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We study the effects of extreme confinement on the self assembly of the colloids found in magnetorheo-
logical �MR� fluids using Brownian dynamics simulations. The MR fluid is confined in a thin slit with a
uniform external magnetic field directed normal to the slit. We find a crossover in the behavior of the system
from two dimensions to three dimensions as the slit thickness is increased. A simple model is presented to
describe this crossover as a function of the slit thickness and volume fraction of the MR fluid. The model is
able to predict the salient features of the structure formation that has been observed in these systems. Further-
more, the model predicts the approximate time scales for structure formation under a variety of conditions. We
present a quantitative analysis of the effect of volume fraction on the behavior of the system. Additionally, we
show quantitatively how energy barriers to structure formation play a crucial role in determining the steady
state structure of these systems. Our analysis explains the discrepancies between previous experimental and
theoretical work on the self-assembly of MR fluids confined in thin slits.
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I. INTRODUCTION

The confined self-assembly of induced dipoles such as the
kind found in magnetorheological �MR� fluids has been of
great interest for many years from both a fundamental sci-
ence standpoint and from a practical application standpoint
�1–4�. The confinement of MR fluids can cause drastic
changes in the nature of the structures that form under the
application of an external magnetic field �2,5�. Recently, the
self-assembled structures formed by MR fluids under the ap-
plication of an external magnetic field have been used as
structural components in microfluidic devices to perform
size-dependent separations of DNA molecules �3,4�. In these
devices, a low volume fraction MR fluid is self-assembled in
a slitlike microchannel by the application of a uniform exter-
nal magnetic field directed normal to the thin slit. The self-
assembled structure formed by the MR fluid in this geometry
resembles an array of columnlike clusters spanning the
height of the channel. The spacing between these columns
�or the pore size in the channel� is an important parameter for
characterizing the efficacy of the DNA separation.

Columns can form in thin-slit channels when the volume
fraction of MR colloids is less than about 0.1 and the exter-
nal magnetic field is strong enough to overcome the Brown-
ian motion of the colloids �1,2,6,7�. There has been much
research done to measure and model how the spacing be-
tween the column structures in thin slits depends upon the
thickness of the slit. The experimental investigations have
been performed in slits with thicknesses ranging from �10
to 1000’s of colloid diameters �1,2,5–7�. The theoretical in-
vestigations into this system have generally been performed
at infinite external field strength �or zero temperature�
�6,8,9�. All of the experiments and theoretical studies per-
formed on this system have concluded that there is a power-
law dependence on the spacing between columns as a func-

tion of the thickness of the slit �1,2,5,6,8,9�. However, there
has been much disagreement about the exact value of the
power law. A survey of the literature can convince one that it
is generally agreed that the power law in thin slits with a
thickness of �10 to 100’s of colloid diameters is �0.4 and
as the slit thickness is increased to several 1000’s of colloid
diameters the power-law transitions to �0.6 �1,2,6,8�. All of
the above results are generally applicable as long as the ex-
ternal magnetic field is large enough to overcome Brownian
motion. However, as the magnitude of the external magnetic
field approaches infinity, there is theoretical evidence that
there should be in fact only a single power law dictating the
spacing between columns as a function of the slit thickness
�9�.

It is well known that as the external magnetic field is
slowly increased from zero to a large value, bulk field re-
sponsive fluids such as MR fluids undergo several structural
transitions �7,10–12�. The first transition is from a gas of
Brownian colloids to randomly distributed chains of colloids
aligned in the field direction. This aggregation into chains is
known as head-to-tail aggregation. As the field is further in-
creased, the chains of colloids begin to aggregate laterally in
order to form clusters of zipped chains. This secondary ag-
gregation is known as zippering. Likewise, in confined MR
fluid self-assembly the same transitions can occur as the ex-
ternal field magnitude is increased. These transitions are il-
lustrated in Fig. 1 where we show a schematic of the evolu-
tion of the MR fluid structure from a randomly dispersed
state �left� to the lowest energy state �right� in two different
slit-thicknesses. In the top of Fig. 1 the lowest energy struc-
ture on the right consists of chains spanning the height of the
thin slit and therefore only head-to-tail aggregation is neces-
sary to form these structures. In the bottom of Fig. 1 the
system must undergo both head-to-tail aggregation and the
zippering transition. However, because of the confinement in
a thin slit, the energy barriers associated with the zippering
of chains of MR colloids can be large, thus preventing the
system from reaching the lowest energy state. We will show*Electronic address: pdoyle@mit.edu
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that one needs to take into account not only the lowest en-
ergy state of the thin-slit system but also the energy barriers
associated with achieving that state in order to fully under-
stand the self-assembly of MR fluids confined in thin slits.

The characteristic length scales in microfluidic devices
are ever-shrinking and therefore it is likely that the thickness
of the channels used for DNA separations will continue to
shrink down to the fundamental limit of a single MR colloid
diameter. In the extreme case where the thickness of the
channel is equivalent to a single colloid diameter, the MR
colloids will self-assemble in truly two-dimensional �2D�
channels. As of yet, the self-assembly of dilute MR fluids in
such extreme confinement has not been studied. Some work
has been done to study the self-assembly of concentrated MR
fluids ��0.2 volume fraction� under this extreme confine-
ment but the structures that form at such high concentrations
are not columnlike �13�. Some of the infinite field theoretical
models mentioned previously can be extended down into the
range where the slit thickness is less than ten colloid diam-
eters but, as we will show, these models do not tell the whole
story of the self-assembly in thin slits.

In this work we use Brownian dynamics �BD� simulations
to study the self-assembly of dilute MR fluids under confine-
ment in thin slits. We are interested in studying the phase
space that is practical for the microfluidic DNA separation
devices mentioned previously, namely, volume fractions
�0.1 and external fields that are sufficiently large to cause
structure formation but small enough that they can be experi-
mentally realized. We note that there is a crossover from
truly 2D behavior to the 3D behavior observed in the experi-
mental systems mentioned above. We explain the mechanism
of the crossover in these systems and discuss the important
factors in determining where the crossover occurs.

