phases of this kind have been investigated previously
�23–25,43,44�. For the L*=5, D*=1 HSC-HS fluid it has
been shown that the lamellar phase becomes stable at pack-

ing fractions in the range 
=0.45–0.50, which overlaps with
the demixing regime found in the present study for the I-N
coexistence of that particular mixture. In fact, in the snapshot
for the demixed state shown in Fig. 2 it can be appreciated
that the segregated HSC particles are more tightly packed
than a typical nematic phase and display an arrangement
more related to a smectic or solidlike phase. Hence, the ap-
plication of the present theory, in which the demixing tran-
sitions are treated within the context of nematic ordering is
limited to HSC elongations greater than L*=5. Fortunately,
as L* is increased the transition to the lamellar phase is also
delayed to greater packing fractions and, in addition, the de-
mixed nematic regime takes place at smaller packing frac-
tions �see Fig. 1�. In this way, for the particular case of L*

=20, the smectic A phase becomes stable at 
�0.5 �58�, a
value well above the range where the I-N demixing occurs
�see Fig. 1�. It follows that the conclusions related to the
demixing behavior of the HSC-HS fluid drawn from the
present theoretical treatment are expected to be robust,
within the framework of the Parsons-Lee and Onsager ap-
proximations, for mixtures of HSC particles with elongations
of L*�10–20 or greater.

We will now focus the discussion in more detail on the
theoretical predictions for the dependence of the I-N coexist-

a)

b)

FIG. 2. Snapshots from Monte Carlo simulations of the
HSC-HS fluid with L*=5, D*=1 in �a� a mixed nematic state with
xv=0.065 and 
=0.442 and �b� a demixed nematic state with xv
=0.536 and 
=0.412. The computations were performed as de-
scribed in Ref. �43�.
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ence diagram on the relative sizes of the HSC and HS par-
ticles. Figure 3 compares the I-N coexistence branches for
HSC-HS fluids with different HSC elongations ranging L*

=5–300. As can be seen, the main features of the coexist-
ence diagrams are similar for the different L* values and
reproduce the qualitative behavior observed in Fig. 1. In all
cases, the isotropic states at low volume fractions of spheres
coexist with nematic states with relatively small differences
in xv and 
, although the nematic state is always appreciably
poorer in spheres and displays systematically greater packing
fractions. As the value of xv grows in the isotropic branch,
the differences in both xv and 
 with the nematic branch vary
progressively. Eventually, the system enters the demixing re-
gime described above, in which nematic states rich in
spherocylinders coexist with isotropic states rich in spheres.
It is interesting to observe that the maximum value of xv
attained in the nematic branch before demixing occurs, shifts
toward greater values of xv as L* grows for fixed D*. This
implies that the homogeneity of the isotropic and nematic
phases, and hence the “resistance” of the system against de-
mixing, in the HSC-HS fluid is enhanced with growing L*.
Such trend is a natural consequence of the dominance of the
HSC-HSC pair interactions �e.g., the vcc��� term of Eq. �5��
in the high L* limit, which tends to overrun the depletion
effects that drive the demixing behavior. The greater weight
of the pair HSC interactions is also responsible for the shift
of the I-N coexisting branches globally toward smaller pack-
ing fractions with growing L*.

Figure 3 shows that the coexistence diagram resulting
from Onsager theory agrees well with the Parsons-Lee one
only for the two cases of greater elongation L*=100 and 300.
On the contrary, the quantitative accuracy of the Onsager
approximation deteriorates for smaller elongations and in
particular for the three depicted fluids with L*=50, 20, and 5.
The bottom panel of Fig. 3 compares the coexistence pres-
sure branches from Parsons-Lee and Onsager theory for two
illustrative cases. Note that in this diagram the recognition of
the coexisting states, both having the same pressure, is
straightforward. The agreement between both theoretical ap-
proaches is better in the pressure diagram than in the packing
fraction diagram, in particular for the L*=20, D*=2 case.
Hence, Onsager estimation of coexisting pressures appears to
be more robust than that of packing fractions. Overall, we
found that Onsager results for the isotropic-nematic coexist-
ence of the HSC-HS fluid diverged appreciably from their
Parsons-Lee counterparts in general for fluids with L*�100.
For elongations of the HSC particles greater than L*=100,
Onsager theory provided reliable results except in regions of
the phase diagram involving volume fractions of spheres too
close to unity, as further shown below.

