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Using the Wang-Landau sampling method with a two-dimensional random walk we determine the density of
states for an asymmetric Ising model with two- and three-body interactions on a triangular lattice, in the
presence of an external field. With an accurate density of states we were able to map out the phase diagram
accurately and perform quantitative finite-size analyses at, and away from, the critical endpoint. We observe a
clear divergence of the curvature of the spectator phase boundary and of the magnetization coexistence
diameter derivative at the critical endpoint, and the exponents for both divergences agree well with previous
theoretical predictions.
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I. INTRODUCTION

Phase diagrams of a diverse range of physical systems,
such as binary fluid mixtures, superfluids, binary alloys, liq-
uid crystals, certain ferromagnets, and antiferromagnets, etc.,
include a critical endpoint �CE�, defined as a point in the
phase diagram where a critical line meets and is truncated by
a first-order transition line. It is widely believed that bulk
critical exponents do not change at the CE �1�. This seems
most likely to be true but it has hardly been checked beyond
phenomenological theory and renormalization calculations
�2�. Although critical endpoints are ubiquitous and have been
known for a long time �3�, new critical behavior has been
discovered relatively recently. In 1990, Fisher and Upton �1�
defined new universal amplitude ratios for the shape of the
first-order phase transition boundary and for noncritical sur-
face tensions near critical endpoints. They have also pre-
dicted a new singularity in the first-order phase transition
line at the CE. This prediction was confirmed by the Fisher
and Barbosa phenomenological studies on an exactly solv-
able spherical model, which exhibits a critical endpoint for a
suitable potential �4�.

Later, an extensive Monte Carlo simulation �5� using a
multicanonical ensemble method �6� and histogram re-
weighting techniques �7� was carried out by Wilding to study
the critical endpoint behavior in a symmetrical binary fluid
mixture �8�. He predicted and observed a singularity on the
derivative of the diameter of the liquid-gas coexistence curve
as the critical endpoint is approached. Wilding also showed
the first numerical evidence of the divergence in the curva-
ture of the spectator phase boundary �8�, in accordance with
previous theoretical prediction �1,4�. Nevertheless, a quanti-
tative analysis of such singularities at the CE was not done
because such analysis would have required much larger sys-
tem sizes than the ones used, and thereby much more com-
puting power.

In this paper, we study an asymmetric Ising model on a
triangular lattice with two- and three-body interactions in an

external field �9,10�. The Hamiltonian of the model can be
written as

H = − J�
�ij�

SiSj − J3�
�ijk�

SiSjSk − H�
i

Si, �1�

where Si= ±1 is an Ising spin on site i of a triangular lattice,
�ij� denotes pairs of nearest-neighbor spins, and �ijk� repre-
sents the three spins on the elementary triangles. The param-
eters J and J3 are two- and three-body nearest-neighbor spin
couplings, respectively, and H is an external magnetic field.
The model is asymmetric because the Hamiltonian is not
invariant when H→−H. Periodic boundary conditions are
used in this work. Chin and Landau �9� showed that this
model is identical to a lattice-gas model; moreover, their Me-
tropolis Monte Carlo simulations revealed that this model
exhibits critical endpoints with suitable choices of the cou-
pling parameters. In particular, for J=1 and J3=2 the T and
H phase diagram has a critical endpoint, which is well sepa-
rated from the critical point at the end of the first-order tran-
sition line.

We perform Wang-Landau sampling �11,12� to determine
the phase diagram of this model and to study its behavior at
the phase transition lines and at the critical endpoint. Our
numerical data not only show the singularity in the phase
boundary curvature, predicted by Fisher et al. �1,4�, and in
the magnetization coexistence diameter derivative, predicted
by Wilding �8�, but also allow us to analyze quantitatively
the behavior in the vicinity of the critical endpoint for this
model.