II. SIMULATION DETAILS

Under the application of a uniform external magnetic
field, the colloids in an MR fluid acquire dipole moments

aligned with the external field. The dipole moments cause the
colloids to experience anisotropic interactions governed by
the energy

Uij�rij,�ij� =
m2�0

4�
�1 − 3 cos2 �ij

rij
3 � , �1�

where Uij is the energy of interaction between two identical,
parallel, point dipoles with magnitude m. The parameter �0
is the magnetic permeability of free space, the distance rij is
the magnitude of the vector connecting the centers of col-
loids i and j, and �ij is the angle between the vector rij and
the external field vector. This interaction energy neglects the
effects of mutual induction which can be present in real MR
fluids but it has been successfully used to quantitatively pre-
dict the self-assembly of MR fluids �14�. Furthermore, the
point dipole approximation has been shown to be a good
approximation for the magnetic behavior of MR colloids
�15�. The magnitude of the induced dipole moment of an
individual colloid is given by

m =
�

6
d3�H0, �2�

where � is the effective magnetic susceptibility of an indi-
vidual MR colloid, d is the diameter of the colloid, and H0 is
the magnitude of the external magnetic field. The dimension-
less field strength characterizing the magnetic interaction be-
tween MR colloids is given as

� � −
U�d,0�

kBT
=

��0d3�2H0
2

72kBT
�3�

the ratio of the maximum magnitude interaction energy to
the thermal energy in the system �2�. When ��1 then the
MR fluid will self-assemble into structures aligned with the
external magnetic field. The dimensionless interaction energy
between two MR colloids is thus written as

Ũij�r̃ij,�ij� =
1

2
��1 − 3 cos2�ij

r̃ij
3 � , �4�

where d �the diameter of the colloids� is the characteristic
length scale in this system.

The equation of motion for the colloids was given by

dri�t� 	
1

	
FD,i�t�dt +

1

	
FB,i�t�dt , �5�

where the inertia of the colloids is neglected �16–18�. The
term FD,i represents all of the deterministic forces acting
upon colloid i and 	 is the drag coefficient on a single col-
loid. The term FB,i is a stochastic term which is used to
model the Brownian force acting on the colloid due to colli-
sions with the solvent molecules. Hydrodynamic interactions
between the colloids were neglected for simplicity. The de-
terministic forces in this system were due solely to the mag-
netic interactions between the colloids and are defined as

� � � �

FIG. 1. Top: Schematic of the self-assembly of an MR fluid
confined in a thin slit with a thickness equal to four colloid diam-
eters. At time zero the MR fluid is a gaslike Brownian suspension
and as the external field is slowly ramped the colloids aggregate
head-to-tail in order to form chains spanning the height of the thin
slit. Bottom: Schematic of the self-assembly of an MR fluid con-
fined in a thin slit with a thickness equal to ten colloid diameters. At
time zero the MR fluid is a gas of Brownian colloids and as the
external field is slowly ramped the colloids first aggregate head-to-
tail in order to form chains and then undergo a secondary zippering
transition in order to reach the lowest energy state. There can be
significant energy barriers to the zippering transition.
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FD,i�t� � 

j�i

N

− �Uij�rij�t�,�ij�t�� , �6�

where N is the number of colloids in the system. The sto-
chastic term is defined as

FB,i�t� = �2	kBT
dWi�t�

dt
. �7�

The parameter Wi is a Wiener process with

� dWi�t�
dt

 = 0,

� dWi�t�
dt

dW j�t��
dt�

 = 
ij
�t − t��� , �8�

where 
ij is the Kronecker delta, 
 is the Dirac delta func-
tion, and � is the identity tensor.

The equation of motion was integrated forward in time
using a simple Euler integration scheme. At the end of a
time-step, hard sphere overlaps were treated by displacing
overlapped colloids along the line connecting their centers
until they are just contacting �19�. In this manner, we project
out any unphysical moves that may occur during the course
of a time step. This procedure was performed for all over-
laps, between two colloids and between colloids and hard
walls �17,18�, and was iterated until all overlaps in the sys-
tem were removed.

The boundary conditions of the simulations in this work
were periodic in the x and y directions and hard walls in the
z direction. The uniform external magnetic field was directed
in the z direction �normal to the thin slit� causing the MR
colloids to self-assemble into column structures spanning the
height of the thin slit. Simulations were performed for the
self-assembly of five different volume fractions of MR fluid
��=0.01, 0.03, 0.04, 0.05, and 0.07� in thin slits ranging in

dimensionless thickness from L̃=1 to 30. The simulations
were done in boxes with dimensionless lengths of 60, 35, 35,
30, and 30 in the x and y directions for the volume fractions
0.01, 0.03, 0.04, 0.05, and 0.07, respectively. Therefore, the
number of colloids in the simulations ranged from 69 to

3 610 depending upon L̃ and �.
A dimensionless time step of �t̃=10−4 was used with time

made dimensionless as t̃= t�kBT� / �	d2�, where �	d2� / �kBT� is
the time necessary for an MR colloid to freely diffuse a
distance equal to its diameter. A dimensionless cutoff for the
dipole-dipole interaction of 20 was used along with a linked-
list binning algorithm �20� where the bin sizes were slightly
larger than the cutoff value. Therefore, only interactions be-
tween colloids separated by a distance less than the cutoff
were considered. The simulations were started from a ran-
dom configuration and the external magnetic field strength
was ramped continuously from �=0 to �=50 over a dimen-
sionless time of 100 after which it was held constant at �
=50. Ramping the external magnetic field over a longer time
did not change the final properties measured in the simula-
tions. We tracked the spacing between the columns �or clus-
ters� formed by the MR colloids until it remained constant

for a dimensionless time of at least 100 before we began to
collect statistics. All of the simulations were determined to
be converged in system size, time step, and cutoff for the
dipole-dipole interaction, and ramp time for the external
magnetic field. For each set of conditions �� and L̃�, six
separate trajectories were simulated �all from different start-
ing configurations� in order to obtain a reasonable average
for the physical properties of the structure and dynamics in
these systems. An example of an equilibration curve for L̃
=5 and �=0.01 is shown in Fig. 2. Schematics of the initial
and final states of the system are shown as insets in Fig. 2.

The average spacing between clusters was calculated in
the following manner as illustrated in Fig. 3. Starting with a
snapshot of the system configuration �Fig. 3, left�, the �x̃ , ỹ�
position of the center of mass was calculated for each con-
tinuously connected cluster of MR colloids resulting in a 2D
projection of the thin slit system in the x-y plane �Fig. 3,
middle�. MR colloids were considered to be connected if
they were in hard-sphere contact. A Delaunay triangulation
was performed on the 2D projection in order to determine
the nearest neighbors of each cluster �Fig. 3, right�. The av-
erage distance between clusters was then calculated as the
average distance between nearest neighbor clusters.

III. TRANSITION FROM 2D TO 3D

As mentioned above, the previous work on the self-
assembly of MR fluids in thin slits under the application of a

0 200 400 600 800 1000 1200
0

2

4

6

8

10

�
��

�

�

�

FIG. 2. The average dimensionless spacing between clusters �s̃�
versus dimensionless time for a typical simulation �L̃=5� where the
dimensionless external magnetic field is ramped from �=0 to �
=50 over a dimensionless time of 100 and then held constant at 50
until the system reaches steady state. The inset on the left shows a
typical random starting configuration and the inset on the right is an
example of the final, steady-state structure.