Figure 4 depicts the dependence of the I-N coexistence
diagram with the diameter of the spherical particles for two
fixed HSC elongations, namely, L*=300 and 20. For the flu-
ids with L*=300 the coexistence curves from both Onsager
and Parsons-Lee theories are shown for comparison. For the
L*=20 fluids only the Parsons-Lee �PL� theory is considered.
Irrespectively of whether the Onsager or the PL approach
was employed, the computations for L*=300, D*�3 could
be calculated up to neatly beyond the reversal of the nematic
branch toward the demixed regime. However, a point beyond

FIG. 3. Isotropic-nematic coexistence diagram predicted by
Parsons-Lee �solid curves� and Onsager �dashed curves� theories for
HSC-HS fluids with different elongations of the HSC particles L*

and diameters of the HS particles D* as indicated. The dimension-
less pressure of the mixture is defined as bP*=b�P�3, with b
= �� /4�L*2D*.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2

0.3

0.4

η 2
2

4

0.7

1.5

1

x
v

3
D*=4

3

L*=20

N

I

0.01

0.1

η

3 1

15

10 1

D*=5

L*=300

N I

FIG. 4. Parsons-Lee �solid curves� and Onsager �dashed curves,
top panel only� isotropic-nematic coexistence diagrams for
HSC-HS fluids with fixed rod length of the HSC particles �L*� and
different diameter of the HS particles �D*�: Top panel: L*=300 and
D*=1–15, bottom panel: L*=20 and D*=0.7–4.

CUETOS et al. PHYSICAL REVIEW E 75, 061701 �2007�

061701-6



which no converged results could be obtained was eventually
reached. It will be discussed below that the observed lack of
convergence in the demixing region of the I-N curves may be
attributed to the entrance of the system into a N-N coexist-
ence region.

One of the main conclusions that can be drawn from the
results of Fig. 4 is that the stability of the mixed I-N coex-
istence is reduced with the increase in size of the spherical
component in the binary mixture. According to the PL cal-
culation, for L*=300 and increasing D*=1, 3, 5, and 15, I-N
states coexist under mixed conditions up to progressively
smaller HS volume fractions, of xv=0.71, 0.66, 0.60, and
0.28, respectively. For L*=20, a similar trend is found, al-
though in this case the transitions to the demixing regime
takes place at roughly the same xv�0.165 within D*

=0.7–1.5, with a shallow maximum of xv�0.167 for D*

=1.25. This same behavior was found for L*=5 �not shown�
where the turning point into the demixing regime is delayed
to xv�0.83 for D*=1.5, in comparison to xv�0.72 for both
D*=1 and 2. Such weak dependence of the demixing transi-
tion on the size of the spherical articles in the region of small
D* values, even featuring a non-monotonous character, ap-
pears to be reminiscent of the excluded volume contributions
contained in the second order virial terms of the free energy.
In fact, Onsager theory predicts a much more pronounced
nonmonotonous dependence on D* of the stability of the
mixed regime. Within the Onsager approximation, for the
L*=300 fluid the demixing regime enters, for instance, at
xv=0.49, 0.64, 0.60, and 0.27 for D*=1, 2, 3, and 15, with a
detailed computation showing that the range of stability of
the mixed I-N coexistence becomes indeed maximum for
D*�3. This is the reason for the strong discrepancy between
the Onsager and Parsons-Lee coexistence curves for the L*

=300, D*=1 fluid that can be appreciated in Fig. 4.
A further remarkable aspect illustrated in Fig. 4 is the

appreciable maximum in 
 displayed by the isotropic branch
of the L*=20 fluid in the small D* limit. Such trend is ob-
served for D*�1 and indicates that the expel of HSC par-
ticles from the isotropic phase as the system enters the de-
mixing regime leads to a less efficient packing of the fluid in
that phase. A similar behavior of the isotropic branch for
small D* was observed for L*�20, as illustrated in Fig. 1 for
L*=5. As the volume of the HS particles becomes compa-
rable or greater than that of the HSC particles, this effect
vanishes and the packing fraction isotropic branch increases
monotonously over the whole xv range. In fact, for the mix-
tures with L*=20 and D*�2, the packing fraction of the
isotropic branch for xv close to unity reaches values typical
of the solid phase of the bulk HS system. Hence, these latter
cases correspond to a situation in which the HS particles
freeze upon segregation from the HSC particles. The perti-
nence of this remark is related to the experimental observa-
tion of a similar type of behavior reported by Fraden and
co-workers for mixtures of rodlike viruses and spherical col-
loids �33�. In these experiments the colloids were found to
form arrangements of solidlike filaments segregated from the
bulk of nematic viruses. This phenomenology, still without a
clear explanation, presents similarities with the nematic
HSC-solid-HS phase separation described here.