II. RANDOM WALK ALGORITHM TO CALCULATE THE
DENSITY OF STATES

Conventional Monte Carlo methods �5� generate a canoni-
cal distribution at a given temperature T. In contrast, the
Wang-Landau method estimates the density of states directly
and accurately via a random walk that produces a flat histo-
gram in the random walk parameter space �11–15�. The den-
sity of states converges to true values systematically through
careful control of a modification factor during the random
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walk. A mathematical proof of the convergence of the Wang-
Landau method was given by Zhou and Bhatt �16�, and the
method has proven to be very efficient for both first- and
second-order phase transitions. It is also very useful in the
study of systems with rough landscapes �such as the spin-
glass problem� �12�, because the algorithm has the property
of maintaining a flat histogram in the random walk space.
Applications of this method include simulations of fluids
�17� �continuum systems�, protein folding �18�, polymer
films �19�, polymer collapse �20,21�, binary Lennard-Jones
glass �22�, liquid crystals �23�, random spin systems �24,25�,
atomic clusters �26�, optimization problems �27�, combinato-
rial number theory �28�, Blume-Capel model �29�, and three-
dimensional �3D� Potts model �30,31�. This method has been
improved by using the N-fold way �32� and multibondic
sampling �33�, and it also has been generalized to perform
quantum Monte Carlo simulations �34,35� and sampling
along the reaction coordinates for a molecular system �36�. A
rigorous derivation for off-lattice implementation of this al-
gorithm was given in Ref. �37�. Further generalizations and
studies of this sampling technique have also been carried out
by several authors �15,38–43�.

To overcome the barriers in both energy and order-
parameter spaces, we must perform a two-dimensional �2D�
random walk as it was done in the spin-glass problem �12�.
We restrict J3 /J=2 in this paper �the qualitative nature of the
phase diagram is unchanged for a wide range of ratios �9��;
therefore the Hamiltonian in Eq. �1� can be rewritten as a
sum of two parts,

H = − JE� − HM�,

E� = �
�ij�

SiSj + 2�
�ijk�

SiSjSk,

M� = �
i

Si, �2�

where E� is proportional to the energy due to the two- and
three-body interactions, and M� is the microscopic magneti-
zation of the system. We perform a 2D random walk in
�E� ,M�� space to estimate the density of states g�E� ,M��,
which is defined as the number of spin configurations for any
given E� and M�.

At the beginning of the simulation, the density of states is
unknown, so we simply set g�E� ,M��=1 for all possible
�E� ,M��. Then we begin a random walk in �E� ,M�� space by
choosing a site randomly and flipping its spin with a prob-
ability proportional to the inverse of the momentary density
of states. If we denote in general terms A��E� ,M�� and
A��E� ,M�� as the points before and after a spin is flipped,
respectively, the transition probability from A� to A� is

p�A� → A�� = min�g�A��
g�A��

,1	 . �3�

If the point A��E� ,M�� is accepted we multiply the existing
density of states by a modification factor f �1, that is,
g�E� ,M��→ f �g�E� ,M��, and we update the histogram Hv
of visited states, that is Hv�E� ,M��→Hv�E� ,M��+1.

If A��E� ,M�� is not accepted, we update g�E� ,M��
→ f �g�E� ,M�� and Hv�E� ,M��→Hv�E� ,M��+1.

We continue performing the random walk until the histo-
gram is flat in �E� ,M�� space. If we keep the random walk
after that, the estimated density of states simply fluctuates
around the true value for that system. The modification factor
f introduces a systematic error for the estimated density of
states ln�g�E� ,M���, with a magnitude that is proportional to
ln�f�. To reduce this source of error, we systematically re-
duce the modification factor to a finer one using a function
like f i+1= f i

1/n �n�1�. After the histogram is flat, we reset the
histogram �that is, Hv�E� ,M��=0 for all �E� ,M���, and begin
the next level random walk with the new factor f i+1. We end
the random walk when the modification factor is smaller than
a predefined value �such as f final=exp�10−8�
1.000 000 01
used here�. To speed up the convergence of the density of
states to the true value, the initial modification factor was as
large as f = f0=e
2.718 28¯, and n=4 in our simulations.
We perform the random walk on all possible �E� ,M�� space
with a single computer processor. It takes from about a few
minutes to 10 days on a 1.3 GHz Itanium2 processor to ob-
tain g�E� ,M�� for the lattices with linear sizes L=6 to L
=42 used here. Multiple independent random walks were
performed for each lattice size in order to estimate the sta-
tistical error in the density of states and the thermodynamic
quantities obtained from them. We performed nine indepen-
dent random walks for each of the larger lattice sizes �L
=30 to L=42�. Because these are two-dimensional random
walks the memory used by the program is quite large �up to
3.5 GB for L=42�.

