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Surface transfer coefficients are determined by nonequilibrium molecular dynamics simulations for a
Lennard-Jones fluid with a long-range spline potential. In earlier work �A. Røsjorde et al., J. Colloid Interface
Sci. 240, 355 �2001�; J. Xu et al., ibid. 299, 452 �2006��, using a short-range Lennard-Jones spline potential,
it was found that the resistivity coefficients to heat and mass transfer agreed rather well with the values
predicted by kinetic theory. For the long-range Lennard-Jones spline potential considered in this paper we find
significant discrepancies from the values predicted by kinetic theory. In particular the coupling coefficient, and
as a consequence the heat of transfer on the vapor side of the surface are much larger. Thermodynamic data for
the liquid-vapor equilibrium confirmed the law of corresponding states for the surface, when it is described as
an autonomous system. The importance of these findings for modelling phase transitions is discussed.
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I. INTRODUCTION

Phase transitions are common in nature as well as in in-
dustry. So the study of the transport properties of the surface
between two phases is very important. A phase transition
involves simultaneous transfer of heat and mass across a sur-
face, and large efforts have been devoted to model this in a
correct way �3�. Many of these studies have assumed equi-
librium between the phases at the phase boundary, i.e., con-
tinuity in the chemical potential�s� and the temperature. In
such a case, the resistivities of the surface to heat and mass
transfer play no role.

We have questioned this assumption for liquid-vapor
phase transitions �4,5,2�, not because we find very large re-
sistivities for this transition �2,6,1�, but because the coupling
of heat and mass at the surface is important. The coupling
coefficient measures how much of the enthalpy of evapora-
tion is taken from each of the adjacent phases �4�. Therefore,
the coupling coefficient will influence the value of the heat
fluxes into the homogeneous phases. So it is important to
know its value and understand its origin. Linear kinetic
theory �KT� �7� has since long, predicted the transfer coeffi-
cients for the surface, also the coupling coefficient, and given
explicit formulas for them. Kinetic theory applies to particles
that are hard spheres, however. In lack of information on real
systems, the surface resistivities for heat and mass transfer
have mostly been neglected in the engineering description of
phase transitions. Experiments have been done, which con-
firm the presence of a temperature difference across the
liquid-vapor interface. In experiments the problem becomes
at least two dimensional. Phenomena like convection may
occur. We refer to Duan et al. �8� and references therein. For

a detailed analysis of the various theoretical descriptions and
their application to the experiments we refer to Bond and
Struchtrup �9�.

This work aims to add to the understanding of the surface
resistivities, and in particular to give information about the
coefficient that describes coupling of heat and mass. We shall
find all transfer coefficients by applying the nonequilibrium
molecular dynamics simulation technique �NEMD� to a sys-
tem with a long-range Lennard-Jones spline potential, and
compare the results to kinetic theory as well as to results
obtained earlier with a short-range Lennard-Jones spline po-
tential �1,2�. The long-range potential is a better approxima-
tion to the real Lennard-Jones potential than its short-range
version. We want to know whether the good agreement with
kinetic theory obtained earlier �2� is accidental or not, and in
general to contribute to the systematic knowledge of these
coefficients.

In a study of transport properties of surfaces, one first
must establish the surface boundaries, and the equilibrium
properties of the surface. This shall be done also here. One
needs to establish the proper equation of state, before one
can calculate thermodynamic driving forces in the system.
The surface and its equilibrium thermodynamic properties
have been defined here following Gibbs �10�.

In the description of the transfer coefficients, we use non-
equilibrium thermodynamics theory, as developed for sur-
faces �4�. The basic hypothesis of nonequilibrium thermody-
namics is the hypothesis of local equilibrium. When the
surface is defined as a separate system, as mentioned above,
one must verify that the equation of state for the surface
applies equally well in the presence as in the absence of
gradients across the surface. This was done earlier, working
with Lennard-Jones spline particles �11,1� and with n-octane
�6�. In both cases the systems were exposed to a large tem-
perature gradient. We shall see that the assumption is true
also here, meaning that classical nonequilibrium thermody-
namics can be used.
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In a system with longer interacting potentials, we there-
fore want to answer the following main questions: Is the
surface still in local equilibrium in a temperature gradient?
How will the transfer resistivities vary with the range of the
potential? Can kinetic theory predict the correct results in
this case? While the answer to the first question is yes, as we
shall see, the changes are such that the answer to the last
question is no. We furthermore shall show that the surface
obeys the law of corresponding states also in the presence of
a large temperature gradient.