Figure 5 illustrates the stability of the isotropic and nem-
atic phases against I-I and N-N demixing transitions. This is

done by means of the Parsons-Lee spinodal curves resulting
from the mapping on the xv-
 plane of the conditions defined
in Eq. �16�. Demixing could take place if the packing frac-
tions associated to the corresponding spinodal become
smaller than the packing fractions obtained for I-N coexist-
ence. Spinodals for I-I demixing were computed for HSC
aspect ratios ranging L*=5–1000 and HS diameters up to
D*=1000. Figure 5 shows only some illustrative examples.
The detailed analysis of these spinodals indicates that I-I
coexistence becomes feasible for sufficiently large D* values,
namely, e.g., D*�4, 6, 10, 20, 30, and 90 for L*=5, 10, 20,
100, 300, and 1000, respectively. It can be noted that these
HS diameters are significantly greater than the ones consid-
ered above for the I-N coexistence and therefore do not in-
terfere with the diagrams of Figs. 2–4. This conclusion is
supported by the fact that our algorithm never converged to a
I-N coexistence configuration of low orientational order in
the a priori nematic phase. This type of convergence would
have been plausible, since the h��� distribution was free to
adjust through its Legendre coefficients to the configuration
of minimum free energy. This result is also consistent with
the prediction outlined in Ref. �54� that for sufficiently long
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rods, I-I demixing becomes only stable for comparably large
sphere sizes.

The N-N Parsons-Lee spinodals for different HSC-HS
molecular sizes are shown in the lower panels of Fig. 5. The
corresponding nematic branches of the I-N coexistence
curves are also shown for comparison. In this case, the com-
putation of the spinodals from the conditions of Eq. �16�
involves the iterative optimization of h��� for each HS vol-
ume fraction and packing fraction of the mixture through
Eqs. �13� and �14�. For the mixtures involving HSC particles
with L*=20 �middle panel of Fig. 5�, the comparison with
the I-N coexistence curves indicates that for D*�1, N-N
demixing requires too large packing fractions and is there-
fore unstable with respect to I-N demixing within the
Parsons-Lee approximation. Only for D*�1 would the N-N
phase separation be allowed, so that the present results for
I-N equilibrium for this range of geometries should be con-
sidered with caution. Interesting, the nematic branch of the
I-N coexistence curve for L*=20, D*=0.7 displays a discon-
tinuity after the turning point �i.e., already within the domain
of demixing� where a small change in the composition of the
isotropic branch induces an abrupt change in both the com-
position and packing fraction of the coexisting nematic state.
It is interesting to notice that the appearance of such discon-
tinuity is coincident with the evolution of the spinodal to
packing fraction values neatly below those of the I-N curve.
It would therefore be plausible that the range of the
composition-packing fraction diagram not covered by the
I-N curve corresponds to the domain of stability of N-N co-
existence. This expectation is consistent with the description
of the overall phase diagram given by Lekkerkerker and
Stroobants �54�.

For the case of HSC particles with L*=300 �bottom panel
of Fig. 5�, I-N coexistence is favored in all cases with D*

�5. This is illustrated by the comparison for D*=10 show-
ing that too large 
 values are required for N-N equilibrium.
For smaller sizes of the HS particles, represented by D*=1 in
Fig. 5, a composition domain appears in which N-N separa-
tion competes favorably, according to the smaller 
 of the
spinodal with respect to the nematic branch of the I-N coex-
istence. Such a situation arises only for sufficiently high val-
ues of xv �i.e., for large molar fractions of the HS particles�,
whereas for low values of xv the I-N separation remains
stable. In this case, the entrance of the possible N-N demix-
ing takes place in a region where the algorithm to calculate
the I-N coexistence did not converge to any solution �see
Fig. 4�. Such lack of convergence is likely to be related to a
discontinuous gap in the nematic branch similar to the one
described above for the case L*=20, D*=0.7. In this case,
however, the boundary nematic states are too different from
each other to be linked by the genetic algorithm employed in
the present work. This interpretation then suggests the en-
trance of the fluids L*=300, D*�3 in the N-N coexistence
region at some point after the turning point of the I-N
branch.