The number of total entries for the 2D density of states
g�E� ,M�� for the current model is as large as 3.9�106 for
L=42 and all simulations are performed with a single ran-
dom walk over all possible �E� ,M�� space. In contrast, the
number of entries for the 1D density of states g�E� is only
about 6.6�104 for the L=256 Ising model �11�.

We should point out that it is impossible to obtain a per-
fectly flat histogram, but a histogram may be considered flat
if Hv�E� ,M�� for all possible �E� ,M�� is not less than x% of
the average histogram, where x% is chosen according to the
size and complexity of the system and the desired accuracy
of the density of states. However, in this work we use a less
stringent criterion: the histogram is considered flat when the
number of entries larger than or equal to 2000 remains un-
changed for L2�106 spin-flip trials.

III. PHASE DIAGRAM AND ORDER PARAMETERS

With an accurate density of states g�E� ,M�� obtained at
the end of the random walk, we can calculate thermody-
namic quantities at any temperature T and external magnetic
field H for the system with a Hamiltonian given by Eq. �1�.

The spontaneous magnetization per lattice site, shown in
Fig. 1�a� as a function of T and H, can be computed from the
density of states g�E� ,M�� using
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M�T,H� = �M� =

�
E�,M�

M�g�E�,M��e−�−JE�−HM��/kBT

N �
E�,M�

g�E�,M��e−�−JE�−HM��/kBT
, �4�

where we assume J=1�0 �ferromagnetic coupling�, N=L2

is number of lattice sites, and T is in unit of 1 /kB �kB is the
Boltzmann constant�.

The susceptibility ��T ,H� also can be calculated from the
density of states by

��T,H� = dM/dH = N��M2� − �M�2�/kBT . �5�

The resulting ��T ,H� is shown in Fig. 1�b�.
Our simulational data for magnetization and susceptibility

show that the phase diagram has three distinct phases,
each of which can be characterized by the values of the mag-
netization at T=0. The phases are phase A�++ + � with
M�0,H�=1 �all spins are up�, phase B�−−−� with M�0,H�
=−1 �all spins are down�, and a ferrimagnetic phase
C�−−+ � with M�0,H�=−1/3 �the spins on two sublattices
are down, the spins on the other sublattice are up�. The phase
boundaries can be determined, for example, by the locations
of the maximum of the susceptibility.

Though the spontaneous magnetization is a good param-
eter to characterize the three phases, M�T ,H� is not the order
parameter for the phase transitions because it does not vanish

in any phase. For the transition between phase A and C as
well as the transition between phase B and C, we define
order parameters that are similar to those used for the Q=3
Potts model �44�, because the degeneracy of the ground state
in C phase is 3. For the Ising model discussed in this paper,
we define two components �P1 , P2� and vector order-
parameter P from the magnetizations per site M1, M2, and
M3 of the three sublattices

P1 =
1

2
�M1 −

M2 + M3

2
� ,

P2 =

3

4
�M2 − M3� ,

P = 
P1
2 + P2

2. �6�

P1�T ,H�, P2�T ,H�, and P�T ,H� approach zero in phases
A�++ + � and B�−−−�, and finite values in phase C�−−+ �.

To calculate thermodynamic quantities P�T ,H�, we must
accumulate microscopic P�E� ,M�� during the random walk
in the �E� ,M�� space. If P�E� ,M�� is the microscopic aver-
age value during the random walk at �E� ,M��, the thermo-
dynamic quantity P�T ,H� can be calculated as

P�T,H� =

�
E�,M�

P�E�,M��g�E�,M��e−�−JE�−HM��/kBT

�
E�,M�

g�E�,M��e−�−JE�−HM��/kBT
. �7�

A plot of P�T ,H� for L=30 is shown in Fig. 2, where the
first- and second-order phase boundaries can be seen clearly.
Figure 3�a� shows the phase diagram in the T and H plane
extrapolated for L=�. The phase transition lines are deter-
mined by the locations where the susceptibility �p�T ,H�, de-
fined as

�p�T,H� = N��P2� − �P�2�/kBT , �8�

has its maximum value for a given fixed T and L. The finite
lattice “phase transition lines” are then extrapolated to L
=� using finite-size scaling. Alternatively, the phase diagram
can be obtained by the maximum of other thermodynamic

(a)

(b)

FIG. 1. �Color online� �a� Magnetization per site M�T ,H� and
�b� susceptibility ��T ,H� calculated from the density of states
g�E� ,M�� for L=30. Note that �b� is shown with a finer T and H
scale than �a�.