FIG. 3. �Color online� Left: Top view of the simulation box.
Middle: 2D projection of the centers of mass of all the clusters in
the simulation box. The red line represents the periodic boundaries
of the simulation box. Right: Delaunay triangulation of the 2D pro-
jection showing the nearest neighbors of all of the clusters in the
simulation box from which the average spacing can be calculated.
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uniform external magnetic field normal to the slit has all
been done in slits with dimensionless thicknesses ranging

from L̃�10 to 1000’s. We are interested in probing the prop-
erties of self-assembled MR fluids under much tighter con-

finement �L̃=1 to 30� as there are many interesting properties
of these systems that have not been observed in the previous
work. In Fig. 4 we present our simulation results �circle sym-
bols� for the average dimensionless spacing between clusters
as a function of the dimensionless slit thickness for �
=0.04. We compare our simulation results to the experimen-
tal results of Liu et al. �2� �triangle symbols� for the same
system. The dashed �horizontal� line in Fig. 4 represents the
spacing between colloids at this volume fraction for a purely
2D system. This spacing is defined as �17�

�s̃�2D �� �

2�A
�3

=� �

3��3
, �9�

where �A is the area fraction of colloids which, for a mono-
layer of colloids, is related to � as �A=1.5�. The dotted
�power-law� line in Fig. 4 is the empirical power law that Liu

et al. found to best fit their data in the range L̃200 and is
given by

�s̃� = 2.058L̃0.37. �10�

The spacing in our simulations follows very closely the
spacings from the experimental work of Liu et al. �2� for
dimensionless slit thicknesses between 10 and 30. However,
the two most interesting features of the data shown in Fig. 4
are the deviation from the empirical power law for slit thick-
ness �10 and the large oscillations in the spacing between
clusters as a function of the slit thickness for extremely thin

slits �L̃�5�. The deviation from the power law is expected
intuitively but the details have not been previously explored.
The large oscillations that occur in the dimensionless spacing
for extremely thin slits are discussed elsewhere �21�.

In discussing the deviation from the power-law behavior,
we are in essence discussing the transition from 3D to 2D
behavior in these systems. For this, it will be useful to relate
the cluster spacing to the average cluster size in the system.
Using simple geometric arguments we can relate the average
cluster size in the thin-slit system to the average cluster spac-
ing as shown in Fig. 5. We define the average cluster size as
�c�=N /Nc, where Nc is the number of clusters in the system.
If we assume that the clusters all have a dimensionless cir-

cular cross sectional area Ãc and are arranged in a triangular
lattice with dimensionless spacing s̃ as shown in the inset of
Fig. 5 then the area fraction of clusters is equal to the area
fraction in a triangular lattice

�A �
NcÃc

Ã
=

1

2
Ãc

�3

4
s̃2

, �11�

where Ã is the dimensionless area of the x-y plane. Using the
definition of the volume fraction

� �
N�

6ÃL̃
�12�

we can first substitute the definition for the average cluster
size ��c�=N /Nc� into Eq. �12� for N and then we can further

substitute for the ratio Nc / Ã from Eq. �11�. Making these two
substitutions into Eq. �12� and rearranging we arrive at the
relationship between the average spacing between clusters as
a function of the average cluster size

�s̃� =� �

3��3

�c�

L̃
�13�

which is plotted as the dashed line in Fig. 5.

When L̃= �c� Eq. �13� reduces to Eq. �9�, the value for the
dimensionless spacing in the 2D system. This means that if
the clusters are simply chains with a single colloid width
spanning the height of the thin slit, the average spacing be-
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FIG. 4. Dimensionless spacing between clusters as a function of
dimensionless slit thickness for �=0.04. The simulation data are

shown as circles �closed circles are integer values of L̃�. The simu-
lations were performed at �=50. The experimental data of Liu et al.
�2� �performed at �=166� are shown as open triangles. The dashed
line is the spacing for a 2D system at the same � given by Eq. �9�
and the dotted line is the empirical power law given by Eq. �10� that
Liu et al. fit to their experimental data.
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FIG. 5. Average spacing between clusters as a function of the
average cluster size in the system. Data for five different volume
fractions are presented. The dashed line is the prediction given by
Eq. �13� and the inset is a schematic top-view of a triangular ar-
rangement of clusters with circular cross sections.
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tween those chains should be equal to �s̃�2D. We indepen-
dently measured the average dimensionless spacing between
clusters and the average cluster size in our simulations for all

� and L̃ and plotted them in Fig. 5. The relationship between
average spacing and the cluster size is very well predicted by
Eq. �13�. In our BD simulations we have access to the prop-
erties of the individual clusters �arrangement and number of
colloids within a cluster� which are not easily accessible in
experimental systems so we can relate changes in the aver-
age spacing between clusters to specific changes in the prop-
erties of the clusters themselves. In the experimental work,
only general shape properties of the clusters have been used
to explain the spacing behavior as a function of slit thickness
�1,2�. The relationship between cluster properties and aver-
age spacing �Eq. �13��. will become important in later dis-
cussions of spacing as a function of slit thickness and vol-
ume fraction.

For instance, the crossover in the behavior of the dimen-
sionless spacing from 2D to 3D as shown in Fig. 4 is directly
related to the more complex clustering occurring as the slit
thickness is increased. This point is illustrated in Fig. 6
where it is evident that the crossover in the spacing between
clusters is directly correlated with the crossover from clusters
which are single chains spanning the height of the thin slit

��c� / L̃=1� to clusters containing several “zipped” chains.
Recall from the introduction that zipped chains are chains of
MR colloids directed in the external field direction which
have aggregated laterally to form larger clusters �12�. For a
dimensionless slit thickness of 4 �Fig. 6, top inset� most of
the clusters are chains containing 4 colloids spanning the

height of the thin slit ��c� / L̃=1�. For a dimensionless slit
thickness of 20 �Fig. 6 bottom inset� there is a bimodal dis-

tribution of cluster types. There is a distinct peak at �c� / L̃

=1 implying that a significant fraction of the clusters are
single chains spanning the height of the thin slit while there
is another, much broader, peak representing clusters consist-
ing of several zipped chains. Again, in Fig. 6 oscillations
occur in the average cluster size as a function of the slit

thickness for L̃�5 which are discussed elsewhere �21�.
There have been several models created to describe both

the spacing between clusters and the cluster sizes themselves
as a function of the slit thickness in these systems �2,6,9�.
The model developed by Grasselli et al. �6� assumes the
clusters are ellipsoids spanning the height of the thin slit and
containing enough colloids so that there is a distinct surface
and bulk for each cluster. This assumption breaks down for

thin slits, where L̃30 since the clusters under such confine-
ment only contain a handfull of colloids and are quite dis-
crete in nature. Similarly the model developed by Liu et al.
�2� assumes cylindrical clusters spanning the height of the
thin slit and again containing distinct surface regions and

bulk regions. Therefore this model also breaks down for L̃
30 since it relies on a continuum description of the clus-
ters. The model developed by Gross �9� considers discrete
colloids arranged in clusters with either body-centered-
tetragonal �bct� or face-centered-cubic �fcc� internal struc-
tures at infinite field strength.

