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The gas-isotropic liquid-nematic liquid phase behavior of the Stockmayer fluid is studied using molecular
dynamics simulation together with a mean field lattice model. We obtain coexistence curves of the Stockmayer
fluid over a wide range of dipole strengths, temperatures, and densities, including the transition from the
isotropic liquid to the ferroelectric liquid. In our simulations we do not observe the disappearance of the
isotropic gas-isotropic liquid coexistence at high dipole strength contrary to earlier findings based on Monte
Carlo techniques. Even though the formation of reversible dipole chains strongly affects the location of the
critical point, it does not lead to its disappearance. These results are supported by a mean field lattice model
which yields good qualitative, and in parts quantitative, agreement with our simulations. In addition, we also
investigate the gas-isotropic liquid phase behavior for different polarizabilities.
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I. INTRODUCTION

There are three simple models frequently studied in the
context of dipolar liquids: the dipolar hard sphere �DHS�
model, the dipolar soft sphere �DSS� model, and the Stock-
mayer �ST� model. Common to all three models is the de-
scription of long-range anisotropic interaction in terms of a
�point� dipole- �point� dipole potential. They differ with re-
spect to their short-range interaction. The DHS model em-
ploys hard core repulsion, whereas the ST potential employs
the Lennard-Jones �LJ� potential. The intermittent DSS
model adopts the soft repulsive core of the LJ potential. All
three models exhibit a transition from an isotropic liquid to
an orientationally ordered liquid, whereas a gas-liquid �GL�
transition is established for the Stockmayer fluid only �e.g.,
Refs. �1–4��. Because attractive interaction is necessary for
GL phase separation, the question is whether dipole-dipole
interaction by itself may generate sufficient attraction to
yield GL separation before another type of transition inter-
venes. The matter is complicated by the tendency of the
dipole-dipole interaction to lead to the formation of revers-
ible chains and, under certain conditions, rings �5�. This fo-
cusses the dipole-dipole interaction tangential to the chain.
How much attractive interaction remains between different
reversible aggregates, and whether this interaction is suffi-
cient to yield GL phase separation in the DHS or DSS sys-
tems still is a matter of debate �3� �despite mounting evi-
dence against the GL transition�.

The ST model does exhibit GL phase separation readily
for small dipole strengths, because of the LJ part of its po-
tential. When the dipole strength is increased the GL phase
separation previously was believed to disappear above a cer-
tain threshold. Expressed in terms of the reduced dipole mo-
ment �, i.e., the dipole moment expressed in units of
�4��o��3 ��o: vacuum permittivity; � and � are the usual LJ
parameters; in the following, 4��o=�=�=1�, this threshold

should be close to �2�25. This conclusion is based on work
by van Leeuwen and Smit �6�, which is quoted frequently in
the subsequent literature �e.g., Refs. �4,7–12��. Van Leeuwen
and Smit use the Gibbs-Ensemble Monte Carlo �MC� tech-
nique to study a variant of the ST potential, where the iso-
tropic dispersion attraction is multiplied by a variable factor
�. However, their system may be mapped onto the ST sys-
tem, which then leads to the above conclusion. A different
conclusion was reached by Freed and co-workers based on a
calculation using a mean field lattice model for reversibly
associating polymers �13�. When they map the ST system
onto their Flory-Huggins type lattice model they conclude
that GL phase separation should occur for all dipole
strengths. Recently we have extended this model and com-
pared the critical point shift as a function of �2 to corre-
sponding results derived from molecular dynamics �MD�
computer simulations �14�. The model describes the �2 de-
pendence of the GL critical point in good accord with our
own simulation results as well as those of other groups. Par-
ticularly the � dependence of the critical density can be ex-
plained in close analogy to the reduction of the critical den-
sity with increasing molecular weight in systems of linear
polymers already discussed by Flory �15�.

In this work we report the full GL phase coexistence
curves, from which the above critical points were derived,
obtained via MD simulations of the ST system. In particular
we observe phase coexistence between an isotropic gas and
an isotropic liquid for dipole strengths up to �2=36, which is
significantly above the limit proposed previously beyond
which no GL transition should exist. To some extent we also
include a discussion of the transition from the isotropic liq-
uid to the ferroelectric liquid. The model of Ref. �14�, which
is applied here to describe the entire GL coexistence curve, is
extended to include possible ferroelectric ordering. Finally,
we also present GL coexistence curves of the polarizable
Stockmayer fluid for point polarizabilities, �, in the range
0	�	0.08 and dipole strengths �2=1.0,2.0,3.0

The paper is structured as follows: Section II provides a
detailed description of the MD methodology used to simulate
the phase boundaries. In Sec. III we discuss the mean field
lattice model and its mapping onto the ST system. In Sec. IV
we present our MD results for the ST system including a
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comparison to the above mean field theory. This section also
includes our results for the polarizable Stockmayer potential.
Section V is the conclusion, where we discuss the implica-
tions of this work on the question of the existence of GL
coexistence in DSS and DHS fluids.

