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Origin of power-law distributions in deterministic walks: The influence of landscape geometry
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We investigate the properties of a deterministic walk, whose locomotion rule is always to travel to the
nearest site. Initially the sites are randomly distributed in a closed rectangular (A/L X L) landscape and, once
reached, they become unavailable for future visits. As expected, the walker step lengths present characteristic
scales in one (L—0) and two (A/L~ L) dimensions. However, we find scale invariance for an intermediate
geometry, when the landscape is a thin striplike region. This result is induced geometrically by a dynamical
trapping mechanism, leading to a power-law distribution for the step lengths. The relevance of our findings in

broader contexts—of both deterministic and random walks—is also briefly discussed.
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I. INTRODUCTION

A large number of phenomena in physics, ecology, chem-
istry, economics, etc. [1-3], characterized by scale invariant
distributions, are in many situations associated with Lévy
walks and Lévy flights [4—6]. Furthermore, when related to
diffusion mechanisms, these types of systems present mean
square displacements that, for large enough times [7], scale
as t* with a>1.

In such contexts, some of the relevant challenges are to
determine the following: (a) If there are global driving forces
underlying the superdiffusive features; (b) how they can
emerge; and (c) how they are linked to other properties such
as self-similarity, fractality, noise with f~# power spectrum
and intermittent bursts behavior, ubiquitous in Nature [8]. In
fact, many studies address such general questions under dif-
ferent perspectives. For instance, one idea points to the con-
cept of self-organized criticality [9]. The so-called spatiotem-
poral complex systems evolve through a series of avalanches
towards critical states, which possess scale invariance and
long-range correlations. These hierarchical “paths” are un-
avoidable due to the character of the dynamics and are ob-
served in many problems [10]. For deterministic chaotic sys-
tems, on the other hand, the above queries may be associated
either to dynamical fractional kinetics [2] or to phase space
strange nonchaotic attractors and attracting sets of particular
geometrical partitions (see [11] and references therein).

In the realm of stochastic processes, especially random
walks, there are different direct causes for superdiffusion and
power-law tailed decay. To exemplify just a few of them, we
mention (i) the evolution governed by fractional Fokker-
Planck equations [1]; (ii) dichotomic systems for which two
time scales, microscopic and macroscopic [12], can be iden-
tified; (iii) the existence of correlations in the variance of the
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physically relevant quantities [13]; and (iv) random multipli-
cative processes in the presence of a boundary constraint (a
repealing barrier) [ 14]. Moreover, it may happen that a Lévy
or power-law distribution for the dynamical variables of a
random process may be a natural way to lead to certain out-
comes such as the diversity of species in evolutionary ecol-
ogy [15]; efficiency optimization in random search, e.g., ani-
mal foraging [16] in continuous Euclidean spaces [17-23]
and targets search in discrete lattice environments [24]; and
to avoid the extinction edge in scenarios of low availability
of energetic resources [25].

There is a much less studied class of problems known as
deterministic walks [26-28]. As in the usual stochastic case,
they describe the movement of a walker in a certain medium,
which can or cannot have a random character. However, the
rule of locomotion is always taken from some purely deter-
ministic model, rather than from a probability distribution
[28]. Deterministic walks usually present the technical diffi-
culties common to nonlinear dynamical systems [26] and can
give rise to superdiffusive processes [28]. In fact, they be-
long to a new class of models known as local optimization
problems, such as the traveling tourist [26]. In contrast to the
previously discussed examples of purely random walks, it
seems that for deterministic walks there are no general
guidelines indicating when the evolution would generate
power-law distributions for the dynamical variables.

In the present contribution we study the previous general
questions for a specific deterministic walk. We revisit a re-
cently proposed model [29], in which the walker moves in
straight lines from site to site, following a “go to the closest
target site” rule. The sites are randomly distributed in a two-
dimensional (2D) region. As already pointed out in [29], for
certain particular parameter conditions, this type of dynamics
surprisingly exhibits power-law distribution of step lengths.
Here we reveal the mechanisms leading to such behavior, not
analyzed in [29], showing that the crossover is due to a trap-
ping effect associated to particular spatial configurations of
the landscape. The onset of this phenomenon resembles a
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Targets .