II. NONEQUILIBRIUM THERMODYNAMICS
FOR THE SURFACE

The primary quantity of a nonequilibrium system is its
entropy production. This quantity governs the equations of
transport. For a surface, nonequilibrim thermodynamics
gives the equations of transport from the excess entropy pro-
duction. For a surface in a stationary state, the excess entropy
production rate with heat and mass transport into and
through the surface is �12�

�s = Jq�
g� 1

Ts −
1

Tg� + Jq�
l� 1

Tl −
1

Ts� − J��l�Ts� − �g�Ts�
Ts � .

�1�

Here Jq�
g is the measurable heat flux from the gas into the

surface and Jq�
l is the measurable heat flux out of the surface

into the liquid. J is the mass flux across the surface, which is
constant in a stationary state. According to the hypothesis of
local equilibrium, the surface is a separate thermodynamic
system and has its own temperature Ts. The temperature next
to the surface on the liquid side is Tl and on the gas side it is
Tg �4,5�. The chemical potential next to the surface on the
liquid side is �l and on the gas side it is �g. The positive
direction is defined as being from the vapor to the liquid. The
notation follows de Groot and Mazur �13� and Bedeaux and
Kjelstrup �4�. In a stationary state, the total heat flux through
the surface is constant,

Jq = Jq�
l + HlJ = Jq�

g + HgJ . �2�

It follows that

Jq�
l = Jq�

g + J�vapH . �3�

Here H is the molar enthalpy and �vapH=Hg�Tg�−Hl�Tl� is
the heat of evaporation. Using this relation to eliminate the
term containing Jq�

l in the excess entropy production, and
noticing the thermodynamic identity

��Tl�
Tl −

��Ts�
Ts = H� 1

Tl −
1

Ts� �4�

both for the vapor and the liquid, we can reduce the excess
entropy production to

�s = Jq�
g� 1

Tl −
1

Tg� − J
1

Tl ��
l�Tl� − �g�Tl�� = Jq�

gXq + JX�
g .

�5�

In Eq. �4� the enthalpy can be taken at Tg, Ts or Tl to linear
order in the differences. If one uses the measurable heat flux

in the liquid as a variable, we obtain the alternative expres-
sion

�s = Jq�
lXq + JX�

l . �6�

In the above equations, Xq, X�
g , and X�

l are the thermal driv-
ing force and chemical driving forces, respectively,

Xq = �� 1

T
� =

1

Tl −
1

Tg ,

X�
g = −

1

Tl��T�Tl� = −
1

Tl ��
l�Tl� − �g�Tl�� ,

X�
l = −

1

Tg��T�Tg� = −
1

Tg ��l�Tg� − �g�Tg�� . �7�

According to classical nonequilibrium thermodynamics,
the thermodynamic forces are linear combinations of their
conjugate fluxes

Xq = rqq
s,gJq�

g + rq�
s,gJ ,

X�
g = r�q

s,gJq�
g + r��

s,g J . �8�

Here the coefficients rqq
s,g and r��

s,g are the two main resistivi-
ties of the surface. They are for heat transfer and mass trans-
fer, respectively. The coefficients rq�

s,g and r�q
s,g are the cou-

pling resistivities. They describe the mass transport due to
the temperature difference and the heat transport due to the
mass flux, respectively. According to the Onsager reciprocal
relations rq�

s,g =r�q
s,g. The above equations �8� are appropriate

when the measurable heat flux on the gas side is used. In the
same way we obtain equations which use the measurable
heat flux on the liquid side:

Xq = rqq
s,lJq�

l + rq�
s,l J ,

X�
l = r�q

s,l Jq�
l + r��

s,l J . �9�

The two sets of equations are equivalent. The resistivities of
the two sets are related by

rqq
s,l = rqq

s,g,

rq�
s,l = r�q

s,l = rq�
s,g − �vapHrqq

s,g,

r��
s,l = r��

s,g − 2�vapHr�q
s,g + ��vapH�2rqq

s,g. �10�

The interface film resistivities from kinetic theory were
discussed by Xu et al. �2�. The authors proposed that the
surface temperature be used in the expressions obtained from
Cipolla et al. �7�, rather than the liquid temperature. This
gave a better fit to the simulation data. Also it is more ap-
propriate that a property of the surface depends on the tem-
perature of the surface. The revised expressions, proposed by
Xu et al., were

rqq
s,g�Ts� =

1.27640

R�Ts�2cg�Ts�
� M

3RTs ,
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r�q
s,g�Ts� = rq�

s,g�Ts� =
0.54715

Tscg�Ts�
� M

3RTs ,

r��
s,g �Ts� =

4.34161R��c
−1�Ts� − 0.39856�
cg�Ts�

� M

3RTs . �11�

Here cg�Ts� is the density of a vapor in equilibrium with a
liquid at the temperature of the surface, M is the molar mass,
and R is the gas constant. The condensation coefficient, �c,
gives the fraction of particles that condense at the surface
after collision with the liquid. Values between 0.1 to 1.0 have
been reported �14� for this coefficient.