FIG. 2. Magnitude of the order-parameter P�T ,H� calculated
from the density of states g�E� ,M�� for L=30.
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quantities that show singularities along the phase boundaries,
such as the specific heat, susceptibilities dM /dH, dP1 /dH,
dP2 /dH, etc.

Our data for magnetization in Fig. 1�a� and susceptibility
in Fig. 1�b�, indicate that the transitions between phases A
and B as well as between A and C are of first order �dashed
line in Fig. 3�a��. In contrast, the phase transition between B
and C is of second order �solid line in Fig. 3�a��. The critical
endpoint, �T ,H�CE, is defined at the point where the second-
order critical line Tc�H� meets, and is truncated by the first-
order transition line H��T� beyond which the system trans-
forms into a noncritical phase A �also called a spectator
phase �1��. �The notation H��T� for the first-order transition

line is more convenient than T��H�, because we take tem-
perature derivatives of this line in the analyses below.� At the
end of H��T� is a critical point �T ,H�c. The solid circle in
Fig. 3�a� is the location of �T ,H�c for L=�. For a finite
lattice the location of the peak in �p�T ,H� extends well be-
yond the infinite lattice critical point; however, beyond Tc the
peak does not diverge as L→�.

Our extrapolated simulational results Hc�T=0�=−6 and
H��T=0�=−3 are consistent with the exact solutions at zero
temperature and earlier simulational data �9�. We determine
the critical line Tc�H� separating phase B and C with great
accuracy, except when this line reaches the CE. It is very
difficult to determine Tc�H� near the CE, because the peak in
�p�T ,H� corresponding to this phase transition merges with,
and cannot be easily distinguished from, a larger peak due to
the strong first-order transition. This is especially problem-
atic for small lattices, but the larger L considered here were
also affected somewhat. Nevertheless, Tc�H� is a smooth line
and we extend it from lower values of H to where it meets
the first-order transition line. In the inset of Fig. 3�a� we see
that for L=42 the critical line Tc�H� must be extended from
H�−2.94 to where it meets H��T�. We then take this meet-
ing point as an estimate of the critical endpoint for the finite
lattice L. The phase diagram in the thermodynamic limit
�solid lines in the inset of Fig. 3�a�� is obtained by extrapo-
lating the phase transition lines for L=30,33,36,42 to L
=�. The critical endpoint for L=� is estimated as �T ,H�CE

= �2.443±0.010,−2.934±0.010�.
Figure 3�b� is a plot of the phase diagram in the �T ,M�

plane, showing the critical magnetization per site along the
critical line Tc�H� and the peak locations of the magnetiza-
tion distribution for the first-order line H��T�. The shaded
area corresponds to the coexistence between phases A and B
for T�TCE and between phases A and C for T�TCE. The
open symbols correspond to L=42 and the solid line is an
extrapolation to L=� as described below. Here we have
shown the L=42 phase diagram for T extending beyond the
L=� critical point �T ,H�c to illustrate the finite size effects.

Although the main focus of this work is to study the criti-
cal endpoint, for completeness, we also performed a field
mixing analysis �45,46� of the model to precisely determine
the critical point at the end of the spectator phase boundary
H��T�. This analysis is performed with the mixed fields �
and h that are linear combinations of T and H, given by
�=T−Tc+s�H−Hc� and h=H−Hc+r�T−Tc�, and the corre-
sponding conjugate scaling operators. Our estimate of the
2D Ising-type critical point is �T ,H�c= �6.125±0.003,
−1.879±0.002�. The field mixing analysis also allows us to
estimate the L=� values of the magnetization at �T ,H�c

�Mc=0.33±0.01� and near it �shown, respectively, as the
solid circle and the solid line in Fig. 3�b��.