The Gross model calculates the infinite-field lowest-
energy configuration of the colloids in the system for each
slit thickness. Using Eq. �13�, the average cluster size pre-
dicted by the Gross model can be translated into an average
spacing between clusters. The prediction for the average
spacing as a function of slit thickness from the Gross model
is shown in Fig. 7 dotted line along with our simulation
results. The Gross model only makes predictions for integer

values of L̃ and therefore we will concentrate for now on
those slit thicknesses �filled circles in Figs. 4, 6, and 7�. For

L̃�4 the lowest energy state of the system as predicted by

the Gross model consists of clusters with �c�= L̃. Our simu-
lation results match the predictions of the Gross model for

the integer values of L̃ in this range. However, for L̃�5 there
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FIG. 6. Average cluster size as a function of dimensionless slit
thickness for �=0.04. The solid circles represent integer values of

the dimensionless slit thickness L̃. The horizontal dashed line rep-
resents the case where the clusters are single colloid width chains
spanning the slit thickness. The top inset is a histogram of the

distribution of cluster sizes in a thin slit with L̃=4 along with a
top-view image of a characteristic cluster under these conditions.
The bottom inset is a histogram of the distribution of cluster sizes in

a thin slit with L̃=20 along with a top-view image of a character-
istic cluster containing zipped chains.
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FIG. 7. Average dimensionless spacing as a function of dimen-
sionless slit thickness. The dashed line is the spacing predicted by
the Gross model �9�. The closed symbols represent integer values of

L̃.
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are significant deviations between our simulation results �as
well as experimental results �2� shown in Fig. 4� and the
predictions by the Gross model for the lowest energy state.
When we quench our simulations to zero temperature, we
find that the energy in the system is higher than the energy
for the configurations predicted by the Gross model. This
implies that our simulations �and the experimental results
�2�� are indeed in metastable states and do not reach the
ground state configurations.

The discrepancy in power laws was noted by Gross who
offered the following postulate for why experimental obser-
vations of spacing versus slit thickness do not match the
predictions from his theoretical, infinite-field, model. Gross
conjectured that for low volume fractions and high external
field strengths the energy barriers for chain aggregation �zip-
pering� may not be able to be overcome over laboratory time
scales and therefore many of the experimental results for the
thin-slit system were possibly trapped in states that do not
correspond to the ground state at infinite external magnetic
field �9�. This comment has the potential to explain the be-
havior that has been observed experimentally �2� and that we
have observed in our simulations but it has not been elabo-
rated upon in satisfying detail in the literature. We will now
show that the presence of energy barriers can dictate many of
the properties of self-assembled MR fluids in thin slits where

L̃�30.

A. Energy barriers to chain aggregation

Two rigid chains of MR colloids aligned parallel to one

another interact with an energy Ũc�r̃� that has the general
form shown in Fig. 8�a� �14�. The energy curve consists of
two parts �Fig. 8�a�, inset�. The attractive energy well on the
left can exist if the chains have a net attraction once they
have zipped and the approach energy on the right exists for
all parallel chains as they approach one another laterally. For
large r̃ all parallel chains have a repulsive interaction and as
they approach each other that repulsion increases �the maxi-
mum in Fig. 8�a��. If the chains are “uniformly parallel,”
meaning that they are of the same length and are not shifted
vertically with respect to one another, then their interaction is
always repulsive and there is no “zipped” energy well. How-
ever, if the chains are shifted with respect to one another or
are of different lengths then there can be a “zipped” energy
well in their interaction energy. In fact, if the two chains are
small enough such that they can undergo head-to-tail aggre-
gation as illustrated in Fig. 8�b�, then there exists a path for
their aggregation with little or no energy barrier at all. There-
fore, head-to-tail aggregation between individual MR col-
loids or short chains can readily occur in the thin-slit system
as long as it is geometrically feasible. The vertical line on the
left hand side of the energy curve in Fig. 8�a� represents the
hard-sphere excluded volume potential when two chains are
completely aggregated. Increasing the dimensionless exter-
nal magnetic field strength � will cause the maximum and
minimum in Fig. 8�a� to increase in magnitude. The exact

form of Ũc�r̃� can be calculated for any two rigid chains by
simply summing the dipole-dipole interactions between all of
the colloids in the two chains.

The discussion of the energy barriers is relevant to the

results presented in Fig. 7. When L̃�4 the lowest energy
state of the system as predicted by the Gross model is single
colloid width chains spanning the height of the thin slit. As
illustrated in Fig. 8�b�, the head-to-tail aggregation necessary
to form the single chains does not involve any significant
energy barrier and therefore the system is not kinetically lim-

ited from reaching the lowest energy state. For L̃�5 the
lowest energy state of the system as predicted by the Gross
model consists of clusters containing zipped chains. How-
ever, in Fig. 8�a� we illustrate that the zippering of chains
involves energy barriers which have to be overcome in order
to form the larger clusters predicted by the Gross model. As
mentioned previously, this idea has been postulated in the
literature �9,14� but a more quantitative analysis will be pre-
sented here. We have developed a simple model to quantify
the energy barriers to zippering under the extreme confine-
ment studied in this work. Our model attempts to calculate
the potential energy barriers to aggregation for various global

constraints �N, L̃, and �� in order to determine when the
thin-slit system is kinetically limited from reaching the
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FIG. 8. �a� The general form of the interaction energy between
two chains of MR colloids �in arbitrary units� as a function of their
separation distance. The right inset illustrates the two parts of the
energy curve, the approach energy and the zipped energy. The left
inset illustrates the configuration of chains undergoing zippering.
�b� The form of the interaction energy between two short chains
which are able to undergo head-to-tail aggregation. The inset illus-
trates the configuration of the two short chains before �right� and
after �left� head-to-tail aggregation.
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lowest-energy state as predicted by the Gross model. Our
model differs from previous attempts to model the energy
barriers to zippering �14� in that we include the effects of
volume fraction which physically accounts for additional net
attraction forces between chains, due to the surrounding
chains, which must be added to the simple picture presented
in Fig. 8.

