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A reaction-diffusion master equation has been introduced in order to model the bistable CO oxidation on
single crystal metal surfaces at high pressure where the diffusion length becomes small and local fluctuations
are important. Analytical solutions can be found in a reduced one-component nonlinear master equation after
applying the Weiss mean-field approximation together with the adiabatic elimination of oxygen. It is shown
that the Weiss mean-field approximation predicts a symmetry-breaking bifurcation associated with a phase
transition. The corresponding stationary solutions of the nonlinear master equation are supported by Gillespie-
type Monte Carlo simulations.
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I. INTRODUCTION

Heterogeneous catalysis is an important part of chemical
industry but it also finds applications in environmental chem-
istry and energy conversion �1�. The elementary processes of
catalytic reactions are typically studied in surface science
type experiments with single crystal surfaces as model cata-
lysts. However, the workhorse of real catalysis is supported
catalysts where small metal particles of a few nanometer size
are supported on an oxidic support material. Due to the small
number of reacting particles on such nanoscale systems in-
ternal fluctuations in the adsorbate coverage become impor-
tant and this has been the motivation in the past to study
these fluctuations experimentally and theoretically �2–5�. As
proposed recently, such fluctuations may not only arise on
nanoscale surfaces but also on macroscopic surface planes if
we choose conditions which restrict the diffusion length of
adsorbed particles such that again the number of reacting
particles becomes sufficiently small �6�. In this publication
we present an analysis of fluctuations in catalytic CO oxida-
tion which applies to such a situation realized with a homo-
geneous catalytic surface at high enough pressure.

Fluctuations and fluctuation-induced phenomena have
been studied theoretically in many systems. The constructive
role of noise in these systems is well established. Phenomena
like noise-induced patterns, stochastic resonances, and sto-
chastic ratchets or Brownian motors are a few of the many
examples which have been analyzed �7–9�. In heterogeneous
catalysis stochastic resonances have been reported in models
of catalytic CO oxidation and catalytic NO reduction on Pt
surfaces �10,11�. The role of a ratchet potential in connection
with an ac electrical field has been studied in connection
with electromigration on stepped surfaces �12�. With field
electron microscopy the behavior of coverage fluctuations in
CO oxidation on a Pt field emitter tip was investigated, and it
was shown that fluctuations induce transitions between the
two stable kinetic stationary states that coexist in the bistable
range �2,3�. By varying the diameter of Pd particles it was
demonstrated by molecular beam experiments that bistability
in catalytic CO oxidation vanishes below a critical particle
size �4�. The influence of external noise has been studied
experimentally and theoretically with catalytic CO oxidation
on an Ir�111� surface �13,14�.

In order to understand coverage fluctuations in surface
reactions, various approaches have been formulated. Fluctua-
tions are naturally present in kinetic Monte Carlo �KMC�
type simulations, but this technique has the inherent disad-
vantage that the adsorbate mobilities are unrealistically low.
For this reason hybrid models have been formulated which
treat the fast diffusing species as a mean-field variable,
whereas the slow diffusing species are simulated with the
full KMC algorithm �15–18�. On the other hand, stochastic
simulations of catalytic CO oxidation have also been carried
out with mean-field equations using birth and death pro-
cesses to include the effect of fluctuations �19�.

KMC simulations are essentially numerical experiments
and do not constitute an analytic theory. An analytical ap-
proach was recently undertaken with a master equation de-
scribing the catalytic CO oxidation on a nanoscale surface,
where the reactants can be considered as well mixed �5�. It
was shown analytically that coverage fluctuations induce
transitions between the two stable kinetic stationary states of
the bistable region.