II. MOLECULAR DYNAMICS METHOD

We carry out MD computer simulations of the �polariz-
able� Stockmayer fluid with the total potential energy

U =
1

2 �
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4�rij
−12 − rij

−6� −
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2�
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�� i · E� ��r�i� �1�

�16�. The first sum is over LJ pair potentials between the N
particles. The second sum describes the interaction between
point dipole moments m� i=�� i+ p� i, where �� i is a permanent
dipole and p� i is an induced dipole, and the total field
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Here j�Vcut means that we include all particles j inside a
cutoff sphere with radius rcut centered on particle i. We use
the same cutoff for the LJ interactions, applying the usual
continuum corrections beyond rcut. The second sum de-
scribes all electrostatic interactions of i with particles beyond
rcut in terms of a homogeneous reaction field. Note that � is
the static dielectric constant of the fluid which a priori is
unknown. The adequacy of the reaction field in comparison
to infinite lattice sums was shown previously �18–20�.

The translational motion of the particles as well as the
rotation of the permanent dipoles �� i are integrated using the
velocity Verlet algorithm. The equation of motion governing

the dipole orientation follows via N� i=�� i
E� ��r�i�=I��̈ i. Here

N� i is the torque acting on the fixed dipole moment �� i, and I
is the moment of inertia with respect to the momentary axis
of rotation. The angle of rotation vector �� i can be replaced

by �� i using ��̇ i
�� i=��̇ i and ��̇ i ·�� i=0. The resulting equation
of motion for �� i can be found in Sec. 8.2 of Ref. �21�. The

rotational temperature is given by �2�2�−1
��̇ 2�=T. �Notice
that here we set the moments of inertia with respect to the
major axes equal to one in LJ units.� Explicit expressions for
the forces and torques were obtained by Vesely �22�. Tem-
perature is controlled via the weak coupling method of Ber-
endsen et al. �23�. The induced dipole moments are calcu-
lated at every MD step using the iteration scheme

p� i
k+1 = �E� ��p� i

k� . �3�

Here � denotes the isotropic polarizability of the particles.
Note that only a small number of iteration steps, k, are suf-
ficient to obtain satisfactory convergence. Note also that the
value for � is calculated as described in Ref. �17�, i.e.,

3
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Here � is the particle number density, M� sphere is the total
dipole moment of the cutoff sphere containing Nsphere di-

poles, whereas M� is the dipole moment of the entire simula-

tion box. The index relation, E� =0, refers to an external field.
� is related to � via the Clausius-Mossotti relation. It is the
cumulative average of � thus obtained which is used to cal-

culate E� �.
A number of comparisons between MD and analytic re-

sults are shown in Figs. 1–3. Figure 1 shows the difference
P�LJ�− P�ST� vs particle number density, �, at low densities for
T=1.2 and �2=1 ,2 ,3. Here P�ST� is the pressure of the
Stockmayer fluid and P�LJ� is the pressure of the same sys-
tem, but with �2=0. The solid lines are obtained based on a
second virial approximation as discussed in the Appendix.
We do include this figure primarily as a check of the accu-
racy of our MD program because dipolar systems are rather
complex and programming errors are not unlikely. In Fig. 2,
a similar comparison is shown for T=1.2 and �2=3, but with
nonzero point polarizability, �. In the following, however,
we set �=0 unless stated otherwise.

GL phase coexistence curves are obtained primarily via
Maxwell construction. We carry out a large number of NVT
simulations along an isotherm, an example is shown in Fig.
4, which allows us to employ the Maxwell construction to
obtain the coexisting densities for the pure gas and the pure
liquid, respectively. Repeating this procedure for a series of
temperatures yields the GL coexistence curve, which we ana-
lyze using the well known scaling relations, i.e., �L−�G
�Ao�t��+A1�t��+�, ��L+�G� /2��c+Do�t�1−�+D1�t�, and P
− Pc� Po�t�+ P1�t�2−�+ P2�t�2 �t= �T−Tc� /Tc� �24�, in conjunc-
tion with the Ising values of the critical exponents �
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FIG. 1. LJ pressure, P�LJ�, minus the pressure of the correspond-
ing Stockmayer fluid, P�ST�, vs particle number density, �, at T
=1.2. Symbols: simulation data; lines: second virial approximation,
�P=T�2�B2

�LJ��T�−B2�T ,�2 ,0��. Numbers are �2 values.
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�0.110 �not to be confused with the polarizability�, �
�0.326, and ��0.5 �25� to extract the critical point param-
eters.