B. Model

In the real thin-slit system, we have a fixed number of

colloids N in a box with a fixed height L̃ and a fixed volume
fraction � such that the ratio N /� is also fixed. Recall that
N=Nc�c� so the previous fixed ratio can be written as

Nc�c� /�. Therefore, once N, L̃, and � have been determined,

we can instead fix L̃, Nc, and �c� /�. The ratio �c� / �L̃�� can
be determined and �s̃� can therefore be considered fixed for

given values of Nc, L̃, and �s� /�. We find that fixing Nc, �s̃�,
and L̃ �given N, L̃, and �� leads to more useful conclusions
from our model.

Therefore, consider a periodic one dimensional system of
Nc rigid chains aligned with the external field and interacting

with dimensionless energy Ũc�r̃� �made dimensionless with
kBT�. For simplicity, the chains only interact with their two
nearest neighbors along the line and the entire system is un-
der the global constraints mentioned above such that



i

ni � Nc �14�

and



i

nir̃i � Nc�s̃� , �15�

where ni is the number of pairs of neighboring chains with
separation r̃i. The motivation for this model is illustrated by
the dark circles in the bottom of Fig. 9, where we observe
that the top-down view of the thin-slit system looks similar
to a hexagonal lattice in the ideal case with spacing between
clusters given by �s̃�. The line of dark circles in the bottom of
Fig. 9 represents a lattice vector, and in this simplified pic-
ture can be considered the one-dimensional periodic system

we are modeling �without the effects of the neighboring lat-
tice vectors�. This model is an oversimplified version of the
true structure of the system and is therefore only an approxi-
mation. However, the results derived from such a model pro-
vide significant insight into the behavior of the thin-slit sys-
tem.

The Boltzmann weighted probability of having a set of
separations n= �n0 ,n1 , . . . � in our model is

��n� =
Nc!

n0!n1!¯
e−Ũc

tot
, �16�

where Ũc
tot is defined as

Ũc
tot � 


i

niŨc�r̃i� . �17�

We want to find the set of separations that maximize the
probability given in Eq. �16� under the constraints given by
Eqs. �14� and �15�. Using Lagrange multipliers we write the
maximization function as

�

�ni
�ln� Nc!

�i
ni!
� − 


i

niŨc�r̃i� − �

i

ni − �

i

nir̃i� = 0.

�18�

Solving Eq. �18� using Stirling’s approximation for the
first term on the LHS we are left with the result

ni
* = Ce−�Ũc�r̃i�+�r̃i�, �19�

where the constant C comes from the first Lagrange multi-
plier ��� and is found by applying the first constraint �Eq.
�14��. Substituting in for the constant term we find

ni
* =

Nce
−�Ũc�r̃i�+�r̃i�



i

e−�Ũc�r̃i�+�r̃i�
. �20�

Applying the second constraint and substituting Eq. �13� for
�s̃� we can solve for the Lagrange multiplier � with

� r̃e−�Ũc�r̃�+�r̃�dr̃

� e−�Ũc�r̃�+�r̃�dr̃

=� �

3��3

�c�

L̃
, �21�

where we have replaced the sums over i with integrals over
the separation distance r̃. Equation �21� can be solved nu-

merically for � once we specify Ũc�r̃�, �, �c�, and L̃. More
importantly, in this model the probability density that two
chains will be separated by a distance r̃ is given by

P�r̃� =
e−�Ũc�r̃�+�r̃�

� e−�Ũc�r̃�+�r̃�dr̃

�22�

meaning that the dimensionless potential energy between

two neighboring chains is equivalent to Ũc�r̃�+�r̃.

� �� �

�� �

FIG. 9. Top: A side view of the one-dimensional periodic line
where the neighbor pairs of clusters are all identical. Bottom: Top-
down view of a hexagonal arrangement of chains in a thin slit,
where the lattice spacing is �s̃�. The model considers the highlighted
lattice vector �considered to be a one-dimensional periodic line�.
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Again, the general form of the interaction between two
rigid chains undergoing a zippering aggregation is shown in

Fig. 8�a�. Recall that the specific form of Ũc�r̃� depends upon
the two types of chains and �. If we take the part of the

function Ũc�r̃� that lies to the right of the maximum, we can

calculate � for a specific system given �, �c�, and L̃ using
Eq. �21�. Furthermore, we can then use � to calculate the

potential energy between two neighboring chains �Ũc�r̃�
+�r̃�. An example of the potential energy between a rigid
chain of 10 MR colloids and rigid chains of different lengths

�Nsmall� in a thin slit with L̃=10 �such that the large chain is
strictly confined by the top and bottom of the thin slit� is
shown in Fig. 10�a�. The volume fraction of the MR fluid in
this case was taken to be 0.04 and the dimensionless field
strength was �=50. The two interacting chains were as-
sumed to be aligned in the vertical direction along the cen-
terline of the thin slit but shifted such that they can undergo
a zippering aggregation as illustrated in Fig. 10�b� �insets�.
The curves in Fig. 10�a� illustrate the effect that � has upon
the interaction between two chains in this model. Physically,
� is the parameter that takes into account the presence of

other chains in the system. For instance, if the two test chains
in Fig. 10�a� move far away from one another, the energy

Ũc�r̃�+�r̃ actually increases because they are moving closer
to the other chains in the system �i.e., they increase the total
energy in the system�. Therefore, the value of � will depend
upon the volume fraction in the system and the types of
chains for which the interaction energy is being calculated.

The idea of a volume fraction dependence upon the inter-
action between chains has been speculated before by Mohebi
et al. �14�. In their work, the authors define a separation
distance between chains called an escape distance below
which two chains will zipper and above which the two
chains will repel one another. They allude to the fact that as
the volume fraction is increased, chains will be in closer
proximity to one another and therefore more likely to enter
the escape distance of their neighboring chains. However,
this effect has not been quantified in the literature and here
we present a quantitative analysis of the volume fraction de-
pendence.

The curves in Fig. 10�a� show a local energy minimum
near a dimensionless separation of �4 which increases in
magnitude as Nsmall is increased. In order for two chains to
zipper �have a dimensionless separation distance �1� they
must pass through the transition state in their interaction en-
ergy �the maxima near r̃�1.5 in Fig. 10�a�� before reaching
the aggregated state. The difference between the local energy
minimum and the transition state energy is the energy barrier

to aggregation Ũbar. In Fig. 10�a� the energy of the transition
state as a function of Nsmall is increasing faster than the local
energy minimum and therefore the energy barrier to aggre-

gation increases with Nsmall. When Ũbar�1 two chains can
zipper relatively easily by diffusion. In Fig. 10�b� we see that
for a small chain length Nsmall�6 the dimensionless energy
barrier to aggregation is 1 implying that the two chains can
easily undergo the zippering aggregation. This means that for

a given L̃, �, and � there can be a critical small chain length
�Nsmall

* � such that for any chain smaller than Nsmall
* it is ener-

getically likely that it will zipper with a chain of length

Nbig= L̃ that is exactly confined between the parallel planes
of the thin-slit.