The area, in which the reactants in catalytic CO oxidation
can be considered as well mixed and which therefore can be
represented by a single ordinary differential equation �ODE�,
is given by the diffusion length of CO. On an extended single
crystal surface this area is macroscopic at low pressure, but
with increasing pressure the area becomes smaller. The num-
ber of gas particles impinging on the surfaces grows propor-
tional to the pressure and therefore the surface residence time
� of the adsorbate decreases with increasing pressure. Simul-
taneously the total adsorbate coverage will approach the
saturation limit and, since surface diffusion requires vacant
sites, the diffusion rate will become very low. Since the dif-
fusion length is given roughly by ��DCO the combined effect
will lead to a smaller and smaller diffusion length with in-
creasing pressure �DCO is the diffusivity�. Stochastic patterns
�“raindrop patterns”� observed in catalytic CO oxidation on
Pt�110� at 10−2 mbar were interpreted in this way and simu-
lations incorporating stochastic elements were able to repro-
duce this finding �6�.

Here we propose the following approach to model the
stochasticity of catalytic CO oxidation at high pressure on an
extended homogeneous surface. We envision the surface as
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being composed of an array of small compartments with
identical properties inside which the adsorbates are well
mixed. These compartments are coupled via CO diffusion.
Inside each cell the diffusion is assumed to be infinitely fast
and therefore each cell is represented by an ODE, which
describes the bistability of the reactive system but also al-
lows for fluctuations. The whole array of cells is represented
by a reaction-diffusion master equation �RDME� which per-
mits local fluctuations �20�. This equation describes the evo-
lution of the probability distribution function �PDF� for the
number of adsorbed molecules. One disadvantage of this
RDME is that an analytical solution is not available in gen-
eral �21�. Nevertheless, this problem can be solved in part by
introducing appropriate approximations. In this paper, we use
the Weiss mean-field approach and the adiabatic elimination
of fast variables �7,8�.

With these two approximations, we are able to solve the
RDME. These methods allow us to obtain a reduced RDME
and to get theoretical expressions for the PDF of the CO
coverage. In this way, we can construct the phase diagram of
the model as predicted by the Weiss mean-field approxima-
tion. This allows us to study the dynamic behavior of the
system depending on the cell size and on the coupling pa-
rameter between cells. We show evidence for a phase transi-
tion which is characterized by an ordered symmetry-breaking
state. It is reflected by an abrupt change in the order param-
eter depending on the strength of internal fluctuations and the
coupling parameter. Our theoretical results are compared
with stochastic simulations based on the Gillespie algorithm
using adiabatic elimination and the Weiss mean-field ap-
proach �22�.

The paper is organized as follows. The general model is
presented in Sec. II. The RDME for catalytic CO oxidation is
derived in Sec. III. Section IV is devoted to applying the
Weiss mean-field approximation to our RDME. The applica-
tion of adiabatic elimination and the solution of the RDME is
studied in Sec. V In Sec. VI the possibility of a phase tran-
sition in our bistable reaction model, as predicted by the
Weiss mean-field approximation, is explored. Summary and
conclusions are presented in Sec. VII.

II. STOCHASTIC REACTION-DIFFUSION MODEL

Catalytic CO oxidation is probably the most extensively
studied reaction in the field of surface science �1�. The el-
ementary steps of this reaction on noble metal surfaces such
as Pt, Pd, and Rh are well established and consist of the
following reactions:

CO�gas� + * → CO�ads� ,

CO�ads� → CO�gas� + * ,

O2�gas� + 2 * → 2O�ads� ,

CO�ads� + O�ads� → CO2�gas� + 2 * ,

with * and �ads� denoting a vacant adsorption site and ad-
sorbed molecules or adatoms, respectively �23,24�.

On a macroscopically large Pt surface the reaction se-
quence shown above produces bistability. Two stable kinetic
stationary states coexist on the parameter region of bistabil-
ity. Without fluctuations the macroscopic rate laws predict
that the system resides on one of two stationary stable states
for an infinite period of time. Decreasing the surface size to
nanoscale dimensions, fluctuations in the particle number in-
crease and transitions between the two stable states are now
possible. Until now most of the previous studies on fluctua-
tions in surface reactions focused on the coverage fluctua-
tions which develop in catalytic CO oxidation on well mixed
nanoscale surfaces at low pressure. In this case the analysis
is performed on a single L�L site square lattice �2–5,18,19�.