III. MOLECULAR SIMULATION METHOD

A. Simulation system

The nonequilibrium molecular dynamics simulation
�NEMD� method was described in more detail elsewhere �2�.
Here we briefly describe its main aspects. The simulation
box, is a noncubic, rectangular one, with length ratios
Lx /Ly =Lx /Lz=16. Here Li is the length of the box in the ith
direction. We simulated 4096 argonlike particles. Periodic
boundary conditions were used. Normally the size of the box
was about 10 molecular diameters �10�� in the direction
along the surface and about 160 molecular diameters �160��
in the direction normal to the surface, the x direction. The
NEMD simulations were done with a constant number of
particles N and volume V. In equilibrium the thermostatted
regions were thermostatted to the same temperature. This
produced a canonical ensemble. Different overall densities of
the model system were obtained by varying the size of the
box. The densities were chosen such that the mean free path
in the vapor was smaller than the thickness of the vapor layer
in the direction normal to the surface. The mean free path
was calculated using the standard formula l=1/
��2cNA��2�. For two out of three simulations the mean free
path was larger than �up to 10 times� the length of the box in
the direction parallel to the surface. In view of the fact that
we calculate resistivities for transport normal to the surface
this is not expected to be a problem. No behavior of the data
indicated such an effect. The simulation box was divided in
the x direction into 128 equal planar layers parallel to the
surface. A snapshot of the system, which clearly shows the
vapor and the liquid phases, is given in Fig. 1.

In order to create a temperature gradient, the layers at the
end of the box, layers 1–2 and 127–128, which we called the
hot zones, were thermostatted to a high temperature TH, and

the layers in the center of the box, layers 63–66, called the
cold zone, were thermostatted to a low temperature TL. This
is done by the “heat exchange” �HEX� algorithm �15�, which
adds or withdraws energy in these layers. In this way, a heat
flux from the ends of the box to the center was created.

We simulated a mass flow using the “mass exchange”
�MEX� algorithm �15�, which moves particles from the cold
zone to the hot zone. This is done by randomly selecting a
particle in the cold zone and changing its location up or
down by half a box length. It was then verified that the
particle at its new location had no overlap with any of the
particles already present. In the case of overlap the move was
rejected.

To calculate the driving forces, the equilibrium properties
were necessary. The equilibrium properties of the system,
were studied by equilibrium molecular dynamics �EMD�
simulations and some Gibbs ensemble Monte Carlo �GEMC�
simulations �16�. To obtain the equilibrium phase diagram by
molecular dynamics, we performed simulations on the above
system. We first run the code for 1 million time steps at
nonequilibrium states with the cold zone thermostatted at a
lower temperature and the hot zone at a higher temperature.
Every time step was 0.0005 in reduced units �see Table I�.
This created an interface in the cell. Then we set the high
temperature equal to the low temperature and run the code
for 5 million time steps at the appropriate equilibrium state.
This gave the density and pressure of vapor and liquid in
coexistence. GEMC simulations at constant volume, tem-
perature, and total number of particles allow for direct simu-
lation of phase equilibria in a pure component without an
explicit interface. Two cubic simulation boxes were simu-
lated and thermal, mechanical, and chemical equilibrium be-
tween both phases were obtained by means of Monte Carlo
moves, including particle translation, volume changes �at
constant total volume�, and particle transfer between phases.
Starting from an initial configuration, equilibrium was
reached and the density of both phases and the vapor pres-
sure were obtained.

B. Potential

A Lennard-Jones spline potential was used to describe the
particle interaction. The potential is expressed in terms of the
interparticle distance rij between any pair of particles i and j,

FIG. 1. A snapshot of the MD box with 4096 particles. The axes
are not drawn with the same scale, see text for aspect ratio.

TABLE I. Reduced units.

