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A multiscale model for the diagenesis of carbonate rocks is proposed. It captures important pore scale
characteristics of carbonate rocks: wide range of length scales in the pore diameters; large variability in the
permeability; and strong dependence of the geometrical and transport parameters on the resolution. A pore
scale microstructure of an oolithic dolostone with generic diagenetic features is successfully generated. The
continuum representation of a reconstructed cubic sample of sidelength 2 mm contains roughly 42�106

crystallites and pore diameters varying over many decades. Petrophysical parameters are computed on dis-
cretized samples of sizes up to 10003. The model can be easily adapted to represent the multiscale microstruc-
ture of a wide variety of carbonate rocks.

DOI: 10.1103/PhysRevE.75.061303 PACS number�s�: 81.05.Rm, 02.70.�c, 47.56.�r, 91.60.Np

A complex multiscale problem of considerable practical
importance is the physics of carbonate rocks that contain
nearly half of the world’s current hydrocarbon reserves.
Model reconstruction of the three-dimensional �3D� pore
scale microstructure of carbonates is crucial for understand-
ing the physics of flow processes �1,2�. Although a number
of pore scale models and 3D reconstruction methods are
available for sandstones �2–5�, developing a similar model
for carbonates �6,7� has been difficult.

In carbonate rocks, contrary to sandstones �8�, permeabil-
ity can vary by 2 to 3 decades at fixed porosity �9,10�. Pore
diameters range over many decades in length scales and the
carbonate textures show a strongly correlated disorder �11�.
Geometrical and petrophysical parameters of carbonates de-
pend strongly on the resolution. Calcite-dolomite crystallites
may vary in size from 10−7 to 10−3 m. A reasonable discreti-
zation requires a voxel size of at least 10−8 m to resolve the
smallest of the crystallites. For a cubic sample of length
10−2 m, the discretized pore space representation requires
roughly 1018 digits, i.e., nearly 106 terabytes of storage
space. Thus traditional discretization fails, and a novel mod-
eling approach is needed to represent the microstructure of
carbonates.

We propose a stochastic geometrical model for the diage-
netic processes in carbonate rocks. It reproduces both the
complex pore scale geometry and the basic petrophysical
properties. It is a continuum model that represents the pore
scale microstructure at arbitrary resolution. The carbonate
rock is viewed as a random but correlated sequence of points
decorated with crystallites. The model is defined as follows.

a. Continuum representation. Consider a sample occupy-
ing a bounded region S�R3. The state space of the con-
tinuum model with N crystallites is the set

�N = �S � �Rmin,Rmax� � E � �1,2, . . . ,g��N �1�

of all sequences �= ��0 ,�1 , . . . ,�N���N of length N where
E= �x�R3 : �x�=1� is the unit sphere, and �Rmin,Rmax��R1.
An element

�i = �xi,Ri,ai,Ti� �2�

of the sequence represents a dolomite or carbonate crystallite
at spatial position xi�S with size Ri, orientation ai, and type
Ti. A crystallite is a convex set such as a sphere or polyhe-
dron, etc. Every sequence � with xi�S defines a model. The
model is further specified by a probability distribution Prob
on the space � of sequences.

b. Primordial filter function. Assume that a primordial
depositional texture is given as a grayscale image G and
represented mathematically as a bounded, but not necessarily
continuous function G :S→ �0,1�. This input function G�x�
is generated from the image analysis of the original sample.
It serves to correlate the location and properties of the de-
posited crystallites with that of the original depositional tex-
ture through the functions:

Ri = R„G�xi�…; ai = A„G�xi�…; Ti = T„G�xi�… , �3�

where R : �0,1�→ �Rmin,Rmax�� �0�, A : �0,1�→E, and
T : �0,1�→ �1,2 , . . . ,g�. These correlations are specified by
quantitative image analysis and measurements done on 2D
sections of the original sample.

c. Deposition of points. Binomial point processes are used
as the basic trial process in which points xi with associated
radius Ri are chosen randomly with uniform distribution in
S�R3 subject to overlap constraints. More precisely, we set
Prob��c�=0 for