As a check of the Maxwell construction method we com-
pare in Fig. 5 selected results to corresponding results ob-
tained via thermodynamic integration using Kofke’s method
�26,27�. In addition we vary the system size, N, cutoff, rcut,
and the temperature increment, �T �in the case of thermody-
namic integration�. The coexistence curves thus obtained for
selected fixed dipole strengths are in close accord.

III. LATTICE MODEL

In Ref. �14� we have developed a theoretical description
of the Stockmayer fluid based on a Flory-Huggins–like lat-
tice free energy, i.e., occupied cells �representing single di-
poles� on a cubic lattice may form polymer chains of vari-
able length via side-by-side reversible association. Here we
summarize the essential formulas for clarity. The lattice free

energy expressed in terms of the overall volume fraction of
Stockmayer particles, �, is given by

boFconfig

TV
= � ln � + �1 − ��ln�1 − �� +

1

2
q��2

+ 1 −
1
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− 2 ln�n��� , �5�
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FIG. 2. LJ pressure, P�LJ�, minus pressure of the corresponding
polarizable Stockmayer fluid, P�pST�, vs particle number density, �,
for �2=3.0 and T=1.2. Symbols: simulation data; lines: second
virial approximation, �P=T�2�B2

�LJ��T�−B2�T ,�2 ,���. Numbers
with arrows indicate the � values.
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FIG. 3. Pressure, P, vs number density, �. The lines are analytic
results corresponding to the ideal gas equation of state �dotted line�
and virial approximations including the second �dashed line� and
third �solid line� virial coefficient, respectively. Top: T=10.2, �2

=36; bottom: T=1.8, �2=3.

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

2000 4000 6000 8000
V

0.1

0.12

0.14

0.16

P

FIG. 4. Illustration of the Maxwell construction method. The
symbols are the results of NVT-MD simulations. Open circles: re-
sults obtained during compression; open diamonds: results obtained
during subsequent expansion. The dashed line represents a fit using
a simple approximate equation of state. The shading highlights the
equal areas.
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n =
1

2
+
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is the average length of the reversible dipole chains. The
interchain and intrachain particle-particle interaction param-
eters q� and �i are defined and computed as in Ref. �14�, i.e.,

�q = −
4Tc,LJ

T
−

16�

9boR3

�4

T2 , �7�

where Tc,LJ is the critical temperature of the Lennard-Jones
system, bo is the particle volume, R=4.1 is a parameter, and
�i is a free energy gain per dipole-dipole contact along a
chain �cf. Eq. �25� in the above reference�. Notice that the
volume fraction is related to the number density, �, via �
=bo�. From the equation of state,

boPconfig

T
= − 1 −

1

n
�� +

1

2
q��2 − ln�1 − �� , �8�

in conjunction with the chemical potential, �=F /N+boP /�,
we compute the GL coexistence curve via simultaneous so-
lution of P�T ,�g�= P�T ,�l� and ��T ,�g�=��T ,�l�, where
�g and �l are the coexisting volume fractions of gas �g� and
liquid �l�.

This model does not yet include ferroelectric order. A
mean field description of ferroelectric order is based on the
orientation partition function

Qorient =
N!

��N�!�4�/���N exp 1

2T
�
i=1

N

E� loc
�D� · �� i� . �9�

Here N� is the number of dipoles oriented along the solid
angle ��, �4� /���N is the total number of orientational

states, and E� loc
�D� is given by
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This expression due to Debye �28� is an approximation of the
local electric field experienced by a point dipole in the center
of a spherical cavity inside a dielectric medium with a static
dielectric constant �. The attending orientation free energy is
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where �s is the average dipole moment along the director. In
addition �+2

�−1 is set equal to unity. When the coefficient of the
leading term changes sign an orientationally ordered phase
becomes stable compared to the isotropic fluid or vice versa.
The equilibrium value of s, i.e., s�o�, is determined by
��

boForient

VT /�s�T,�=0. Thus the combined free energy is F
=Fconfig+Forient�s�o��. The combined pressure is P= Pconfig

+ Porient�s�o��, where

boPconfig

T
= −

2��2�2

3T
�s�o��2. �12�

With the exception of possible chain formation this model
has been used before by Zhang and Widom �29� to investi-
gate the global phase diagram of dipolar fluids �Zhang and
Widom use the van der Waals free energy to model Fconfig�.