Variable Reduction formula

Mass m*=m /m1

Distance r*=r /�

Energy U*=U /�

Time t*= �t /���� /m1

Temperature T*=kT /�

Density c*=c�3NA

Pressure p*= p�3 /�

Velocity v*=v�m1 /�

Surface tension �*=��2 /�
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u�rij� = � 4����/rij�12 − ��/rij�6� , 0 � rij � rs,

a�rij − rc�2 + b�rij − rc�3, rs � rij � rc,

0, rc � rij ,
	 �12�

where rc=2.5� is the truncated distance and rs= �48/67�rc.
The constants a and b were chosen so that the potential and
its derivative are continuous at rs. In rc the potential and
its derivative are also continuous. In the simulations, we
used argonlike particles with mass m1=6.64	10−26 kg,
diameter �=3.42	10−10 m, and the potential depth � /k
=124 K. Here k is Boltzmann’s constant. This resulted in a
=0.099 194 J /m2 and b=−0.163 46 J /m3. Plots of the

Lennard-Jones potential and the short- and the long-range
Lennard-Jones spline potentials are given in Fig. 2.

Reduced units in terms of potential parameters were used
for all variables in the computer codes, see Table I for defi-
nitions.

C. Case studies

GEMC simulations were performed in order to obtain the
critical coordinates of the long-range Lennard-Jones spline
potential. A set of 14 simulations at reduced temperatures
ranging from 0.9 to 1.3 were realized. For each simulation,
we used a total number of 500 particles. Probability attempts
for the different moves were 0.88 for translation, 0.1 for
transfer, and 0.02 for volume change. All simulations ran for
21 million Monte Carlo steps and average properties were
computed from the last 18 million steps.

We performed 20 nonequilibrium molecular dynamics
simulations in the study of the transport properties of the
surface, see Table II. Every simulation ran 10 million time
steps with a time step of 5	10−4 in reduced units, which is
equivalent to about 10−15 s in real time. The first 3 million
time steps were abandoned to avoid transient effects. All the
properties were averaged over 7 million time steps. Because
the system is symmetric about the central plane in the middle
of the box in a stationary state, in the x direction, the mean of
the properties in each half-box was furthermore calculated to
obtain better statistics. The density in the vapor phase is very
low. Accuracy of the values calculated for the vapor phase is
obtained by running the stationary state simulations long
enough.

1 1.5 2 2.5 3
r /σ

-1

-0.5

0

0.5

1
u

/ε
L-J
L-J spline (long-range)
L-J spline (short-range)

FIG. 2. The Lennard-Jones potential, the short- and the long-
range Lennard-Jones spline potentials.

TABLE II. NEMD simulation conditions, in reduced and real units.

Simulation c* TH
* TN

* J*
c

�mol/m3�
TH

�K�
TL

�K�
J

�mol/m2 s�

1 0.20 1.10 0.75 0.001 8302 136.4 93.0 6666

2 0.20 1.10 0.70 0.001 8302 136.4 86.8 6666

3 0.30 1.20 0.65 0.002 12453 148.8 80.6 13332

4 0.23 1.25 0.85 0.002 9547 155.0 105.4 13332

5 0.23 1.30 0.90 0.002 9547 161.2 111.6 13332

6 0.23 1.35 0.95 0.002 9547 167.4 117.8 13332

7 0.23 1.40 1.00 0.002 9547 173.6 124.0 13332

8 0.23 1.20 0.80 0.002 9547 148.8 99.2 13332

9 0.23 1.15 0.75 0.002 9547 142.6 93.0 13332

10 0.23 1.10 0.70 0.002 9547 136.4 86.8 13332

11 0.15 1.10 0.60 0 6226 136.4 74.4 0

12 0.20 1.10 0.60 0 8302 136.4 74.4 0

13 0.20 1.10 0.75 0 8302 136.4 93.0 0

14 0.23 1.25 0.85 0 9547 155.0 105.4 0

15 0.23 1.30 0.90 0 9547 161.2 111.6 0

16 0.23 1.35 0.95 0 9547 167.4 117.8 0

17 0.23 1.40 1.00 0 9547 173.6 124.0 0

18 0.23 1.20 0.80 0 9547 148.8 99.2 0

19 0.23 1.15 0.75 0 9547 142.6 93.0 0

20 0.23 1.10 0.70 0 9547 136.4 86.8 0
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Among the 20 NEMD simulations for the surface transfer
coefficients, 10 had a mass flux, and the other 10 did not �see
Table II�. We chose a suitably high temperature, low tem-
perature, and overall density so that two vapor-liquid sur-
faces appeared in the box. The temperature gradients went
beyond usual laboratory values. They were of the order of
109 K/m in the vapor and 108 K/m in the liquid.