In Fig. 10�c� we show the dimensionless potential energy
between a chain of length 10 and a chain of length 7 at
several different volume fractions in a dimensionless slit
thickness of 10 with �=50. This illustrates the effect that the
volume fraction has upon the interaction between neighbor-
ing chains since increasing the volume fraction causes the
energy barrier to aggregation to decrease. By increasing the
volume fraction, the chains are forced to be closer together.
This closer proximity means that they have less freedom to
diffuse away from their neighbors and therefore � will be
larger. The larger value of � causes the local minima in Fig.
10�c� to increase much faster than the local maximum �tran-
sition state energy� and therefore the energy barrier to aggre-
gation is reduced with increased volume fraction. As a result,
the ability for two chains to undergo a zippering aggregation
depends heavily upon the volume fraction in the system as
shown in Fig. 10�d�, where the energy barrier shrinks signifi-
cantly as � is increased.
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FIG. 10. �a� The dimensionless potential energy between neigh-
boring chains of length 10 and Nsmall for six different small chain
lengths �Nsmall=9, 8, 7, 6, 5, and 4 from top to bottom� at a dimen-
sionless field strength of �=50 in a dimensionless slit thickness of

L̃=10. The potential energy barrier to aggregation is shown for
Nsmall=9. �b� The dimensionless energy barrier to aggregation as a
function of Nsmall at a volume fraction of 0.04 and a dimensionless
field strength of 50. Insets are illustrations of the systems presented
in this figure before aggregation �left� and after aggregation �right�
for Nsmall=9, 7, and 4 from top to bottom. �c� The dimensionless
potential energy between neighboring chains of length 10 and 7 for
five different volume fractions �0.07, 0.05, 0.04, 0.03, and 0.01
from top to bottom� at a dimensionless field strength of �=50 in a

dimensionless slit thickness of L̃=10. The potential energy barrier
to aggregation is shown for �=0.01. �d� The dimensionless energy
barrier to aggregation as a function of volume fraction for a chain of
length 10 and a chain of length 7. Inset is an illustration of the
system presented in this figure before aggregation �left� and after
aggregation �right�.
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We are interested in knowing when zippering aggregation
barriers are small as a function of the slit thickness and there-
fore, we applied our model to the following problem. For a
fixed slit thickness, we calculated the energy barriers for the
zippering of one rigid chain which spanned the height of the

thin slit �Nbig= L̃� and another rigid chain with a length 1

�Nsmall� L̃−1. The vertical position of the small chain was
determined as

if Nbig − Nsmall is even: z̃small =
L̃

2
− 0.5,

if Nbig − Nsmall is odd: z̃small =
L̃

2
, �23�

where z̃small is defined as

z̃small �
1

Nsmall



i

Nsmall

z̃i. �24�

In Fig. 11 we show for several different � the value of the
critical small-chain length Nsmall

* , where the dimensionless
aggregation energy barrier to zippering becomes �1 as a

function of L̃ �or Nbig�. For any slit-thickness L̃ and volume
fraction � a chain spanning the height of the thin slit can
easily zipper with any other chain of length Nsmall�Nsmall

* .
Scaling the lengths in Fig. 11 by the characteristic dimen-

sionless length scale �s̃�2D causes all of the critical small-
chain length curves to collapse onto a single master curve as
shown in Fig. 12. This is a very important result as it indi-
cates that there is a self-similar behavior of the thin-slit sys-
tem when the slit thickness is scaled by ��. Additionally, for
our simple model, this result indicates that zippering aggre-

gation begins to occur when L̃ / �s̃�2D�1.2. Consequently, if
the lowest energy state of the thin-slit system contains clus-
ters with zipped chains, then that state may not be able to be
achieved if the energy barriers to zippering are too high. We
expect that the dimensionless slit-thickness where the system
will depart from 2D behavior should be affected by the en-
ergy barriers to zippering and from our model we find that
the departure slit thickness will be proportional to �� �as
predicted by the collapse in Fig. 12�.

In Fig. 13 we present the dimensionless spacing between
clusters as a function of the dimensionless slit thickness for
integer slit thicknesses only. In Fig. 13�a�, the departure point
of the cluster spacing from 2D behavior depends upon �.
Scaling both the dimensionless slit thickness and the dimen-
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FIG. 11. Critical small-chain length as a function of dimension-
less slit-thickness for five different volume fractions at a dimension-
less field strength of �=50.
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FIG. 12. Scaled critical small-chain length as a function of di-
mensionless slit thickness scaled by the 2D spacing for five differ-
ent volume fractions at a dimensionless field strength of �=50.
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FIG. 13. �a� The average dimensionless spacing between clusters �scaled by the 2D spacing� for five different volume fractions as a

function of the dimensionless slit thickness for integer values of L̃ only. �b� The average dimensionless spacing between clusters �scaled by
the 2D spacing� as a function of the dimensionless slit thickness �also scaled by the 2D spacing� for five different volume fractions. The
horizontal dashed lines are the 2D spacing. The vertical dotted line segment in �b� denotes the point at which our model predicts the
dimensionless spacing will deviate from 2D behavior. The inset in �b� shows the average dimensionless spacing between clusters �scaled by
the 2D spacing� as a function of the dimensionless slit thickness scaled as predicted by the Gross model �9�.
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sionless spacing between clusters by the 2D spacing ��s̃�2D�
in Fig. 13�b� we show that the dimensionless slit thickness,
where the system departs from 2D behavior is indeed pro-
portional to �� and occurs when L̃ / �s̃�2D�1.2 �the vertical
dotted line segment in Fig. 13�b��. To further emphasize the
importance of this scaling in volume fraction we show in the
inset of Fig. 13�b� the collapse of the cluster-spacing curves
if we take the � scaling predicted by the Gross model �9�. In
Fig. 7 the lowest-energy model shows an abrupt departure

from 2D behavior at L̃�4 for �=0.04. Based on the lowest-
energy model, the departure point from 2D behavior should
be proportional to �0.122, however, it is shown by the poor
collapse in the inset of Fig. 13�b� that the departure point
does not depend solely upon the lowest energy state but that
energy barriers to aggregation are of great importance.