The condition 3/2−2���2 / �3Tc,f�=0 yields an isotropic-
ferroelectric transition temperature, Tc,f =

4�
9 ��2, which is

considerably too high. In fact, the absence of experimental
evidence for a ferroelectric transition in molecular liquids
motivated an alternative to Debye’s approach due to On-
sager, also based on continuum electrostatics of a single di-
pole within a spherical cavity, which does not yield a transi-
tion at all �for details see Ref. �17��. However, there are
numerous computer simulation studies on model systems
such as dipolar hard and soft spheres or the Stockmayer
fluid, which do find a transition from an isotropic liquid to an
orientationally ordered liquid. In addition there are also ex-
periments lending support to the existence of such a transi-
tion in reality �cf. again Ref. �17� for a detailed discussion; a
recent large scale simulation study addressing this issue is
described in Ref. �30��. Here we account for these results by
scaling the Debye transition temperature, Tc,f

�D� via Tc,f

=�Tc,f
�D�, where ��0.1361 is chosen to reproduce the transi-

tion temperature Tc,f
�ST� obtained on the basis of previous

simulation work �17�.

IV. COMPARISON BETWEEN MOLECULAR DYNAMICS
SIMULATION AND LATTICE MODEL

Figure 6 compiles coexistence curves for dipole strengths
in the range from �2=0 to �2=36 obtained via Maxwell
construction �numerical values for critical temperatures and
densities are listed in Table I�. We note that the critical tem-
perature obtained for the LJ system is slightly higher than
most values found in the literature �between 1.31 to 1.32�.
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FIG. 5. Binodal lines in the T-� plane for �2=5 �top� and �2

=16 �bottom�. Comparison of methods �M: Maxwell construction;
K: Kofke integration�.
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Possibly the equal area construction based on a simple equa-
tion of state, such as the van der Waals equation or modifi-
cations of the van der Waals equation, overemphasizes the
occurrence of the pressure loop. Nevertheless, this effect is
small compared to the dependence of the GL critical tem-
perature on �2 in the range studied.

Notice also that for �2=16 the Kofke data shown in Fig.
5 cover a larger density interval in comparison to the Max-
well construction data shown here. While our simulations are
in close accord with previous works for dipole strengths �2

�25 �6,7,31–34�, we do find phase coexistence also for the
larger dipole strengths. This disagrees with the Gibbs-
Ensemble MC work by van Leeuwen and Smit �6�, which is
responsible for the widely accepted belief that the Stock-
mayer system should not exhibit a GL critical point above
�2�25.

Even though van Leeuwen and Smit �vLS� study a modi-
fied version of the Stockmayer potential, in which the isotro-
pic dispersion attraction term is multiplied by a variable fac-
tor �, their system can be mapped onto the ordinary
Stockmayer system �cf. �7� or �14�� via TST=�−2TvLS, �ST
=�−1/2�vLS, and �ST=�−3/4�vLS. The index ST indicates the
normal Stockmayer potential, whereas the index vLS refers
to the modified potential in Ref. �6�. In particular the limit
�→0, the soft-sphere potential, corresponds to the large di-
pole moment limit in the ST system �we return to this point
below�.

Van Leeuwen and Smit attribute the observed disappear-
ance of the critical point to the formation of reversible dipole
chains. A different conclusion was reached by Freed and co-

workers who study the interplay between chain formation
and GL phase separation using a mean field �Flory-Huggins�
lattice model �13�. According to them the GL critical point
should exist for all dipole strength. Using an extended ver-
sion of their model we were able to describe the shift of the
critical point as a function of dipole strength in good accord
with the existing simulation data �including the results in this
work� �cf. Fig. 3 in Ref. �14��. One result obtained by this
model is the solid line in Fig. 6 �top panel�, which is the path
of the critical point in the T-� plane parametrized by the
dipole moment. In particular, the shift of the critical density
is directly related to the formation of reversible chains whose
mean length increases with increasing �. In Ref. �14� we
discuss the strong similarity of this behavior with the critical
point shift in systems of ordinary n alkanes, where �c
�n−1/2 for large n �cf. �15��. It is this similarity which also
makes the disappearance of the GL critical point in the ST
system due to chain formation highly suspicious. As the
alignment of the dipoles tangential to the chain strongly di-
minishes the dipole-dipole interaction between chains, the
remaining LJ interaction makes the chains very much al-
kanelike.

On the other hand the dipole-dipole interaction may give
rise to long-range orientational order, and the attending tran-
sition from the isotropic fluid to an anisotropic liquid may
interfere with the isotropic gas-to-isotropic liquid transition.
Zhang and Widom �29� have studied the interplay between
isotropic van der Waals type interaction and anisotropic di-
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FIG. 6. Top: GL coexistence curves in the temperature-density
plane obtained in this work. The different symbols are MD data
obtained for �2=0 �circles�, 0.5 �squares�, 1.0 �diamonds�, 2.0 �up
triangles�, 3.0 �left triangles�, 4.0 �down triangles�, 5.0 �right tri-
angles�, 16 �plusses�, 30 �crosses�, and 36 �stars�. Fat symbols in-
dicate the position of the critical point. The dashed lines are fits
obtained via the scaling relations provided in the text. The solid line
shows the shift of the critical point as obtained by the lattice theory.
Bottom: Same as above in reduced units �Tc: GL critical tempera-
ture; �c: GL critical number density�.