�c = �� � �:∃i, j,o��i,� j� � �0,�i�� , �4�

where o��i ,� j�=
Ri+Rj−�xi−x j�
Ri+Rj−�Ri−Rj�

is the measure of overlap be-
tween the grains �i and � j. The compaction parameter
�i=�(G�xi�), with � : �0,1�→ ��min ,�max� and 0��min ,�max

�1. Matrix connectivity is ensured because �i	0 leads to
finite overlap between each deposited grain with an existing
one. Porosity and pore space connectivity depends on the
density of points deposited in S�R3 for a given grain size
distribution.
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d. Vuggy porosity. The probability distribution on the
space of sequences vanishes, Prob��v�=0, for

�v = �� � �: ∃ 0 
 i 
 N,R„G�xi�… = 0� . �5�

In vuggy pore regions, G�x�=0 and in this way vugginess is
controlled by the primordial depositional texture.

e. Grain decoration. At each deposited point xi, a crystal-
lite is attached by placing a geometric object of type Ti and
orientation ai according to the depositional texture �Eq. �3��.
Equation �4� only ensures overlap between associated spheri-
cal grains. For other types of grains, we define a grain size
di�Ri� such that the grain overlap and the matrix connectivity
is retained. The sample is fully characterized by a list of N
quadruples �xi ,di ,ai ,Ti� of deposited points, associated grain
sizes, orientations, and types.

The model described above can be used to reconstruct the
pore scale microstructure of a wide variety of carbonate
rocks. However, the computational implementation of the
model depends on the geometry and textures present and,
therefore, may vary from sample to sample. In this paper we
focus on oolithic dolostones and the feasibility of the micro-
scopic modeling for this type of carbonate rock. We present
in detail the reconstruction of one sample that contains
vuggy porosity and two distinct crystallite size distributions
within ellipsoidal primordial facies �Fig. 1�. The inner cores
of ooids contain dolomitized crystallites with radii in the
range of 1–10 �m and the thin isopachous layers �around
ooids� contain dolomite cement grains with radii in the range
of 5−25 �m. The sample features diagenetic replacive dolo-
mitization, isopachous or intergranular dolomitization, and
the presence of dissolution vugs. The matrix space �Fig. 1�
shows a large number of smaller grains around bigger grains
and the porosity is roughly in the range of 0.25–0.3.

Consider a cubic sample S of sidelength �=100 in dimen-
sionless units. The unit of length of the primordial geometry
is 20 �m, so � correpsonds to 2 mm. The dimensionless
crystallite size intervals in the ooids and isopachous layer are
�0.05, 0.5� and �0.25, 1.25�, respectively. The model requires
millions of grains to specify the pore scale microstructure
of this small sample. With each added point, the CPU time
needed for checking the overlap rule �4� grows. It is compu-
tationally efficient to divide S�R3 into smaller nonover-
lapping cubic cells U each of sidelength l i.e., S
=U1�U2�U3¯ �Um, where m= �� / l�3.

Points are added to each cell satisfying the overlap rule
�4� for all the existing points in the cell and the neighboring
cells. For the jth deposited point in each cell U,

Rj = Rmin + �1 −
j

n
	�
R , �6�

where 
R=Rmax−Rmin and � is a uniform random number in
�0, 1�. This ensures a uniform but random distribution of Ri
in �Rmin ,Rmax� � with Rmax� decreasing with each deposit. This
achieves the hierarchical filling of space by many smaller
grains around bigger grains as in the original sample. In each
cell n=�l3 / � 4

3�Rmax
3 � number of points are deposited. The

point density � is adjusted so that the porosity of the grain
decorated realization matches the target porosity. This is

measured by discretizing many such trial realizations at high
resolution �see below�. Simultaneously, the pore space con-
nectivity is verified using the Hoshen-Kopelman algorithm
�12�.