With the density of states g�E� ,M�� obtained at the end of
the random walk, we can calculate thermodynamic quantities
at any T and H without multiple simulations. Therefore, the
phase boundaries can be determined continuously in the pa-
rameter space and with high accuracy. The flat histogram in
the �E� ,M�� space helps our simulations overcome the bar-
riers in both energy and magnetization spaces. Because of
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FIG. 3. �a� Phase diagram in the �T ,H� plane extrapolated to
L=�. The solid line is a critical line and the dashed line is a first-
order phase transition line. The inset shows the region near the
critical endpoint and includes data for L=30 �triangles� and L=42
�circles� to illustrate the finite-size effects �both phase transition
lines extrapolated to L=� are shown as solid lines in the inset�. �b�
Phase diagram in the �T ,M� plane, showing data for L=42 and
extrapolation to L=�. The shaded area is a region of phase
coexistence.
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these barriers, it is very difficult to apply conventional Monte
Carlo algorithms to this problem �5�. Though the multica-
nonical method �6� could overcome such barriers, we still
would need to perform multiple simulations for different T
and H �and use them with histogram reweighting �7�� in
order to compute the curvature of the phase boundary accu-
rately. Moreover, before a multicanonical simulation could
be performed, an estimate of the density of states itself
would be needed; this is a difficult task because of the free
energy barriers for this problem.

IV. SINGULARITY AT THE CRITICAL ENDPOINT

The spectator phase boundary H��T� is obtained by the
peak position of �p�T ,H� for a given T. In order to obtain a
smooth H��T� curve, we compute �p�T ,H� in a very fine grid
in the �T ,H� plane �we used dT=0.01 and dH=0.0001�. We
then perform a least squares fitting around the peak in
�p�T ,H� for fixed T to determine the value of H �not neces-
sarily one of the values in the H grid� for which �p�T ,H� has
a maximum. With an accurate estimate of the phase bound-
aries, we can calculate the curvatures of the spectator phase
boundary H��T�. In Fig. 4�a�, the curvatures d2H��T� /dT2 of
the spectator phase boundary show a very clear singularity at
the CE.

According to a general finite-size scaling argument �1,8�,
this curvature should diverge at the CE with a specific heat-
like form

�d2H��T,L�
dT2 �

CE
= a1L	/
 + a2, �9�

where 	 and 
 are critical exponents defined on the critical
line Tc�H� and a2 is a background. For the model we discuss
in this paper, the critical exponents along Tc�H� are in the
same universality class as the 2D Q=3 Potts model because
the two models have the same symmetry. Therefore, the pre-
dicted scaling exponent �see Eq. �9�� is 	 /
=2/5, where we
have used the conjectured values 	=1/3 and 
=5/6 for the
2D Q=3 Potts model �47�.

Figure 4�b� shows a log-log plot of the maximum of
d2H� /dT2, denoted as f�L�, as a function of the linear lattice
size L. The scaling relation is obtained by a linear fitting of
the data for L=18 to 42 to Eq. �9�, with a1 and a2 as fitting
parameters and with the exponent fixed at 	 /
=2/5=0.4.
The fitted solid line shown in the inset of Fig. 4�b� has a
slope of a1=0.106�8� and an intercept with the vertical axis
a2=−0.11�3�. The solid line in Fig. 4�b� shows the finite-size
scaling relation of f�L� using these fitted coefficients. Be-
cause we obtained quite a good fit to the scaling function
f�L�=a1L0.4+a2 �solid line in Fig. 4�b� and its inset� we can
conclude that our data are in good agreement with the pre-
dicted scaling exponent �see Eq. �9��, but the background
term is not negligible. Our data also indicate that there are
small correction terms to the finite-size scaling; nevertheless,
the resolution of our data and the lattice sizes used here are
not adequate to estimate these correction terms. For a binary
fluid mixture, Wilding �8� observed a clear divergence of the
curvature of the spectator phase boundary; however the sys-

tem sizes he used in his simulations were much too small to
attempt a determination of the finite-size scaling exponent.