TABLE I. GL critical parameters for the ST system and the
polarizable ST system.

�2 � Tc �c Pc

0 0.00 1.35 0.307 0.147

0.5 0.00 1.39 0.309 0.156

1 0.00 1.45 0.3123 0.158

2 0.00 1.65 0.304 0.168

3 0.00 1.86 0.297 0.170

4 0.00 2.09 0.283 0.170

5 0.00 2.34 0.275 0.159

16 0.00 5.20 0.191 0.121

30 0.00 8.89 0.118 0.0668

36 0.00 10.35 0.089 0.0439

1 0.02 1.48 0.297 0.160

1 0.04 1.50 0.308 0.160

1 0.06 1.53 0.307 0.162

1 0.08 1.58 0.308 0.175

2 0.02 1.69 0.307 0.164

2 0.04 1.76 0.316 0.174

2 0.06 1.85 0.310 0.189

2 0.08 1.95 0.321 0.203

3 0.02 1.95 0.297 0.175

3 0.04 2.07 0.303 0.186

3 0.06 2.22 0.304 0.210

3 0.08 2.43 0.322 0.240
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polar interaction using a simple mean field model. The dif-
ference to the model used in this work is the neglect of chain
formation, i.e., Fconfig is modeled in terms of the van der
Waals form of the free energy. The authors obtain a sequence
of phase diagrams which indicate a vanishing of the GL criti-
cal point due to the instability of the isotropic liquid in com-
parison to the anisotropic liquid. The parameter which drives
this behavior is the reduction of the GL critical temperature.
Similar results were obtained via density functional theory
by Groh and Dietrich �35,36�

With the same idea in mind we compute the phase dia-
gram of the ST system including possible ferroelectric order-
ing using our mean field model. The results are compiled in
Figs. 7 and 8. Obviously the transition to the ferroelectric
state occurs at rather low temperatures. Of the three typical
phase diagrams discussed by Zhang and Widom in their Fig.
2, only the topmost diagram appears to be realized in the ST
system. We should note that our mean field theory contains
two adjustable parameters. The parameter R introduced in
Eq. �12� in Ref. �14� is fixed by the rise of the GL critical
temperature shown in Fig. 3 of this reference. Here we use
the same value. The second parameter is �. The latter re-
duces the Debye transition temperature to the ferroelectric
state, which is too high, to the value obtained in Ref. �17�.
We note that the nematic order parameter computed during
the simulations with �2=5 and �2=16 increases significantly

above zero for those liquid densities at low temperatures, i.e.,
T /Tc�0.4 for �2=5 and T /Tc�0.55 for �2=16, which ap-
pear to deviate from the extrapolated coexistence curve
based on the densities at higher T /Tc. This is illustrated by
the two simulation snapshots shown in Fig. 9. The lower
panel depicting a system configuration at T /Tc�0.36 exhib-
its visible orientational order. We also note that the other
phase diagrams obtained by Zhang and Widom in their Fig. 3
do follow from our mean field model if the parameter � is
increased. However, this is not appropriate for the ST sys-
tem. Notice that the inset in the lower panel of Fig. 7 shows
a partial phase diagram obtained for �2=6.25 and a slightly
increased value of � ��=0.186� in comparison to a partial
phase diagram obtained via simulation by Gao and Zeng
�37�. These authors primarily have studied the additional
transition to the solid state not studied in this work. In sum-
mary, it is unlikely that the transition to ferroelectric ordering
will cause the GL critical point to disappear. Certainly this is
not the case in the range of dipole strengths considered here.
Note also that even though, according to the Debye theory,
Tc,f, the ferroelectric transition temperature, increases pro-
portional to �2 at fixed �, the same dependence, i.e., Tc
��2 for large �, is found for the GL critical temperature. In
addition the GL critical point “escapes” to lower densities.

Ferroelectric ordering, as considered thus far, is induced
by the particle’s dipole moments. Another cause for possible
orientational order, at least theoretically, is shape induced
interaction between reversible chains akin to the isotropic-to-
nematic phase transition studied originally by Onsager for
rigid monodisperse rods or rodlike polyelectrolytes �38�. The
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FIG. 7. Comparison between simulation �symbols� and lattice
theory �lines� for the indicated dipole strength. Open symbols: Max-
well construction; solid symbols: Kofke integration. The thick-
dashed line indicates the transition from the isotropic to the ferro-
electric liquid. The inset shows a comparison between the lattice
theory for �2=6.25 and the corresponding section of the phase
diagram obtained via simulation in Ref. �37� �dotted and short
dashed lines�.
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transition to the nematic state occurs for volume fractions
proportional to d /L, where d is an effective rod diameter and
L is the rod length. For large L the transition therefore occurs
at small densities. Onsager’s approach can be extended to
semiflexible polymers �cf. �39,40�� and to rodlike micelles
�cf. �41��. In these theories an orientationally ordered phase
occurs for volume fractions proportional to d / PL, where PL
is the persistence length, a measure for the chain stiffness.
Notice that PL depends on temperature. The fact that such a
transition is not observed in the ST system may be under-
stood in terms of the small persistence length, but for other
models of equilibrium polymers this may be relevant
�42,43�.