The primordial filter function G�x� is constructed from a
sedimentation of polydisperse oblate elliptical ooids in
S�R3 �13�. A small fraction of these were removed to gen-
erate vuggy pores and the remaining ellipsoids were enlarged
by 20% of their size to reduce the interellipsoid pore space.
The kth oblate spheroid represented by �rk ,sk ,ek� is centered
at rk= �xk ,yk ,zk� with semiaxes lengths ak=eksk, bk=eksk, and
ck=sk. The grayscale primordial filter function is defined as

G�x� = 
1 − �dk/sk� if any dk � sk

0 otherwise,
� �7�

where dk= ��x1−xk�2 /ek
2+ �x2−yk�2 /ek

2+ �x3−zk�2�1/2.
We first deposit N1 points corresponding to the isopac-

hous layers by choosing l=5, �i=�(G�xi�)=0.6, �=40,

(a)

(b)

FIG. 1. �Color online� Top: 2D section of original oolithic
dolostone ��=0.6 mm�. Bottom: Reconstructed sample ��=2 mm�.
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Rmin=0.25, and Rmax=1.25. Points xi are added to S with
Prob��1�=0, for

�1 = �� � �: ∃ 0 
 i 
 N,G�xi� � �0,0.125�� . �8�

The isopachous layers contain dolomite crystallites. First
these N1 points are decorated with equilateral rhombohedra.
Each rhombohedron Gi �before rotation� centered at xi is the
intersection of three pairs of parallel planes each separated
by a distance di and tilted by an angle �=−15° about the
three coordinate axes, respectively. The equations of these
six planes are

n j · x ±
di

2
= 0, j = 1,2,3, �9�

where n1= �cos � ,0 ,−sin ��, n2= �−sin � , cos � ,0�,
n3= �0,−sin � , cos ��, and di is chosen such that the volume
of Gi equals the volume of the associated excluded volume
sphere. Sufficiently large overlap guarantees matrix connec-
tivity. The orientation ai of a crystallite Gi is represented by
the unit quaternion

qi = A„G�xi�… = Qi3Qi2Qi1, �10�

where the unit quaternion Qij represents a rotation of � j
about the vector e j. So, qi defines a sequence of three rota-
tions of �1, �2, and �3 about the coordinate axes e1
= �1,0 ,0�, e2= �0,1 ,0�, and e3= �0,0 ,1�, respectively. For
each Gi, the origin is fixed at xi and � j =−20� deg, where �
is a uniform random number in �0,1�.

Points corresponding to the ooids fillings are then added
by choosing l=1.5, �i=�(G�xi�)=0.65, �=40, Rmin=0.05,
and Rmax=0.5. Points at xi are added to S with Prob��2�=0,
for

�2 = �� � �: ∃ 0 
 i 
 N, G�xi� � 0.1� �11�

and only if xi�M1 where M1=G1�G2¯ �GN1
. These N2

points are also decorated with rhombohedra and added to the
list. To check if xi�M1, or in general, to check if a point
p�Gi, we first translate the coordinate axes to the center of
the grain Gi, followed by an inverse rotation given by qi

−1,

p� = p − xi; pr� = qi
−1p��qi

−1�*, �12�

where �·�* is quaternion conjugation. The point p�Gi if

�n j · pr� +
di

2

�n j · pr� −

di

2

 � 0, j = 1,2,3. �13�

G�x�=0 holds in the interellipsoid regions and in
the vuggy pores. The matrix space M consists of the
N=N1+N2�4.1�107 deposited rhombohedral crystallites.
One face of the reconstructed three-dimensional oolithic do-
lostone is shown in Fig. 1.

The above model is defined in the continuum and can be
discretized at arbitrary resolutions. The cubic sample is sub-
divided into a grid of cubic voxels of sidelength a. The side-
length of the sample is M =� /a voxels. In our discretization,
a voxel located at position p= �p1a , p2a , p3a� is chosen as

matrix if all of the following nine points fall within a grain
Gi, i=1,2 , . . . ,N.

p j = p +
a

2
�e1 + e2 + e3� +

a

4
t j; j = 0,1, . . . ,8, �14�

where t0= �0,0 ,0�, t1= �1,1 ,1�, t2= �−1,−1,−1�,
t3= �1,1 ,−1�, t4= �−1,−1,1�, t5= �1,−1,1�, t6= �−1,1 ,−1�,
t7= �−1,1 ,1�, and t8= �1,−1,−1�. If they all fall in pore
space, the voxel is resolved as pore, otherwise the voxel
status is undecided at the current resolution. Although alter-
nate and more accurate discretization methods can be cho-
sen, the above rule is computationally simple and sufficient
for the following analysis.