D. Defining the surface

The extension of the surface is an issue of discussion. On
the gas side, a good equation of state is available. This is the
Soave-Redlich-Kwong �SRK� equation �17�.

p =
RT

v − b
−

a

v�v + b�
, �13�

where the coefficients were found to be given by �11,2�

a = 0.427 48
R2Tc

2

pc

1 + 0.4866�1 −� T

Tc
��2

,

b = 0.086 64
RTc

pc
. �14�

From knowledge of the critical coordinates Tc
=138.9±0.1 K and pc=4.25	106 Pa �obtained by GEMC�
the gas phase molar volume v and molar density 
=1/v can
be computed as a function of pressure and temperature by
solving the SRK equation. In each layer this density was
compared with the one obtained from NEMD. For the pres-
sure in this calculation it is appropriate to use the volume
average of the pressure normal to the surface, see below. A
layer is defined as a interfacial layer when these densities
differ seriously.

On the liquid side, we do not have an equation of state to
help us determine the first layer of the surface. But the tran-
sition from liquid to the surface is rather abrupt. From the
liquid layer to the surface layer, the density changes mark-
edly. As the first surface layer we took the layer next to the
last layer on the liquid side with a density that is still equal to
the liquid density. The interfaces were found to be roughly
10 layers thick. Given this thickness, there was no indication
that the interface was not perfectly flat.

The results reported refer to this choice. We have earlier
found that the exclusion and/or inclusion of one extra layer
does not alter the results significantly �1�.

E. Calculations

The fluxes and thermodynamic properties of each layer
were calculated as time averages using instantaneous veloci-
ties, kinetic energies, potential energies, and the number of
particles. The molar density in layer � ��=1,2 , . . . ,128� was
given by

c� =
128N�

VNA
�15�

here N� is the number of particles in layer � and V=LxLyLz is
the volume of the system. The molar flux in layer � was

J� = c�v� =
c�

N�
�
i��

vi, �16�

where v� is the velocity of the center of mass in layer �. In
the stationary state considered only the x component of the
molar flux and the barycentric velocity, J� and v�, are un-
equal to zero.

The temperature in each layer was found from the par-
ticles’ kinetic energy

3

2
N�kT� =

1

2 �
i��

m
vi − v�
2. �17�

The temperatures Tg and Tl were chosen to be equal to the
temperatures of the last layers of the vapor and the liquid
next to the surface layers. These then give the thermal force
Xq. For the temperature of the surface we used the value
which is found from the kinetic energy of the surface layers.
In terms of the temperatures of the layers that are part of the
surface this gives

Ts = �
��surface

N�T�� �
��surface

N�. �18�

The local pressure tensor was calculated by time averag-
ing the microscopic pressure tensor

p
�
� =

128

V
�
i��

�mvi,
vi,� +
1

2�
j�i

Fij,
rij,�� , �19�

where vi,
 is the velocity of particle i in the direction 
, Fij,

is the force exerted on particle i by particle j in the direction

, and rij,� is the component of the vector from particle j to
particle i in the direction �. The pressure tensor was found to
be diagonal. Away from the surface the diagonal elements in
the x, y, and z directions are the same. In the neighborhood
of the surface it is found that the diagonal elements along the
surface, p� = pyy = pzz, and normal to the surface, p�= pxx, are
different. In Fig. 3 we plot the diagonal elements of the re-
duced pressure tensor for simulation 7. In the work by Todd
et al. �18,19� it is shown that the method of planes is a more
efficient procedure to calculate the pressure tensor when the
system is inhomogeneous. They consider in particular fluids
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FIG. 3. The reduced diagonal pressures for simulation 7 as a
function of layer number.
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under shear conditions and with large or varying density gra-
dients. In this paper there is no shear, the density gradient is
smaller and smooth. Away from the interface we find the
expressions given to be appropriate. In the interfacial region
the method of planes leads to a normal pressure which is
closer to being constant as it should be �6�. As we did not
further need this information, we did not pursue this further.

The surface tension was computed from

� =
1

A
�
i�j

�rij − 3xij
2/rij�u��rij� , �20�

where A=LyLz is the surface area of the cross section in the
y and z directions. The x direction is the direction normal to
the surface, and xij =xi−xj, while u��rij� is the derivative of
the pair potential with respect to interparticle distance, rij.
Equation �20� gives the surface tension of one of the two
surfaces by restricting the particles to be either in layers
3–62 or in 67–126. If the sum is not restricted in this manner
one must divide by 2A.