FIG. 1. Schematics of the search space where the small squares
represent the randomly distributed target sites.

critical point in thermodynamics, even though there is no
real phase transition in the system.

The paper is organized as follows. In Sec. II we propose
the model. Simulations are presented in Sec. III. In Sec. IV
we discuss and interpret our findings. Final remarks and con-
clusion are drawn in Sec. V.

II. THE MODEL

We consider a deterministic walk model that was origi-
nally presented in Ref. [29] to describe the locomotion of
spider monkeys during foraging [20]. We define a rectangu-
lar region of area A and length L;=L and L,=A/L along the
vertical (y axis) and horizontal (x axis) directions, respec-
tively. Within this domain, a total of N point targets are ini-
tially distributed at random. The configuration of the search
region is schematically represented in Fig. 1. In all the simu-
lations we set N=2.5X 107 and A=1. The dynamics is given
by the two following simple rules:

(a) Once at a certain target site, the walker moves straight
to the closest available site.

(b) The walker does not come back to any previously
visited site—the search is destructive, i.e., the total number
of sites decreases as they are found along the walk.

Let us define the characteristic length

Co=2d (1)

with

d=

=z =

> d,, )

where d, is the distance between the target n and its closest
neighbor. As L can be taken in the interval [0,1], we have
two limiting cases. W@L=(’)(l), the process takes place in
a 2D space and €,=\1/N. On the other hand, as L—0 the
domain is 1D and €,=1/(LN). The crossover between these
two regimes is found by varying L. Figure 2 displays the
numerically calculated €, as a function of L/{,. The two
limiting behaviors are clearly seen and separated by a cross-
over emerging around L/€,== 1. In the following, we will use
L/{€, as the main parameter of the model.

In Fig. 3 we display the distribution D(d/d) of the sepa-
ration distances d,, for the following three situations: The 2D
limit with L/€,~4978.56 (L=1 and €,=2.008 61 X 107%),
the 1D limit with L/€;=~9.994 74X 107> (L=2X%10"> and
£,=2.00105%107%), and in the crossover region with L/,
~4.21598 (L=8.82X107* and €(,=2.092 04 X 107*). The
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FIG. 2. €, as function of L/{,. For L/€y> 1 (2D regime), € is
the constant 1/vN, whereas for L/{y<1 (1D), £, goes as 1/(NL).
The crossover takes place for L/{, around unity.

expected distributions, Poisson D(d/d)=exp[—-d/d] and the
standard Weibull (i.e., a weighted Gaussian) D(d/d)

=(/2)d/d exp[—md®/(4d%)], respectively, in the 1D and 2D
cases, are recovered.

II1. RESULTS

We simulate the walks by iterating our two rules for vari-
ous values of L/€,. Each simulation runs until the walker
visits 10° targets, out of the initial N=2.5X 107. The curves
are obtained by averaging over 10° runs. At t=0, the walker
is located on a site in the vicinity of the center of the search-
ing environment.

A first important quantity is the distribution P(€/¢,) of
the reduced distance ¢/¢, traveled by the walker between
two consecutive targets sites. In Fig. 4(a) we show the results
corresponding to the 1D and 2D cases of Fig. 3. For 1D, the
curve follows the expected exponential Poisson distribution.
For 2D, P(1/€,) differs markedly from the standard Weibull
(i.e., a weighted Gaussian) distribution of nearest distances

D(d/d). The curve is broader, but can be well fitted by a
rapidly decaying inverse power law with exponent close to
5.3, whose general behavior is actually Gaussian, driven by
the central limit theorem with converging second moment
[4]. However, for the example in the crossover region,
L/€,=4.21598, P clearly exhibits a very long tail, as shown