Porosity and petrophysical parameters of carbonates show
strong dependence on resolution. Four discretizations of the
reconstructed sample are shown in Fig. 2. The fraction of
undecided voxels decreases with higher resolution and as a
result, porosity increases significantly with higher resolution
as seen in real carbonates. The fraction of resolved matrix,
pore, and undecided voxels for different resolutions are plot-
ted in Fig. 3. A rough estimate of the porosity for the fully
resolved sample is obtained from the extrapolation to a=0
and is close to the targeted value 0.25–0.3. The resolved pore
scale microstructure exhibits the intergranular and intra-
granular porosity of the oolithic structure. A systematic
analysis of the scale and resolution dependence has been
carried out by measuring petrophysical parameters �14� on
the digitized samples. The undecided voxels are alternately
converted to matrix �solid� and pore �void� voxel for this
analysis.

For permeability, the steady state Stokes equation: ��2v
=�p, � ·v=0 is solved using a lattice Boltzmann method
with boundary condition v=0 on the solid walls. Effective
permeability kx computed by applying a pressure difference
of 
p along the x-axes and using Darcy’s law is plotted in
Fig. 3 as a function of resolutions. The scattered symbols
indicate the permeability computed from nonoverlapping
subsamples extracted from the full sample and show the
large variability within the same sample.

For elastic moduli, the basic equations of elastostatics:
� ·�=0, �=C :� are solved by a finite element method using
an energy representation of the linear elastic equations with
periodic boundary conditions on the faces. The magnitude of
the shear moduli and its dependence on porosity plotted in
Fig. 4 match well with the findings on 3D tomographic mod-
els of similar carbonate rocks �7�.

For computing the formation factor, electrostatic equa-
tions � ·J=0, J=������ are solved numerically by a finite
difference method with boundary condition �� ·n=0 on the
solid walls. The directional conductivities �i are computed
with the potential gradient applied across the medium and no
flow boundary condition laterally. The anisotropy in Fig. 4 is
due to the occurrence and orientations of the vugs, primor-
dial ooids, and the crystallites.

The proposed model reproduces the resolution dependent
porosity and the permeability scatter of the original oolithic
dolostone. It captures many other crucial features of the do-
lomites: scale dependent intergranular porosity over many
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(a)

(b)

(c)

(d)

FIG. 2. �Color online� Dis-
cretized samples at four resolu-
tions: a=1�20 �m, M =� /a
=100 �a�, a=0.5�20 �m, M
=� /a=200 �b�, a=0.25�20 �m,
M =� /a=400 �c�, and a=0.125
�20 �m, M =� /a=800 �d�. At a
=1�20 �m �a�, nearly all voxels
are unresolved �light gray� and the
discretization significantly differs
from the fully resolved �a=0� im-
age shown in Fig. 1�b�. As the
voxel size decreases, more and
more of the undecided voxels
�light gray� are resolved to pore
�dark gray� or matrix �medium
gray and black�. �Color codes in
the online figure: black �intra-ooid
grains�, gray �grains in the isopa-
chous layer�, blue �pore�, and
peach �undecided voxels�.
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decades, vuggy porosity, a percolating pore space, a fully
connected matrix space, strong correlations from primordial
depositional textures, and partial dolomitization. The con-
tinuum representation provides a practical data structure for
representing the complex pore scale microstructure of the
carbonates that range over many decades in length scales.
Permeabilities vary over three decades within the same
sample. For a fixed porosity, transport properties depend
upon the primordial geometry, the packing density, and com-
paction. The model reconstruction of an oolithic dolostone
has roughly 42�106 crystallites, pore diameters varying in

the range of 4 to 5 decades, and petrophysical parameters
that can vary greatly. The physical parameters are evaluated
from discretized samples of size up to 10003 voxels. This
resolution can be increased arbitrarily to any desired value.
The model can be easily adapted to reconstruct the pore tex-
ture of a wide variety of carbonate rocks. Our model thus
overcomes major stumbling blocks in the reconstruction of
the pore scale microstructure of carbonate rocks.
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