The total heat flux Jq is constant while the measurable
heat flux Jq� varies due to the temperature dependence of the
enthalpy per mole H. The total heat flux is

Jq = Jq� + HJ . �21�

The total heat flux in layer � is calculated from

Jq,� =
128

V
�

i�layer �

vi�1

2
mvi

2 + �i�
+ vi · �mvivi +

1

2�
j�i

Fijrij��
=

128

V
�

i�layer �

vi�3

2
mvi

2 + �i� +
1

2�
j�i

vi · Fijrij� ,

�22�

where the potential energy of particle i is

�i �
1

2�
j

u�rij� . �23�

In the stationary state considered only the x component of
the total heat flux, Jq,�, is unequal to zero. In Figure 4 we plot
the total and the measurable heat flux for simulation 7. In the
work by Todd et al. �18,19� it is shown that the method of
planes is also a more efficient procedure to calculate the heat
flux when the system is inhomogeneous. They consider in
particular fluids under shear conditions. In the work of this
paper there are no shear gradients and we find the expres-
sions given to be appropriate also through the interfacial re-
gion. The enthalpy per mole in layer � is found from

H� =
1

NA

5

2
kBT�N� + �

i�layer �
��i +

1

6�
j

Fij · rij�� .

�24�

To calculate the chemical driving forces, we use the fol-
lowing formulas �2�:

X�
g = R ln

p

p*�Tl�
+ R ln

��Tl,p�
�*�Tl,p�

+
vl*�Tl�

Tl �p*�Tl� − p�

+
1

2
cp

g�Tg��1 −
Tg

Tl �2

, �25�

X�
l = R ln

p

p*�Tg�
+ R ln

��Tg,p�
�*�Tg,p�

+
vl*�Tg�

Tg �p*�Tg� − p�

+
1

2
cp

l �Tl��1 −
Tl

Tg�2

. �26�

These formulas are valid to second order in the temperature
difference. The input quantities are the system pressure, p,
saturation pressure, p*, heat capacities at constant pressure,
cp

g and cp
l , the liquid molar volume at saturation, vl*. The

fugacity coefficient � was obtained using the following for-
mula:

RT ln ��T,v� = RT� b

v − b
+ ln

v
v − b

− ln
vp�T,v�

RT
�

−
a

v + b
+

a

b
ln

v
v + b

, �27�

here T ,v , p are related by the SRK equation �13�.

IV. RESULTS AND DISCUSSION

A. The vapor and liquid at equilibrium

Equilibrium properties are needed for the calculation of
the driving forces. The equilibrium properties are also impor-
tant in themselves, as this particular system has not been
studied before. The Lennard-Jones spline potential in this
study has a cutoff distance equal to 2.5 reduced units, while
1.73 reduced units were used earlier. Equilibrium results
were found with two simulation techniques: The Monte
Carlo simulation and the equilibrium molecular dynamics.

Figure 5 shows the vapor-liquid coexistence curve with
results from both studies. The reduced density is plotted as a
function of the reduced temperature for the two phases. The
points at higher temperatures �triangle symbols� are the re-
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FIG. 4. The reduced heat fluxes for simulation 7 as a function of
the layer number.
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sults of the Monte Carlo simulations. Those at lower tem-
peratures �circle symbols� are from the results of the molecu-
lar dynamics simulations. We see that the sets of data agree
within some percent in the region where they overlap. The
coexistence curve data were fitted by the following formula:


L − 
V = 
0�Tc − T

Tc
��

. �28�

The universal exponent is given by �=0.32. Furthermore 
0
is a system-dependent constant for which we found 
0
=1.08±0.02 in reduced units. The critical temperature was
found to be Tc=138.9±0.1 K.

Figure 6 gives the �reduced� vapor pressure of the system,
as a function of the �reduced� temperature. To find a fit to this
plot, we used the Clausius-Clapeyron equation:

p*�T� = p0
* exp�−

�vapH

RT
� , �29�

where p0
* is a constant for which we found p0

*=27±2. Fur-
thermore �vapH is the enthalpy of evaporation. Approximat-
ing �vapH to be constant, we found �vapH=6490±80 J /mol.
For the short-range spline potential the values were found to
be p0

*=18.4 and �vapH=5205 J /mol �11�.

The simulations gave a critical temperature Tc=138.9 K,
a critical density 
c=1.235	104 mol/m3, and a critical pres-
sure pc=4.25	106 Pa. These values are closer to the values
of real argon, Tc=150.7 K and pc=4.86	106 Pa, than those
obtained for the short-range potential, where we found Tc
=111.2 K, and pc=3.32	106 Pa, respectively.