A modification of the present methodology considering
independent h��� distributions for the coexisting phases �i.e.,
allowing N-N equilibrium� led to the same I-N coexisting
curves within the range of convergence of the original algo-
rithm �one of the orientational distributions became isotro-

pic�. However, the algorithm did not reach convergence for
the pressures and chemical potentials within the expected
domain of N-N stability. In conclusion, in order to character-
ize in a more complete way the phase diagram of HSC-HS
mixtures, an extended investigation would be required. Such
investigation, in addition to implementing an efficient algo-
rithm to characterize in detail the N-N coexistence binodals
should incorporate the lamellar phase into the treatment. This
lies beyond the aim of the present work, where the domain of
stability of the I-N coexistence diagram has been determined
for particle sizes where the lamellar phase is not expected to
interfere. For these cases, the region where N-N separation
may become stable within the Parsons-Lee approximation
have been established �e.g., L*=20, D*�1 or L*=300, D*

�3 for sufficiently high xv values�.
Figure 6 represents the Parsons-Lee equations of state at

constant mixture composition �isopleths� for rod-sphere mix-
tures with L*=20 and D*=1 ,2 ,4 and with L*=300 and D*

=2 ,5 ,7. The range of volume fractions of spheres consid-
ered in each case corresponds to the region of relatively
small composition asymmetry in the coexisting I-N diagram
�see Fig. 3�. Such region lies before the entrance of the sys-
tem into the demixed regime and sufficiently anticipated
with respect to the region where N-N separation may become
relevant. The different isopleths show the expected positive
correlation between pressure and packing fraction. The dis-
placement of the I-N transition toward greater 
 values with
growing xv �i.e., destabilization of the nematic phase by the
depletion effects induced by the spherical component� can
also be appreciated, as already noticed above in the coexist-
ence diagrams. For the smaller HS diameters considered in
Fig. 6 it is observed that the system pressure increases ap-
preciably with growing xv in both the I and N phases �at
fixed 
�. This behavior, also found in Monte Carlo simula-
tion studies �43�, occurs as a natural consequence of the mul-
tiplication of the number density of the system with any
increase of xv. This in turn follows from the much smaller
volume of the spherical particles in comparison to the rods.
The opposite effect is observed for sufficiently large HS di-
ameters once the HS molecular volume becomes greater than
the HSC one. In this case, any increase in the volume frac-
tion of spheres, for fixed 
, leads to a decrement in the
absolute number of particles per unit volume and, hence, to a
decrease in the system pressure.

Interestingly, for intermediate D* values, where the HS
and HSC molecular volumes become comparable, a situation
arises where the composition has a weak effect on the
pressure-packing fraction representation of the isopleth. This
is a consequence of the effective compensation of the ex-
cluded volume contributions that drive the system pressure.
Moreover, Fig. 6 shows that such steric effects vary signifi-
cantly from the isotropic to the nematic phase so that it is
possible to find roughly composition-independent isopleths
in one phase and appreciable composition effects on the
other phase. In fact, for the mixtures L*=20, D*=2 and L*

=300, D*=5, whereas a close overlap is found for the isop-
leths with the different xv values in the isotropic phase, a
significant shift of pressure with xv is still observed in the
nematic phase. The complementary situation of an almost
negligible dependence on xv of the isopleths in the nematic
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phase is found for L*=20, D*=4 and L*=300, D*=7. It is
worthwhile noticing that the weakest composition depen-
dence of the isopleths in the isotropic phase is found, in both
the L*=20 and L*=300 mixtures, for molecular volume ra-
tios between the HS and HSC particles of vs /vc�0.25. On
the other hand, for the nematic phase, this situation is found
for vs /vc�2 for L*=20 and vs /vc�0.75 for L*=300. These
values are in contrast to the common choice of vs=vc �i.e.,
D*=3.1 for L*=20 and D*=7.7 for L*=300�, often employed
when the HS fluid is taken as reference system for the HSC
fluid in approximate theories. In any case, only for mixtures
involving relatively short rods it seems possible to find an
effective value of D* for which the isopleth of the mixture
becomes insensitive to the composition of the mixture simul-
taneously in the isotropic and the nematic phases.