The magnetization coexistence diameter Md is defined as
the average magnetization along the first-order transition line
H��T�. We obtain Md�T ,H� using Eq. �4� where the param-
eters �T ,H� are taken from the H��T� line. Using generalized
scaling arguments, Wilding �8� predicted that the coexistence
diameter derivative diverges as

�dMd�T,H�
dT

�
CE

= c1L	/
 + c2L�1−��/
, �10�

where 	, �, and 
 are critical exponents defined on the criti-
cal line Tc�H�. We observe a clear divergence of the deriva-
tive of the magnetization coexistence diameter �see Fig. 5�a��
near the critical endpoint. Figure 5�b� shows the scaling of
the maximum of −dMd /dT with lattice size L. The solid line
in Fig. 5�b� is a least squares fitting of the maximum of
dMd /dT using Eq. �10� with L=15 to 42 data. For the sym-
metric binary fluid studied by Wilding �8�, the coefficient c2
in Eq. �10� is predicted to vanish; therefore dMd /dT should
diverge with L	/
 at the CE. For the asymmetric model stud-
ied here, our data indicate that dMd /dT at the CE does not
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FIG. 4. �a� Singularity of the curvature d2H� /dT2 of the specta-
tor phase boundary H� and �b� the finite-size scaling of the maxi-
mum of this curvature, which we denote f�L�. For clarity, in �a� we
only show a few of the larger error bars for L=42. �Other error bars
are smaller, particularly away from the peaks.� The inset of �b�
shows a linear plot of f�L� versus L	/
=L0.4. The solid line in the
inset is a linear fitting of the data.
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diverge with L	/
 �see the dashed line in Fig. 5�b��, whereas
using both terms on the right-hand side of Eq. �10� yields a
good fit to our data.

With the density of states g�E� ,M��, we can calculate
dP /dT very easily at any temperature T and in any external
field H. The resultant dP /dT, shown in Fig. 6�a�, has a sin-
gularity at the CE. To show this singularity in detail, in Fig.
6�b� we only plot dP /dT along the spectator boundary for
several L. The order-parameter jump dP /dT has a clear sin-
gularity at the CE. Both dP1 /dT and dP2 /dT also show a
behavior similar to dP /dT.

Our data in the inset of Fig. 6�b� can be fitted well with

�dP�L�
dT

�
H��T�

= cLd, �11�

where d=2 is the dimension of the lattice. This indicates that
the finite-size dependence of dP�L� /dT is dominated by the
first-order nature of the H��T� transition line. The critical
behavior between phases B and C is very difficult to study at
the CE for finite-size systems because the first-order phase
transitions are so strong. However, the singularities of dP /dT
along the spectator phase boundary, and of d2H��T� /dT2 and
dMd /dT are very clearly due to the critical transitions be-
tween the phases B and C.

V. SINGULARITY ALONG THE SPECTATOR PHASE
BOUNDARY H�„T…

For the first-order phase transitions along H��T�, finite-
size analysis indicates that both at and away from the CE the
maximum of thermodynamics quantities are proportional to
Ld for finite-size systems �where d is the dimensionality of
the lattice�. In particular, the susceptibility �=dM /dH and
the specific heat C scale as

���L��H��T� � Ld,

�C�L��H��T� � Ld. �12�

Figures 7�a� and 7�b� show the susceptibility and the specific
heat, respectively, along H��T� for several lattice sizes. The
insets in these figures confirm that the scaling relations in Eq.
�12� are satisfied both at the CE and away from it �e.g., at
T=0.6TCE and at T=2TCE�.

VI. SINGULARITY ALONG THE CRITICAL LINE Tc„H…

The critical line Tc�H� for this asymmetric Ising model
should be in the same universality class as the two-
dimensional Q=3 Potts model, because the two models have
the same symmetry. We recall that the conjectured values
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FIG. 5. �a� Singularity of the magnetization coexistence diam-
eter −dMd /dT along H� and �b� the finite-size scaling of the maxi-
mum of this derivative. For clarity, in �a� we only show a few of the
larger error bars for L=42. �Other error bars are smaller, particu-
larly away from the peaks.�

(a)

1 2 3 4 5 6
T

0

5

10

15

20

dP
/d

T
⎢ H

σ(T
)