D(d/d)

FIG. 3. The numerically calculated distributions of distances
between closest neighbor sites for three values of L/{, (see main
text), corresponding to the 2D (cross), 1D (triangle), and crossover
region (diamond) cases. The respective analytical distributions fit-
ting 2D and 1D are plotted as solid lines. Note that the intermediate
(crossover) is close to the 2D case.
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FIG. 4. Normalized step length distributions for the same pa-
rameters as in Fig. 3. (a) The triangles (cross) represents the 1D
(2D) limit. The curves show the fits 1.3 exp[—0.92€¢/€,] (dashed)
and 3.1(€/€)™>3 (continuous). (b) The intermediate case (dia-
mond). Here the fit is 0.23(¢/€,)">2.

in Fig. 4(b). There is a small but nonnegligible probability of
long walks. In this case, we find numerically that P
~(€/€y)"* with u=2.2 (u=2.15 by considering only the
interval 10<£/€,<10%). Thus, the distribution has a power-
law behavior with a diverging second moment, similar to
Lévy processes.

A second relevant quantity is the reduced average step

length €/€,, displayed in Fig. 5(a) as a function of L/€,. As
shown in more detail in Fig. 5(b), we have a peak for €/€, in

L/l,

FIG. 5. (a) The numerical average step length € (in units of €,)
taken by the walker during the search as function of L/{,. The
region where £ presents a peak, indicated by a rectangle, is shown
in detail in (b). The continuous curves are just guides for the eye.
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TABLE 1. For some values of 2<<L/€;<30, the fitted u’s for
P(€/€,) written as (€/€y)~*.

L/¢, )

2.37957 2.31550
3.17214 2.28575
4.21598 2.22267
5.58647 2.28323
7.38735 2.33486
9.74390 2.40229
12.8287 2.48336
16.8655 2.52824
22.1615 2.65706
29.1083 2.78089

the crossover region, with the maximum corresponding to
L/€y=1.99=2.

From Fig. 5 we are lead to think that the step lengths in
the crossover region are indeed larger than those for the 1D
and 2D limits. In fact, we find this is true within the interval
2 <L/1y<30, where the distribution P(€/€,) can fairly be
written as (€/€,)~* with 2 < <3. For some values of L/l,
we list in Table I the corresponding power-law exponents p.
Some step lengths distributions are shown in Fig. 6. For
comparison we also plot the example of Fig. 4(b).

IV. DISCUSSION

To understand the above results we turn to the dynamics
of the deterministic search process. In the 1D limit (L—0)
the random walker tends to follow an almost straight line,
with only a few changes in direction, mostly occurring dur-
ing the first steps. On the other hand, the 2D limit (L— 1) is
characterized by a much larger available space in both direc-
tions. Although the destruction of previously visited sites
makes the walker tend to move forwards with higher prob-
ability, there is a finite fraction of large turning angles along
the walk. To quantify these features we present in Fig. 7 a
normalized plot of the angular distribution I'(#) of angles

10'
. 10%
=
>~ 10°
< ]
108
107"

10° 10" 10®> 10® 10*
1/1,

FIG. 6. The distribution P(€/4,) fitted as (€/€,)™*. The param-
eters are L/{;=2.37957 and u=2.3155 (open triangle); L/{,,
=4.21598 and ©=2.22267 (full circle); L/€;=9.74390 and w
=2.40229 (open circle); L/€(=22.1615 and w=2.65706 (full
square); and L/€,=38.2288 and u=2.963 85 (open square).
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FIG. 7. Angular distribution of the turning angles between con-
secutive steps. The triangles (1D), crosses (2D), and diamonds
(crossover region) correspond to the same cases of Fig. 4. The
dotted curve (for the triangles) is just a guide for the eye.

between two consecutive steps corresponding to the ex-
amples of Fig. 4. In the 1D limit, the distribution is very
peaked at small angle values, indicating that the walker
rarely deviates from a certain direction (either left or right,
defined shortly after a few initial steps). In the 2D limit there
is a bias toward the forward direction, nevertheless larger
turning angles are also likely to happen.