Not only does the model presented here predict the depar-
ture from 2D behavior but it also appears in Fig. 13�b� to
explain the behavior of the system after the departure as
well. Figure 12 shows the self-similar nature of the aggrega-
tion of chains in a simple model system. For the thin-slit

system, consider a scaled slit thickness of L̃ / �s̃�2D in the
range where zippering is energetically feasible �greater than
1.2�. At any volume fraction, the scaled lengths of the chains

that can zip with a chain of length L̃ are the same. This
means that the average cluster size will also scale with �s̃�2D

and therefore the spacing between clusters will not have a
volume fraction dependence. Thus, all of the scaled spacing
curves in Fig. 13�b� collapse for the range of slit-thicknesses
studied here.

The volume fraction dependence is further illustrated in
Fig. 14, where we show top-down views of the clusters in a
dimensionless slit thickness of 10 at four different volume

fractions. The distribution of cluster sizes for each of the four
cases is also presented in Fig. 14 showing the increased frac-
tion of zipped clusters as the volume fraction is increased.
The left most peak in the cluster distributions is for a cluster
size of 10 and the broader peak that appears in the distribu-
tions for larger volume fractions is for clusters of zipped
chains.

C. Time-scales for zippering

Since zippering is the important mechanism for determin-
ing the spacing of clusters we estimate the time scales asso-
ciated with the zippering of two chains for a fixed volume
fraction and slit thickness. If we consider a 2D system of
equal numbers of chains of types 1 and 2, then we can ana-
lyze the aggregation rate of these two types of chains using
ideas from colloid stability theory �22�. Consider a stationary
chain of type 2 with chains of type 1 diffusing around it in
two dimensions. We will consider the chains to be aligned
along the centerline of the thin-slit in the z direction but
shifted such that they can zipper, as described previously.
This configuration results in the maximum attractive interac-
tion �other than head-to-tail� between two rigid chains con-
fined in a thin slit. If we consider the flux of chains of type 1
in the plane perpendicular to the axes of the chains we can
write it as

J1�r� = − D1�dn1

dr
+ n1

d�̃12�r�
dr

� , �25�

where J1 is the flux, D1 is the diffusion coefficient of chains
of type 1, n1 is the area density �number per unit area� of

chains of type 1, and �̃12�r� is the potential energy between
a chain of type 1 and a chain of type 2 made dimensionless
with kBT. Therefore, the rate of particle flow through a circle
of radius r is given by

z1 = − 2�rD1�dn1

dr
+ n1

d�̃12�r�
dr

� , �26�

where we consider z1 to be constant. Defining a new variable

y = n1e�̃12�r� �27�

we can write the differential of y as

dy = �dn1

dr
+ n1

d�̃12�r�
dr

�e�̃12�r�dr =
− z1

2�D1
e�̃12�r�dr

r
.

�28�

We define a distance R where the interchain potential

��̃12�r�� goes to zero and the area density of chains of type 1
approaches the average area density for those chains �n1

avg�.
Using those limits, the integrated form of Eq. �28� is written
as

n1�r� = e−�̃12�r��n1
avg +

z1

2�D1
�

r

R

e�̃12�r�dr

r � . �29�

The area density of chains of type 1 goes to zero at con-
tact between the two chains denoted by r=R0. This results in
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FIG. 14. Top-down views of the thin-slit system for four differ-
ent volume fractions in a dimensionless slit thickness of 10 at a
dimensionless field strength of 50. The cluster-size distributions are
shown along the center for volume fractions of 0.01, 0.03, 0.05, and
0.07 �from top to bottom�. The fraction of clusters containing
zipped chains increases as the volume fraction is increased.
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the rearrangement of Eq. �29� to find the rate of collision
between a chain of type 1 and a stationary chain of type 2 to
be

z1 =
− 2�D1n1

avg

�
R0

R

e�̃12�r�dr

r

. �30�

When the chain of type 2 is also diffusing, the collision rate
between chains of type 1 and 2 is given by �22�

z12 =
− 2�D12n1

avg

�
R0

R

e�̃12�r�dr

r

, �31�

where D12 is given by D1+D2.
The rate of disappearance of chains of type 1 in this

model system due to collisions between chains of type 1 and
2 is therefore given by

dn1
avg

dt
= − �n1

avgn2
avg, �32�

where � is defined as

� �
2�D12

�
R0

R

e�̃12�r�dr

r

�33�

and we have multiplied Eq. �31� by the average area density
of chains of type 2 �n2

avg�, since only a single chain of type 2
was used as a reference chain in solving the diffusive colli-
sions with chains of type 1. If there is an equal area density
of chains of type 1 and 2 �n1

avg=n2
avg=n� then we can simplify

the rate of disappearance of chains given in Eq. �32� to be

dn

dt
= −

�

2
n2, �34�

where we have dropped the subscripts as we are now con-
sidering the area density of all chains �still excluding zipped
clusters� and the factor of �1/2� is introduced to avoid count-
ing the same chain twice in the total collision rate �collision
of chain i with chain j accounts also for collision of chain j
with chain i� �22�.

Integrating Eq. �34� gives

n�t�
n0

= �1 +
t

tc
�−1

, �35�

where n0 is the initial area density of chains �n�t=0�
=n1

avg�t=0�=n2
avg�t=0�� and the time constant tc is defined as

tc �
2

�n0
=

2�
R0

R

e�̃12�r�dr

r

2�n0�D1 + D2�
. �36�

In dimensionless form the time constant is given by

t̃c =

�c��
R̃0

R̃
e�̃12�r̃�dr̃

r̃

6�L̃� 1

N1
+

1

N2
� , �37�

where N1 and N2 are the number of colloids in a single chain
of type 1 and 2, respectively, � is the volume fraction of
colloids in the system, and time is again made dimensionless
as t̃= t�kBT� / �	d2�. Equation �37� assumes Stokes diffusion
and that the drag coefficient on a chain is simply propor-
tional to the number of colloids in that chain.

Taking the interchain potentials from the one-dimensional

model ��̃12�r̃�= Ũc�r̃�+�r̃� and choosing the length scale R̃
to be the location of the local minimum in that potential, we
can solve Eq. �37� for different chain lengths and volume
fractions. In Fig. 15 we show the solution to Eq. �37� �solid
line� as a function of � for two different systems, along with
the mean times for aggregation from simple BD simulations.
The simple BD simulations consisted of eight chains of MR
colloids, seven of which spanned the height of the thin slit
and the eighth containing three fewer colloids. The chains
were started on a hexagonal lattice, oriented in the field di-
rection �z direction�, and confined between hard walls inside
a simulation box with a dimensionless height equal to the
longer chain length. The simulation box had periodic bound-
ary conditions in the other two cartesian directions and the
dimensionless lengths of the periodic dimensions were equal
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FIG. 15. Mean dimensionless aggregation time, at a dimension-
less field strength of 50, as a function of � for �a� a chain of 2 MR
colloids to undergo a zippering aggregation with a chain of 5 MR
colloids in a dimensionless slit thickness of 5 and �b� a chain of 7
MR colloids to undergo a zippering aggregation with a chain of 10
MR colloids in a dimensionless slit thickness of 10. The solid lines
are the theoretical prediction given by Eq. �37� and the circles are
the results from BD simulations.
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and determined by the volume fraction. The system was
simulated using our BD algorithm until the small chain ag-
gregated with one of the larger chains. This procedure was
repeated 100 times and the mean time for aggregation was
thus calculated.