Figure 10 shows the average chain length, n, along the GL
coexistence curve obtained for �2=16. The symbols are
simulation results, whereas the solid line is the theoretical
result. First we note that two Stockmayer particles are con-
sidered to be neighbors along the same chain if their distance
is less than rn. Because this is a rather simple criterion it
produces somewhat different results for rn=1.0 and rn=1.2.
Nevertheless, we note that there is qualitative agreement be-

tween the lattice theory and the simulation similar to the case
of the average chain length at criticality shown in Fig. 5 of
Ref. �14�.

In Fig. 11 we compare the temperature dependence of the
isochoric heat capacity per particle, CV �omitting the contri-
butions from the kinetic degrees of freedom�, obtained via
canonical MC simulation in Ref. �12� for �2=36, to the lat-
tice theory. Again there is qualitative agreement. It is impor-
tant to note that our theoretical treatment neglects the revers-

FIG. 9. Simulation snapshots of the �2=5 system. Top: T /Tc

�0.49; bottom: T /Tc�0.36. Every ST particle is represented by a
cone indicating the instantaneous orientation of the dipole moment.
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FIG. 10. Mean aggregation number, n, vs particle number den-
sity, �, along the GL coexistence curve for �2=16. Symbols: simu-
lation result obtained with rn=1.0 �solid circles� and rn=1.2 �open
circles�; solid line: lattice theory. Note that the gap in this curve
indicates the critical point.
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ible formation of loops. In Ref. �12� it is shown, however,
that there may be a large fraction of loops at the thermody-
namic conditions considered here. Notice in this context that
the theoretical CV in Fig. 11 is almost exclusively determined
by the last term in Eq. �5� �bo and therefore � is slightly
dependent on temperature via Eq. �26� in Ref. �14��, i.e., CV
is determined by the temperature dependence of the average
chain length, n. The latter is shown in the bottom panel. The
strongest curvature of n as a function of T, i.e., the onset of
aggregation, corresponds to the maximum of the heat capac-
ity. As explained in Ref. �14� the no-aggregation limit of the
lattice theory is not n=1 but n�2. We also note that the
authors of Ref. �12� apparently do not notice phase coexist-
ence even though their isochors cross from the one phase
into the coexistence region found in our simulations �as in-
dicated by the vertical dotted lines in the bottom panel of
Fig. 8�.

We briefly want to return to the issue of relative stability
of chains and loops mentioned above. The probability for an
ideal wormlike chain containing N dipoles to form a loop is
ploop= �4��−1�3/ �2�N��3/2 �44�. Notice that a random path
maps out a sphere of radius �N1/2 and volume �N3/2. The
factor �4��−1 accounts for the smoothness of the chain at the
junction point. The remaining factor results from the normal-
ization of the random path’s probability distribution. Using
pchain=1− ploop we obtain the entropy loss due to ring closure
�S=Sloop−Schain=ln�ploop / pchain�. The corresponding change
of the free energy is �F=T�i−T ln�ploop / pchain�. Here T�i is
the contribution of the contact interaction to the free energy
�cf. Eq. �25� in Ref. �14��. The condition �F=0 thus defines
the crossover length, Nx�exp�−2�i /3�, for sufficiently large
N. This means that for N�Nx the chain is more stable than
the loop, whereas for N�Nx the loop is more stable than the
chain. On the other hand, according to Eq. �6�, the lattice
model yields a mean chain length n��1/2 exp�−�i /2�. If we
are interested in the relative stability of chains vs loops close
to GL criticality we can make use of �c�nc

−1/2, where the
index c indicates the critical values, which follows from Eq.
�6� in Ref. �14� for large nc �corresponding to large �2�.
Therefore we find nc�Nx

3/5, which means close to the GL
critical point, for sufficiently large �2 and therefore large nc
�cf. Fig. 5 in Ref. �14��, loops are more stable than chains.
We return to this point in the conclusion section.