Simulation or experimental studies of the equation of state
�EOS� of HSC-HS mixtures, that could provide a reference
for the evaluation of the present theoretical results, are
scarce. Isopleths for the isotropic and nematic phases have
been reported in previous works from NPT-MC simulations
for the L*=5, D*=1 fluid �43�. For the present paper,
we have extended those simulations to include the case
L*=5, D*=3 employing the same methodology described in

Ref. �43�. Figure 7 illustrates the level of agreement ob-
served between the Parsons-Lee isopleths in the isotropic
and nematic phases and the results from NPT-MC simula-
tions for these particular cases. In addition, alternative EOS
for the isotropic phase of the HSC-HS system from scaled
particle theory proposed by other authors �56,57� are also
shown. It can be appreciated that these latter EOSs, origi-
nally developed for shorter HSC molecules, remain fairly
accurate at the L*=5 elongation considered. Nevertheless,
the EOS from Parsons-Lee theory compares better with the
simulation data than any of the curves from scaled particle
theory. Similar or better level of accuracy for the Parsons-
Lee EOS can be expected for mixtures with greater L* val-
ues. In the immediacy of the isotropic-nematic transition and
in the nematic phase itself, although Parsons-Lee theory
compares fairly well with simulation, the agreement is worse
than in the isotropic phase. This can be attributed to the
intrinsic limitations of the Parsons-Lee approximation to
manage orientational order. In fact, the Parsons-Lee results
presently obtained for the nematic phase of HSC-HS mix-
tures, show a similar accuracy when compared to MC data as
found for the pure HSC fluid �48�.
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IV. FINAL REMARKS AND CONCLUSIONS

The extension of the Parsons-Lee and Onsager theories
for the isotropic-nematic transition in binary mixtures of
hard spherocylinders and hard spheres has been outlined in a
compact way. Both theories become exact in the limit of very
long rodlike particles. Onsager theory remains accurate for
rod length values of L*�100 or greater, with some general
limitations for mixtures with large molar fractions of the
spherical particles. Parsons-Lee theory yields qualitatively
correct results for rods as short as L*�5-20.

The following trends are predicted which are in general
qualitative agreement with experimental observations and
with the result of more complex theories.

�1� The isotropic-nematic transition of a system of rodlike
molecules is delayed toward greater packing fractions with
the addition of spherical depletion agents, thereby perturbing
the rod-rod interaction which drives the I-N transition. It can
be noticed that this effect is opposite to that found previously
for the nematic-smectic transition, which takes place at pack-
ing fractions significantly greater than the ones presently
considered, and lies outside the scope of the current work
�43–45�.

�2� For a sufficiently large volumetric fraction of spheres
xv in the system, the partitioning between the isotropic and
nematic phases eventually becomes highly asymmetric. The

coexistence diagram of the binary mixture evolves from a
region at low xv with relative small differences in composi-
tion between the I and N states, to a demixing regime, where
xv becomes much larger in the isotropic phase than in the
nematic phase. The appearance of highly partitioned
isotropic-nematic coexistence diagrams in qualitative agree-
ment with the present Onsager and Parsons-Lee theories has
been observed experimentally �19,32,33,35–41� and has
been described by theoretical treatments at different levels of
accuracy �19,54�.

�3� The quantitative features of the I-N coexistence dia-
gram and, in particular, the entrance into the demixing region
can be controlled with the appropriate size of the rodlike and
the spherical particles. On one hand, increasing the length of
the HSC particles favors the stability of the well mixed nem-
atic phase. A similar overall effect is found when decreasing
the size of the HS particles. However, the influence of D* on
the entrance of the system into the demixed regime presents
some subtle behavior: Parsons-Lee theory predicts a weak
dependence of the demixing transition on the size of the
spherical articles in the region of small D* values, with even
a slight nonmonotonous character, for the mixtures with L*

�20. Such behavior appears to be reminiscent of the second
order virial free energy terms associated to excluded volume
contributions. In fact, Onsager theory predicts a much more
pronounced �and overestimated� nonmonotonous depen-
dence on D* of the stability of the mixed regime. To our
knowledge, this aspect has not been explicitly addressed ex-
perimentally, but it should be of practical interest in colloidal
science.

�4� The computation of the Parsons-Lee spinodals indi-
cates that I-I separation becomes stable for HS diameters
much greater than those involved in the I-N coexistences
relevant to the present work �e.g., L*=20, D*�10 or L*

=300, D*�30�. On the other hand, N-N demixing may in-
deed become stable for sufficiently long rods and small
spheres �e.g., L*=20, D*�1 or L*=300, D*�3�. For these
particle geometries, N-N demixing may occur in a region of
the phase diagram beyond or close to the demixing region of
the I-N coexistence.