However, in order to study stochastic effects under con-
ditions of relative high pressure, a surface is divided into a
square lattice of cells, which are at the same time regarded as
well mixed and therefore are chosen to be smaller than the
diffusion length. Each small cell is represented as a L�L
=A square grid of adsorption sites and the reaction is de-
scribed using the traditional eight-site model which was first
introduced by James et al. �16�. Because we are working on
a perfect single crystal surface, the cells exhibit equal cata-
lytic activity �e.g., identical sticking coefficients�. The model
incorporates the following steps.

�i� CO�gas� adsorbs onto single empty sites at rate pCO.
CO�ads� hops very rapidly to other empty sites on the cell.
We consider below the case of infinitely mobile CO�ads�
inside each cell �16�, and neglect energetic interactions be-
tween CO�ads� and other CO�ads� and O�ads� adparticles.
This feature is important in order to produce the bistability
observed in experiments. The distribution of CO�ads� on
sites not occupied by O�ads� is random. CO�ads� desorbs
from the surface at a rate d. The parameter d corresponds to
the temperature in experiments, because CO desorption is the
strongest activated step in the Langmuir-Hinshelwood �LH�
sequence.

�ii� O2�gas� adsorbs dissociatively at diagonal nearest-
neighbor �NN� empty sites at a rate proportional to pO2

, pro-
vided that the additional six sites adjacent to these sites are
not occupied by O�ads�. This “eight-site rule” reflects the
very strong NN O�ads�-O�ads� repulsion of the �2�2� su-
perlattice ordering observed on Pt�111� �25�. This limits the
highest reachable oxygen coverage to 0.25. O�ads� is immo-
bile in the T range considered here due to its large bonding
energy, and it also cannot desorb.

�iii� Each adjacent pair of CO�ads� and O�ads� can react at
rate k to form CO2, which is immediately released into the
gas phase.

Here we are interested in high pressure conditions. The
cells have to be well-mixed and their size at high pressure
has to be chosen therefore to be of nanoscale dimensions.
Consequently, the deterministic description breaks down and
stochastic effects become relevant. A major change, com-
pared to our previous work �5�, concerns the treatment of CO
diffusion between cells. To study this type of diffusion we
adopted a similar model developed by Pavlenko et al. in the
context of CO oxidation on nanoscale Pt facets �26�. In con-
trast to our case the facets there exhibited different orienta-
tions and hence a different reactivity.
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�iv� CO�ads� can diffuse at a finite rate from each cell to
empty sites on the adjacent cells. CO�ads� would hop across
a common imaginary edge of length L=�A to adjacent empty
sites at rate h �microscopic hop rate or coupling parameter�.
The diffusion is mimicked by the transition of CO�ads� from
one cell to another at rate �in molecules per unit time�
h�NCO,i times the probability that a site is empty in the other
cells, where h�=h /L.

We choose pCO+ pO2
=k=1, which sets the time scale. Fi-

nally, the system is controlled by the partial pressure pCO, the
desorption rate d, the coupling parameter h, and the number
of adsorption sites A. The model is still simplistic. It does not
support oscillatory kinetics, but it describes the bistability
observed in experiment �19,27–29�.

When h=0, previous studies using KMC and ODE reveal
bistability in this model for d�dC, where dC corresponds to
a cusp bifurcation point. Two stable kinetic stationary states
coexist in parameter space for a range of pCO

− � pCO� pCO
+ .

On the active stationary state the surface is predominantly
oxygen covered. On the inactive stationary state a high CO
coverage inhibits O2 adsorption and hence poisons the reac-
tion. These stable states are connected by an unstable state
producing an S-shaped plot of steady state coverage versus
pCO. For this model dC=0.048 and pCO

C =0.40 �5,15,16�.
Here, we use the multistable behavior described above as a
prototype of bistability inside each cell.