Finally, we return to the polarizable ST model. Figure 12
compiles GL coexistence curves we obtain at fixed dipole
moment ��2=1� for different values of the point polarizabil-
ity, �, using again the Maxwell construction method. The
critical parameters are listed in Table I together with addi-
tional results for �2=2 and �2=3. Figure 13 shows the �
dependence of the critical temperature for �2=1, 2, and 3.
Here the ratio Tc /Tc,LJ is estimated using its relation to the
Boyle temperature, TBoyle, defined via B2�TBoyle ,� ,��=0,
i.e., Tc /Tc,LJ=TBoyle /TBoyle,LJ. The index LJ always refers to
the same quantity in the LJ system. We obtain this estimate
by computing the critical temperature from Eq. �8� for n=1,
i.e., Tc=−q�o /4, where the temperature dependence of � in
Eq. �8� is described via �=�o /T. If in addition we expand the
pressure to second order in � we obtain the second virial
coefficient B2�T�. Solving B2�T�=0 for T yields TBoyle=4Tc.

Notice that this estimate of Tc in terms of TBoyle coincides or
is close to the corresponding result obtained from other
simple equations of state such as the Dieterici or van der
Waals equations of state. Because the dipole strength is low,
we can neglect chain formation. The resulting estimate of Tc
via TBoyle is in qualitative agreement with the simulation
data.

V. CONCLUSION

In this work we mainly present the results of MD simu-
lations for GL coexistence in the Stockmayer system. While
corresponding results have been reported before for smaller
dipole strengths �6,7,31–34�, here we study large dipole
strengths for which it was believed previously that no GL
coexistence should exist. However, we do find coexistence of
the isotropic gas and the isotropic liquid for all dipole
strengths studied, i.e., 0	�2	36. Our findings are sup-
ported by a mean field model based on the Flory-Huggins
description for polymer solutions.
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FIG. 12. GL coexistence curve in critical units for �2=1.
Circles: �=0; squares: �=0.02; diamonds: �=0.04; up triangles:
�=0.06; left triangles: �=0.08.
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At this point we want to discuss the implications of the
present work on the existence of GL phase separation in the
DSS system. As mentioned above, van Leeuwen and Smit
�6� have used the following potential,

UvLS�rvLS,�vLS�
TvLS

=
4

TvLS
 1

rvLS
12 − �

1

rvLS
6 � −

�vLS
2

TvLSrvLS
3 f ,

�13�

where f simply is a function of the relative orientation of two
interacting dipoles, instead of the Stockmayer potential,

UST�rST,�ST�
TST

=
4

TST
 1

rST
12 −

1

rST
6 � −

�ST
2

TSTrST
3 f , �14�

in order to study the effect of variable isotropic attraction.
However, as already pointed out by others �cf. sec. II in Ref.
�7��, the two formulas for U /T are related via TST=�−2TvLS,
�ST=�−1/2�vLS, and �ST=�−3/4�vLS. If we consider the vLS
system at fixed dipole moment, i.e., �vLS=const, then �→0
implies �ST→. According to Ref. �14� as well as this work
we have Tc,ST��ST

2 for large �ST, and therefore Tc,vLS
��2�ST

2 =�1/2�vLS→0 for �→0. For the critical density we
have �c,vLS=�1/2�c,ST. Again according to Ref. �14� as well as
this work �c,ST decreases monotonically with increasing �ST.
This yields �c,vLS→0 for �→0. Because the �→0 limit cor-
responds to the DSS fluid, the latter should not exhibit GL
coexistence. Due to the strong similarity between the DSS
and the DHS system, we expect the same conclusion to hold
for DHS.

Nevertheless, there may be other types of phases and
phase transitions, which are not included at present. Loops,
as we have discussed above, may become dominant com-
pared to chains at high dipole strength, when the GL critical
point has shifted to low densities. However, there is no com-
pelling reason to expect that loops and chains should phase
separate under these conditions. A different suggestion is due
to Tlusty and Safran �45�. They argue that reversible chains
may form reversible networks. The chain ends may partici-
pate in reversible, threefold coordinated crosslinks or may be
free. The authors construct a free energy based solely on the
network defects, i.e., the free ends and the crosslinks. They
find that phase separation into a free end-rich and a free
end-poor phase can occur. The whole idea is developed on
the basis of the DHS model. The model is a much simplified
theory for a �reversible� polymer network. Other types of
defects may be present and important, e.g., physical
crosslinks. In particular, as the authors remark themselves, a
crucial prerequisite is the observation of dipolar networks.
However, the simulations presented in this work as well as a
number of exploratory simulations for �2=100 at T=26.5,
extrapolating the linear dependence of the critical tempera-
ture in Fig. 3 of Ref. �14�, and various low densities, �
=0.001, 0.01, 0.05 do not reveal network formation in the
Stockmayer system. �We note that we do find a van der
Waals loop for �2=100 at T=22 and T=24. The full calcu-
lation necessary to locate the critical point, however, is too
time consuming at present.�

APPENDIX: SECOND VIRIAL COEFFICIENT FOR THE
STOCKMAYER POTENTIAL INCLUDING

POLARIZATION

The �maximum term� classical partition function for a
system of N Stockmayer dipoles is given by

Q =
1

N1!N2! . . . �4�/���N�2���5N


� d�p� ,r��d��,�,p�,p��e−�H.