The relationship between the surface tension and the sur-
face temperature is the equation of state for the surface. Fol-
lowing Guggenheim �20,21�, we plotted in Fig. 7 the quan-
tity �CS=� / �
c

2/3kTc� versus TCS=Ts /Tc. These variables
were derived from the law of corresponding states and must
be distinguished from the reduced surface tension and tem-
perature in Table I. The plot shows the corresponding states
surface tension versus corresponding states surface tempera-
ture. The circle symbols are from nonequilibrium molecular
dynamics simulations �NEMD� and the plus symbols are
from equilibrium molecular dynamics simulations �EMD�.
We can see that they agree well. This proved again �11,6�
that the surface is a separate thermodynamic system, which
is in local equilibrium, even in the presence of a large tem-
perature gradient. This is the condition for using nonequilib-
rium thermodynamics. The results from the system with the
short-range spline potential �2� are shown in the figure using
triangles. The system with a short-range potential have a
critical temperature, Tc, and density, 
c, that differ consider-
ably from the values given above. By plotting the results in
CS units, the results from the earlier investigation agreed
with our data. This shows that the principle of corresponding
state for the surface tension can be applied successfully to
Lennard-Jones spline systems for both short- and long-range
potentials.

The data for the surface tension were fitted to the equation
of state for the surface

� = �0�Tc − T

Tc
��

, �30�

where �=1.26 is a universal constant. We obtained �0
=0.0334±0.0003 N/m. The value of the constant for the
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FIG. 5. The liquid-vapor coexistence curve for the Lennard-
Jones fluid with a long-range spline potential.
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short-range potential was �0=0.0248±0.0003 N/m. The sur-
face entropy is minus the derivative of the surface tension
with respect to the temperature. This gives

ss = �0�Tc − T

Tc
��−1

, �31�

where �0=��0 /Tc=3.0	10−4 J /m2. In our earlier paper �2�
we found �0=2.8	10−4 J /m2 for the short-range spline po-
tential.

B. Surface resistivities

Figures 8–12 give plots of resistivities for the equivalent
sets of variables, when the measurable heat flux refers to the
vapor side �Figs. 8, 9, and 11� and to the liquid side �Figs. 8,
10, and 12�. All coefficients were plotted as a function of
corresponding states surface tension �CS=� / �
c

2/3kTc�. Ear-
lier results �2�, and results calculated from kinetic theory
using Eq. �11� for both sets of data, are also shown, for
comparison.

Figure 8 shows the main resistivity to heat transfer. This
coefficient is the same, whether we use the measurable heat
flux on the liquid side or on the vapor side as the flux, cf. Eq.
�10a�. The results obtained here �the circles� were somewhat
smaller than predicted by kinetic theory �the stippled line�.
For the system with the short-range potential �2�, given here
by the triangles and the dotted line, the agreement with ki-
netic theory was better.

Figure 9 shows the coupling resistivity, r�q
g , for coupling

of the mass flux to the measurable heat flux on the vapor
side. The values are now a factor of 3 larger than the values
predicted by kinetic theory �the stippled line�. For the short-
range potential, triangles and a dotted line, there was again
agreement between the NEMD results and kinetic theory.
The absolute value of the coupling resistivities on the liquid
side are about 10 times larger than the value of r�q

g , see Fig.
10. Equation �10b� gives the relation between the coupling
coefficients on both sides of the surface. Figure 10 shows
that the coupling resistivity r�q

l is also affected by a change
in the range of the potential. The NEMD values �the circles�
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FIG. 8. The surface transfer resistivity rqq to heat flux for a
Lennard-Jones system with a long-range spline potential �circles�
and for a short-range spline potential �triangles� �2�. Results from
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FIG. 9. The surface transfer resistivity r�q
g for coupling of the

mass flux to the heat flux on the vapor side. Results are shown for
a Lennard-Jones system with a long-range spline potential ��� and
for a short-range spline potential ��� �2�. Results from KT are also
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FIG. 10. The surface transfer resistivity r�q
l for coupling of the

mass flux to the heat flux on the liquid side. Results are shown for
a Lennard-Jones system with a long-range spline potential �circles�
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are considerably less negative than the prediction by kinetic
theory �the stippled line�. For the short-range potential there
was agreement between the NEMD values �triangle� and the
kinetic theory prediction �dotted line�. We conclude therefore
that kinetic theory predicts results for the short-range poten-
tial well, but it fails to predict the values obtained with the
long-range potential. For the long-range potential the cou-
pling resistivities on the vapor side are much larger than the
prediction from kinetic theory.