5 10 20 40
L

10

1

dP
(L

)/
dT

⎢ C
E

∝ L
d

L=42

36

15

d=2

27

21

(b)

FIG. 6. �Color online� �a� 3D plot for the dP /dT calculated from
the density of states for L=30. �b� Singularities of the dP /dT along
the spectator phase boundary H��T�, and finite-size behavior of
dP /dT at the critical endpoint �inset�. For clarity, in �b� we only
show typical error bars for the larger lattice size. �Error bars for
other L are smaller than the ones shown for L=42.� The error bars
in the inset of �b� are not larger than the symbol sizes.
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�47� for the critical exponents of the latter model are 	
=1/3, �=1/9, 
=13/9, and 
=5/6. In order to verify that
our data are consistent with these conjectured exponents, we
study finite size scaling of derivatives of the order parameter
along Tc�H�. Because the order-parameter P behaves as
P�T�� ��T−Tc�H�� /Tc�H��� near the critical line Tc�H�, the
finite-size behavior of dP /dT at Tc�H� is

�dP�L�
dT

�
Tc�H�

� L�1−��/
. �13�

The finite-size scaling behavior of the susceptibility �p at the
critical line is

��p�L��Tc�H� � L
/
. �14�

Figure 8�a� shows dP /dT along Tc�H� for several lattice
sizes. Characteristic error bars shown for the L=42 data are
obtained from several independent runs. In the inset of Fig.
8�a�, our simulational data for dP /dT versus L at three criti-
cal points in a wide region of external field �H=−5, −4, and
−3� can be fitted well to the scaling form in Eq. �13� with
�1−�� /
=48/45
1.07, where we used the conjectured
critical exponents for the 2D Q=3 Potts model �47�.

The susceptibility �p along Tc�H� is shown in Fig. 8�b� for
several values of L. The finite-size behavior of �p in the inset
of Fig. 8�b� for different values of H scale well according to
the relation given in Eq. �14�, using the 2D Q=3 Potts
critical exponents 
 /
= �13/9� / �5/6�
1.73. The finite-size
scaling shown in the insets of Figs. 8�a� and 8�b� confirms
that the transition between phase C�−−+ � and phase
B�−−−� is in the same universality class as the 2D Q=3 Potts
model. Moreover, these results show that the critical expo-
nents do not change when we approach the critical endpoint
along the critical line Tc�H�.

VII. CONCLUSION

In summary, we use an efficient two-dimensional random
walk algorithm, known as the Wang-Landau method, to es-
timate the density of states g�E� ,M�� of an asymmetric Ising
model with two- and three-body interactions on a triangular
lattice, in an external field. With an accurate estimate of
g�E� ,M�� we were able to calculate thermodynamic quanti-
ties at any temperature T and in any external field H. We
mapped out the phase diagram of this model and observe a
clear divergence of the curvature of the spectator phase
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respective thermodynamic quantities at T=TCE and away from it
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for the larger lattice size. �Error bars for other L are smaller than the
ones shown for L=42.� The error bars in the insets are not larger
than the symbol sizes.

CRITICAL ENDPOINT BEHAVIOR IN AN ASYMMETRIC… PHYSICAL REVIEW E 75, 061108 �2007�

061108-7



boundary and of the magnetization coexistence diameter de-
rivative at the critical endpoint. The exponents for both di-
vergences agree well with the predicted values; however, the
finite-size scaling for the divergence of the curvature of the
spectator phase boundary includes a non-negligible back-
ground term. Our data suggest that there are small correc-
tions to finite-size scaling and an accurate estimate of these
terms requires using much larger system sizes. The nature of
the behavior of the system near the critical endpoint was
very well determined using finite-size scaling without having
to determine the value of the critical endpoint to six signifi-
cant digits.

Our finite-size analysis shows that the singularity for
dP /dT at the critical endpoint is not different from the first-
order phase transitions along the spectator phase boundary.

We also provide numerical evidence that the critical expo-
nents of the transition between phases B and C do not change
when we approach the critical endpoint along the critical
line. Thermodynamic quantities along the first-order line are
shown to scale with lattice size as Ld both at and away from
the critical endpoint.
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