As shown in Fig. 15, our simple model for the energy
between chains as a function of chain length, field strength,
and volume fraction is able to qualitatively predict the fact
that there are orders of magnitude increases in the timescales
for zippering as the volume fraction is decreased. For the
case presented in Fig. 15�b� �chains of height 7 and 10�, the
energy barriers to aggregation are given in Fig. 10�d�. For the
higher volume fraction cases the chains in the simple simu-
lations zip together much faster than predicted by the model
due to the fluctuations of the colloids within the chains
�11,23�. When the colloids in a chain are able to fluctuate
then the barrier to the zippering aggregation can be reduced
and therefore the time for aggregation is also reduced. In Fig.
15�a�, the chains are much shorter and the fluctuations of the
colloids within the chain are smaller. Since the chains in this
case are more rigid, their aggregation behavior is better pre-
dicted by our simple model. In both cases however, the ti-
mescales for aggregation found in our simple BD simula-
tions show orders of magnitude increases as the volume
fraction decreases �and therefore the energy barrier to aggre-
gation increases�. In fact, for the case of �=0.01 we were
not able to observe even a single aggregation event for
chains of length 7 and 10 in our simple BD simulations when
simulating out to dimensionless times of 150 000.

The dimensionless timescale for aggregation from our
model for a chain of length 7 to zipper with a chain of length
10 at �=0.03 and �=50 is t̃c�410. The dimensionless en-
ergy barrier to aggregation in this case is �4. For 1 �m
colloids in water, this translates to a real time of �15.6 min.
By comparison, if the short chain length were 8 instead of 7
then the dimensionless energy barrier would be �7.8 and the
dimensionless time scale for aggregation would be t̃c
�13 783 or 8.8 h.

IV. DISCUSSION AND SUMMARY

The results presented in this work illuminate several im-
portant features of self-assembly of dilute MR fluids con-
fined in extremely thin-slits. Most notably, we have studied
the transition from truly 2D behavior to 3D behavior of the
structure in the system, manifested in the spacing between
clusters. This crossover in the structural properties has not
been addressed in previous work. When we extrapolate the
models previously developed down to the extremely small
slit thicknesses studied in this work we find that a new un-
derstanding is needed in order to explain the trends that we
observe. We have introduced a simple model for the energy
of interaction between chains of MR colloids taking into
account the volume fraction of the MR fluid. This model
quantitatively addresses the effect of volume fraction upon
the energy barriers to aggregation for dilute MR fluids in thin
slits. We have used the model to predict the transition point
from 2D behavior to 3D behavior in the thin-slit system. In
particular, the transition is correlated with the ability of the

chains to begin aggregating laterally into larger columnlike
clusters. Our model is able to predict, as a function of vol-
ume fraction, at which dimensionless slit thickness this ag-
gregation becomes kinetically feasible. Additionally, in
agreement with previous work �2� we find that the 3D be-
havior of the spacing between clusters follows a power law.
Furthermore, our model explains the volume fraction depen-

dence of the self-assembled structures in thin slits when L̃
�30. This represents a quantitative analysis of the transition
from 2D to 3D behavior for dilute MR fluids self-assembling
in the thin-slit system.

We have attempted to use the model for the energy barri-
ers to aggregation in order to predict the timescales for zip-
pering of chains in the thin-slit system. We found qualitative
agreement between the predicted time scales and our BD
simulations for this aggregation process in that the time
scales increase by orders of magnitude as the volume frac-
tion is decreased. During the process of slowly ramping the
external field, many short chains will first form with different
lengths �Fig. 1� and in order to reach the lowest energy state
of zipped clusters, those short chains must aggregate later-
ally. The time scale of this process will be dominated by the
slowest aggregation step which, as we have shown, can be
prohibitively long. This point supports the contention that
real experimental studies of self-assembly in thin slits can be
kinetically trapped in metastable states that only change over
extremely long time scales.

As the length scales in microfluidic devices utilizing self-
assembled MR fluids shrink, new scalings and models are
needed to describe the properties of both the self-assembly
and the structures that form in these devices. The previous
work on self-assembly of MR fluids in thin slits has not
addressed this increasingly important range of phase space
where the slits are extremely thin and the MR fluid is dilute.
We have shown that the self-assembled structures in ex-
tremely thin slits undergo a crossover in their properties from
a purely 2D system to the 3D behavior observed previously
�2,6,9�. We have shown that this crossover is due to the in-
creased “clustering” of the MR fluid colloids. The crossover
is strongly influenced by the energy barriers associated with
the zippering aggregation of chains of MR colloids under the
extreme confinement induced by the thin slit. It has been
postulated that the energetics of the zippering aggregation
are important in the self-assembly of MR fluids under con-
finement in a thin slit but this point has not been quantita-
tively analyzed in the literature �9,14�. We introduced a
model for the energetics of the zippering aggregation and
showed how the crossover in behavior from 2D to 3D de-
pends upon the volume fraction of the MR fluid. Using the
model for aggregation, we were able to predict the time

scales for two chains to aggregate given �, L̃, and �. This
result leads to the observation that, in certain instances, it is
unfeasible for aggregation of chains to occur even though
thermodynamics predicts that the aggregated state is the
lowest-energy state �9�.

Energy barriers appear in many systems in nature and are
often important in determining whether a system can reach
its lowest energy state. In thin slits the energy barriers to
“zippering” have been shown to be quite important in deter-
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mining the structure of dilute MR fluids under the applica-
tion of a uniform magnetic field for dimensionless slit-

thicknesses L̃�30. We note that they are probably also very
important for determining the structure of MR fluids in much
thicker slits as evidenced by the discrepancy between results
presented in the theoretical and experimental literature
�1,2,6,7,9,11�. The energy barriers in these thicker slits have
not, however, been quantitatively analyzed in the literature
due to the much larger complexity involved. The high degree
of clustering, including cluster-cluster interactions which

were not investigated here, and the many permutations of
possible intra-cluster arrangements of colloids indicate that
thicker slits will pose an incredibly challenging problem to
be faced in the future.
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