Here N� is the number of indistinguishabel dipoles pointing
into a solid angle element ���=�� �N=��N��, and
�4� /���N is the total number of orientational states �46�.
The integral is over all translational coordinates and mo-
menta as well as over all Euler angles, specifying the dipole
orientations, and their conjugate momenta. The Hamiltonian
is given by

H = �
j=1

3N 1

2
I j� j

2 +
pj

2

2m
� + U��r�,���,���� , �A1�

where I1=I2=I and I3=0. Notice that the potential energy
U does not depend on the Euler angle �, because rotation
with respect to the dipole’s axis has no effect. Thus we have
used �=0. We now proceed in standard fashion by trans-
forming the integrations over the momenta conjugate to the
Euler angles to the angular velocities � j with respect to the
major axes �e.g., �47��. The result is

− ln Q = − N ln� 2I
��2	 + N ln�4��T

3�/���

+ �
�
N� ln

N�

N
− N��

− ln � d�r��
VN d��,� sin ��e−�U. �A2�

Here we have made use of the Stirling approximation for the
N�. The quantity �T is the thermal wavelength, and � is the
dipole number density. A second order virial expansion
yields the free energy

�F

N
= − ln�8�I

��2 	 + ln��T
3�� − 1 +� d�

4�
f���ln f���

+ �B2�T� + O��2� , �A3�

where the second virial coefficient is given by

B2�T� = −
1

2
� d�d��

�4��2 f���f���� � d3r�e−�u�r�,�,��� − 1� .

�A4�

Notice that � denotes the dependence on � and � �d�
=d�d� sin ��, and ��f����=4�N� /N is the dipole orienta-
tion distribution function ��d�f /4�=1�.

In the present case the pair interaction potential
u�r� ,� ,��� is
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u�r�,�,��� = uLJ + uDD = 4 1

r12 −
1

r6� +
1

2
�m� T�� � + m� �T�� � .

�A5�

The first term is the LJ potential. The second term describes
the interaction between point dipole moments m� and m� �,
where

T�� =
1

r3 ���� − 3n�n�� �A6�

are the components of the dipole tensor �n� =r� /r�. The dipole
moments are given by

m� = �� − �Tm� � and m� � = �� � − �Tm� . �A7�

The � are permanent dipole moments, and � is a point po-
larizability. Next we express uDD entirely in terms of the
permanent moments and �. Using

T =
1

r3�1 0 0

0 1 0

0 0 − 2
� , �A8�

here m� and m� � lie on the z axis, we obtain

uDD =
1

2
���1 − �2T2�−1��� − �T�� ���T�� �

+ ��1 − �2T2�−1��� � − �T�� ��T�� � . �A9�

Using �� =��sin � cos � , sin � sin � , cos �� and expanding in
small � yields

�uDD = a�cos �� sin � sin �� − 2 cos � cos ���

−
a

r3 �P2�cos �� + P2�cos ��� + 2��

+
a

r6 �cos �� sin � sin �� − 8 cos � cos ����2 + O��3� ,

�A10�

where a=��2 /r3, ��=�−��, and P2 is the second order
Legendre polynomial. We may now carry out the integrations
over � and �� analytically. The result may then be expanded
in powers of a and the integration is carried out term by
term. Notice that we assume f���=1, i.e., isotropic distribu-
tion of dipole orientations. Thus the second viral coefficient
B2�T ,�2 ,�� becomes

B2�T,�2,�� = B2
�LJ��T� +

x2

3
h1 +

x4

25
h2 + ¯

+ 2xh1 +
4x3

5
h2 + ¯ �


� + 21x2

5
h2 +

836x4

525
h3 + ¯ ��2 + O��3� .

�A11�

Here x=��2,

B2
�LJ��T� = − 2��

0



drr2�exp�− �uLJ� − 1� �A12�

and

hj = − 2��
0



drr2−6j exp�− �uLJ� . �A13�

Additional terms in Eq. �A11� are listed in Table II.

TABLE II. Additional terms in the expression for B2�T ,�2 ,�� in Eq. �A11�.

O��0� O��1� O��2�

x2

3
h1

2xh1 21x2

5
h2

x4

25
h2

4x3

5
h2

836x4

525
h3

29x6

11025
h3

58x5

525
h3

269x6

1225
h4

11x8

99225
h4

88x7

11025
h4

5794x8

363825
h5

13x10

4002075
h5

26x9

72765
h5

10139x10

14189175
h6

17x12

243486243
h6

68x11

6243237
h6

73732x12

3381753375
h7

523x14

456536705625
h7

1046x13

4347968625
h7

1246237x14

2587041331875
h8

¯ ¯ ¯
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