It is, however, interesting to notice that Fig. 7 alone is not
sufficient to explain our findings, since the 2D and crossover
cases present similar I'(6). As the search space shrinks in one
direction, we pass through a crossover region from 2D to 1D.
The singular behavior in this intermediate regime can be
explained in terms of a recurrent feature observed in our
simulations (see also [29]). In this case the walker moves in
average towards a given direction, say to the right, in a nar-
row striplike space. However, sometimes it turns to an anti-
parallel path to visit sites left behind. After some time, the
walker ends up in a region depleted of targets, which may be
far away from the rightmost point reached by the trajectory.
To return to the region rich in unvisited targets located to the
right, the walker then needs to make a long jump, as depicted
in Fig. 8. Such mechanism is illustrated in Fig. 9, that shows
a space-time graph of a simulated trajectory in the three dif-
ferent regimes of Fig. 4.

This dynamical process is particularly sensitive to the dis-
tance between the two horizontal borders or equivalently, to
the values of L/ €. In fact, for very small L/ € (1D) there are
no antiparallel paths, whereas for large L/€, (2D) the extra
vertical direction often provides closer sites than those
reached by big jumps across depleted regions. None of these
two aspects, the directional bias in the 1D case and the extra
dimension providing many “escape” paths, are present in the
crossover region. Note that the broad power-law distributions
for the length of the steps € [Fig. 4(b)] are observed when the
probability of large turning angles is high. In the crossover
region it is higher than in the 2D regime, as shown in Fig. 7.

Z\\ large step
FIG. 8. In the crossover regime, the search space is a narrow
strip. In such case, a walker moving in average to the right may
perform many steps in the opposite direction, returning near the
rightmost visited site through a very long step.
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FIG. 9. Number of steps vs. the horizontal projection of the
walker position, in the 2D (a), crossover region (b), and 1D (c)
cases of Fig. 4. Notice the crucial ultralong steps at the crossover
geometry (b).

The above scenario is confirmed by analyzing two quan-
tities related to the dynamics of the deterministic search pro-
cess. First, we calculate the normalized drift velocity along
the horizontal direction x, defined as {|x—x|/n)/€,, where x,
is the starting coordinate and x is the coordinate at step n. We
show in Fig. 10(a) the drift velocity as a function of L/ €. As
expected, it vanishes in the 2D limit. Worthwhile noticing,
however, is the behavior of the curve in the crossover region,
Fig. 10(b). In particular, it presents a local minimum around
L/€,=1.7094. Furthermore, the first local maximum after
this minimum is at L/€;=2.0368 =2, the same position for

the maximum of €/€, seen in Fig. 5(b).
A second relevant quantity is the fraction of visited targets
along the walker trajectory, defined by

T (3)

Here, M, is the average number of visited targets in the
area searched by the forager and M, is the total number of
initial targets in that area. The searched area is defined by the
region  [Xmax—Xmind X [Vmax— Ymin» Where the “min” and
“max” subscripts stand for the minimum and maximum val-
ues of the coordinates reached by the walker during a full
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Drift

Drift

FIG. 10. (a) The numerical drift velocity along x, {|x
—xol/n)/ €y, as a function of L/€,. The rectangle indicates part of
the crossover region where there is an inflection point for the drift.
(b) Blow up of the marked region in (a), showing a local minimum
around L/€y=1.7094. The continuous curves are just guides for the
eye.

run. Thus, y represents a search efficiency of the walker. For
the 1D regime, all the targets are found along the way, so
x=1. On the other hand, at 2D regime, y takes a constant
small value. The crossover from one limit to the other, as a
function of L/€, is shown in Fig. 11. Again we observe a
local minimum in the crossover region, as seen in the inset of
Fig. 11.