Figures 11 and 12 give the two alternative mass transfer
resistivities r��

g and r��
l . Again r��

g is small compared to r��
l .

The results for the liquid side have a better accuracy. For the
short-range potential, for which the agreement with kinetic
theory was so good, we used the mass transfer resistivity to
obtain the condensation coefficient. For the long-range po-
tential there is no such agreement and it is therefore not
appropriate to obtain a condensation coefficient in this man-
ner.

All resistivities approach zero for zero surface tension
close to the critical point as they should. Away from the
critical point the resistivities increase their value as the sur-
face tension increases. They all go to a maximum at the triple
point. The triple point has the lowest temperature of the in-
vestigation.

The nature of the interaction potential has an impact on all
system properties, including the equilibrium properties. It is
therefore difficult to compare directly the results for the
short- and the long-range potential. As kinetic theory ac-
counts for differences in temperature and vapor concentra-
tion, we have chosen to discuss the size of two of the coef-
ficients in comparison with this theory. We have then seen
that a more realistic potential, the long-range potential, gives
a heat transfer resistivity which is slightly smaller than the
prediction by kinetic theory and a coupling resistivity which
is 3 times larger than the prediction by kinetic theory. This is
a substantial difference. This might have been expected, as
kinetic theory is developed for hard spheres. A Lennard-
Jones fluid with long-range potential therefore agrees even
less than the fluid with a short-range potential with the pre-
mises of kinetic theory.

C. The heat of transfer

The coupling coefficient for heat and mass transport de-
serves extra attention, because of its importance to predict
the heat flux into the two phases adjacent to the surface. For
a physical interpretation, the coupling coefficient is most
conveniently expressed via the heat of transfer. When the
heat flux on the vapor side is used to define the heat of
transfer, we have

q*s,g = � Jq�
g

J
�

�T=0
= −

r�q
s,g

rqq
s,g . �32�

Using the heat flux on the liquid side, we have

q*s,l = � Jq�
l

J
�

�T=0
= −

r�q
s,l

rqq
s,l , �33�

where we note that rqq
s,g=rqq

s,l. When these definitions are com-
bined with Eq. �10b�, we find

q*s,l − q*s,g = �vapH . �34�

During evaporation, there is a heat sink in the surface, given
by the enthalpy needed to transfer a particle from the liquid
to the vapor phase. The surface may cool down, but at sta-
tionary state the heat must come from the surroundings. The
heats of transfers give the fractions of the enthalpy of evapo-
ration which must be taken from the respective phases. A
large value for say q*s,l means that a large part of the re-
quired heat is taken from or returned to the liquid side, de-
pending on the sign of the mass flux. Their absolute ratio

q*s,l /q*s,g
 is equal to 
r�q

s,l /r�q
s,g
 and the coupling resistivities

are given in Figs. 7 and 8. We find that the absolute value of
the heat of transfer is larger on the liquid side than on the
vapor side, for the long-range potential �3 times� as well as
for the short-range potential �9 times� �2�. So the liquid pro-
vides 75% of the required heat for evaporation of particles
with a long-range potential and 90% for a short-range poten-
tial. The minus sign of the heat of transfer on the vapor side
�see Fig. 13� expresses that heat is transferred in a direction
opposite to the mass flux.
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The heat of transfer on the vapor side from this simulation
and from the previous results were compared with the pre-
diction of kinetic theory in Fig. 13. We see again, that the
system with the long-range potential is not at all predicted by
the corresponding kinetic theory coefficients. For the short-
range interaction potential the agreement is reasonable.

V. CONCLUSION

We have used molecular dynamics simulations to study a
one-component fluid interacting with a long-range Lennard-
Jones spline potential, rc=2.5�. We presented equilibrium
properties of the system, and transfer coefficients for heat
and mass transport. We found that the relationship between
surface tension and surface temperature are the same in equi-
librium and in nonequilibrium. This once more proved that,
the surface can be regarded a separate system and that this

system is in local equilibrium. This is a prerequisite for using
nonequilibrium thermodynamics. We calculated the film re-
sistivities and compared them with the values obtained for
the short-range potential systems and with kinetic theory.
While the predictions of kinetic theory seemed to agree with
the results obtained for the short-range potential, they do not
agree with our results. For the long-range potential the cou-
pling coefficient on the vapor side was 3 times larger than
the prediction by kinetic theory, and cannot be neglected in
an accurate calculation of the heat fluxes in the system. This
points to a need for more realistic data for transfer resistivi-
ties, so that such systems can be accurately modeled.
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