�5� The relative size of the HS and HSC particles also
determines the dependence of the isoplethic equation of state
on the composition of the mixture. For intermediate L /D
ratios a situation is encountered where the excluded volume
contributions associated to the HSC-HSC, HS-HS, and
HSC-HS pair interactions compensate each other, with the
consequence that the composition has a weak effect on the
pressure versus packing fraction representation of the isop-
leth. This is in contrast to the case of large sphere-rod size
asymmetry, where significant changes in pressure are ob-
served in the system when varying its composition at a given
constant packing fraction. The dependence of the EOS on the
mixture composition may vary considerably from the isotro-
pic to the nematic phase. It is possible to have a virtual
overlap of the isopleths in one phase and appreciable differ-
ences in the other phase. In other words, the choice of a
binary mixture with a specific effective size ratio cannot be
expected to eliminate the composition dependence of the
EOS in both phases simultaneously.

�6� Parsons-Lee theory yields more accurate EOSs for the
isotropic phases of the HSC-HS system than any other ap-
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proach reported in the literature. It also provides the EOS in
the nematic phase in fair agreement with simulation results
for the systems tested in the present work.

We have shown that a simple extension of the Parsons-
Lee and Onsager theories serves well to rationalize and pre-
dict the general phase behavior of binary mixtures of spheri-
cal colloids and rodlike nematogens.
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APPENDIX: GENETIC ALGORITHM

Solving the isotropic-nematic coexistence problem within
Parsons-Lee or Onsager theory implies the solution of a non-
linear system of equations associated to the mechanical and
chemical equilibria of the two phases. Such a general prob-
lem can be expressed by means of the vector equation

H�x� = 0, �A1�

where the vectors H and x represent a set of n nonlinear
equations and the n uncertainties, respectively. Iterative
methods treat the above equation in an approximate way:

�H�x�� � 	 , �A2�

where 	 is the tolerance of the solution method.
The philosophy behind the so-called genetic algorithms

�59,60� relies on the concepts outlined by Darwin for the
evolution of the species, brought to the level of genome evo-
lution. The method considers a population of ng possible
vector solutions to Eq. �A2�, each of which is called a chro-
mosome. Chromosomes are then vectors, whose components
are particular values of the uncertainties of the problem �in
the present case, 
I, 
N, and xc

N�; each of such components is
called a gene.

A population of ng=3000 chromosomes is considered and
ranked according to the value of �H�x��. The population is
allowed to evolve in a way that ensures that those chromo-
somes closer to the solution of the problem have greater

survival and reproduction probabilities. In the initial step, the
population �x�n ;ng�
 is generated randomly. Subsequent gen-
erations are obtained according to the following sequence.

The 65% best chromosomes of the population are kept
unchanged in the new generation.

10% of the chromosomes of the new population are gen-
erated by averaging the genes of two chromosomes among
the best 20% of the previous generation.

Another 10% of the new population is generated by modi-
fying by less than 0.5% the value of some of the genes of
chromosomes among the best 50% of the previous genera-
tion.

One further 10% of new chromosomes is generated by
interchanging some of the genes of two chromosomes among
the best 50% best of the previous generation.

Finally, the remaining 5% of the new chromosomes are
generated by changing by more than 5% the value of one
gene of one of the original chromosomes.

In all the above cases, the chromosomes and genes to be
altered are chosen at random

For the present application, where the genes represent
packing fractions and molar fractions, the physical restriction
0�x�i��1 is imposed on the evolution rules described
above. The evolution procedure is carried out iteratively
yielding new generations through 1000 iterations. The itera-
tion is interrupted if the best chromosome of the population
fulfilled �H��	, with 	=10−5. The set of genes of this chro-
mosome is then taken as solution of the system of equations.

In the present method �see Sec. II�, the solution to the
coexistence equilibrium problem �H�x�=0� is coupled with
the determination of the orientation distribution function
h��� �Eq. �14��. The solution to the overall problem is ac-
cepted when a best chromosome is achieved for which �H�
�	 and simultaneous self-consistent convergence has been
obtained in the an expansion coefficients of h���. The differ-
ent parameters of the algorithm �distribution of the changes,
tolerances, etc.� have been chosen after several trials as to
provide the optimum compromise between accuracy and
convergence speed. In comparison with the well known �and
faster� Newton-Raphson method, the present genetic algo-
rithm provided coincident results in the region of the phase
diagram where both methods converged, but extended sig-
nificantly the domain of convergence, especially for mixtures
involving short HSC particles �L*�100�.
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