V. FINAL REMARKS AND CONCLUSION

Motivated by the results of a previous study [29], we have
investigated in detail a deterministic walk model where the
destructive search environment can be changed from a 2D to
a 1D geometry by tuning a single control parameter, namely,
L/€,. The movement of the walker is driven by the “go to
closest target” rule. Naively, the model should lead to a Pois-
son process, since the initial distribution of target sites
(which are destroyed once visited) is random. We actually
find that in both the 1D and 2D limiting cases, the step

0.9

< 06/

0.3 |

ool to. . 16 . 22 .
102 107" 10° 10" 10® 10° 10*

L/,
FIG. 11. The numerical fraction of visited targets, ¥, as a func-

tion of L/€,. The inset shows a local minimum in the crossover
region. The continuous curves are just guides for the eye.
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lengths distribution have finite variance. However, for some
intermediate values of L/{, a nontrivial dynamical process
with infinite variance takes place, combining a large number
of relatively small steps with rare long steps. It gives rise to
a “Lévy-like” step length distribution, in which the probabil-
ity of large steps is enhanced by characteristic exponents in
the range 2<u <3, e.g., uw=2.2 for the case in Fig. 4(b).
Furthermore, for values of the control parameter in this
crossover region, we observe changes in the search effi-
ciency and drift velocity. Such findings are interesting since
they show that power-law distributions can also result from a
simple short-range dynamics combined with a geometrical
constraint.

Finally, we comment on interesting similarities between
our model and other related problems. First, a random forag-
ing model based on Lévy strategies for target sites with a
recovery (or regeneration or refractory) delay time [18,19]
has been recently studied. Once visited, a target site become
available for a future visit only after a finite number of steps
(time delay 7). It has, as limiting regimes, the destructive
(7— ) and nondestructive (7— 0) random searches. Differ-
ently from the present case, the walker may either finish a
given step with no target found or truncate its flight if a site
is found along its way. In this foraging problem the most
efficient destructive (nondestructive) searches requires u
~1 (u=2). So, the parameter 7 makes the crossover from
one to the other limit. Thus, it seems that the presence of
boundaries in the deterministic walk and the time delay in
the foraging random search problem play similar roles in the
sense that they determine the characteristic exponent for the
distribution of the step lengths of the respective walkers,
governing then the type of dynamics.

Second, the foregoing results also suggest an analogy be-
tween our deterministic walker model and thermodynamic
systems and phase transitions. The observed motion in the
2D limit is relatively isotropic (of course, with some bias due
to “a back step” depletion), whereas the motion in 1D breaks
completely this isotropy. Similarly, the behavior of the veloc-
ity is ergodic in the 2D limit but nonergodic in 1D limit. Let
us now consider more carefully the crossover. Exactly at the
point in between the two behaviors, we expect the velocity to
be marginally ergodic, such that the average behavior of the
velocity inversion may become log-periodic rather than pe-
riodic (2D limit) or nonperiodic (1D limit). Log-periodic ve-
locity inversions [30] can represent the border between su-
perdiffusive and diffusive regimes. Moreover, this
logarithmic behavior implies that mean values of €(z)/ €, will
scale geometrically with time ¢, such that the mean value of
¢ diverges. In other words, the larger the system size (or
simulation time), the larger the mean value of €. Except for
the memory or correlation effects, this is the same kind of
behavior we find in Lévy walks. The maximum superdiffu-
sion for Lévy walks occurs when the first moment of the
mean step size diverges, which corresponds to an inverse
square distribution of €. Considered from this point of view,
the results in Figs. 4(b) and 5 make qualitative sense.

Thus, although the present study indicates that the system
is going through a crossover between two different limits,
from the above discussion we cannot completely rule out the
possibility of a dynamical phase transition. This issue is pres-
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ently being investigated and will be reported in the due
course.
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