III. REACTION-DIFFUSION MASTER EQUATION

The master equation describes the PDF of populations in
a chemical reaction �30�. Normally, these master equations
consider a global description of fluctuations in the sense that
the system is treated as if it remained homogeneous. Of
course, this description breaks down if we consider high
pressure conditions. To obtain an adequate master equation
formulation of the reaction diffusion system for CO oxida-
tion, the cells of side length L are considered as well mixed
and smaller than the diffusion length. We assume infinite
diffusion of CO molecules inside a cell, and diffusion events
between cells are considered to be much more frequent than
chemical reactions. The state of the system is described by
the probability distribution P�NCO,i ,NO,i ; t� of finding a set of
populations Z= �NCO,i ,NO,i�, with i=1, . . . ,M denoting the
number of cells. Finally the PDF is governed by the follow-
ing RDME �20,31–34�:

dP�Z;t�
dt

=
dPreac

dt
+

dPdiff

dt
. �1�

The reaction and diffusion terms of this equation will be
derived in the following subsections.

A. Reaction jump Markov processes

The transition rates W�
i �NCO,i ,NO,i� and population

changes of the particle number of carbon monoxide �NCO,i�
and oxygen �NO,i� are

W1
i �NCO,i/NCO,i + 1� = pCO�A − NCO,i − NO,i� ,

W2
i �NCO,i/NCO,i − 1� = dNCO,i,

W3
i �NO,i/NO,i + 2� = 2pO2

SA
i �NCO,i,NO,i,A� ,

W4
i �NCO,i,NO,i/NCO,i − 1,NO,i − 1� =

4kNO,iNCO,i

�A − NO,i�
.

We require 0�NCO,i+NO,i�A, where a small number of ad-
sorption sites A produces high coverage fluctuations. The
term NCO,i / �A−NO,i� in W4

i �NCO,i ,NO,i� assumes that inside a
cell each site adjacent to an O�ads� is occupied randomly by
CO�ads�.

SA
i �NCO,i ,NO,i ,A� is the normalized sticking probability

for oxygen, i.e., the probability of finding two next NN
empty sites with all six NN sites not occupied by oxygen
�eight-site rule� �3,16�. This term can be written as

SA
i �NCO,i,NO,i,A� = A

�A − NCO,i − NO,i�2�A − 2NO,i�8

�A − NO,i�10 . �2�

As in previous works, the reaction part of the more general
RDME is expressed in the following way:

dPreac

dt
= �

i=1

M

�
�=1

4

�W�
i �Z − v�/Z�P�Z − v�;t�

− W�
i �Z/Z − v��P�Z;t�� , �3�

where the vectors v�= �v�
n�n=1

2 are the stoichiometric vectors.
It can be shown that in the macroscopic limit of large

reacting surfaces and at low pressures, this master equation
reproduces the deterministic predictions �5,18,19�.

B. Diffusion random walk

In order to model diffusion we assume that each absorbed
CO molecule can do a random walk between adjacent cells.
Like the reaction part, one can construct the transition prob-
abilities �31�:

W5
i �NCO,i/NCO,i − 1� =

h�

2s
NCO,i�

l

�1 − 	CO,i+l − 	O,i+l� ,

W6
i �NCO,i/NCO,i + 1� =

h�

2s
�1 − 	CO,i − 	O,i��

l

NCO,i+l.

The sum l runs over the first nearest neighbors of the cell
i, and s represents the space dimension. 	CO,i and 	O,i are
NCO,i /A and NO,i /A, respectively. The factors in
W5

i �NCO,i /NCO,i−1� simply represent the transition of
CO�ads� from one cell to another at a rate �in molecules per
unit time� h�NCO,i times the probability that a site is empty in
the first nearest neighbor cells, where h�=h /L.
W6

i �NCO,i /NCO,i+1� is interpreted in the same way. Now one
can write the diffusion term of the RDME as

dPdiff

dt
= �

i=1

M

�
�=5

6

�W�
i �NCO,i − 1/NCO,i�P�NCO,i − 1,NCO,i+l + 1;t�

− W�
i �NCO,i�P�NCO,i;t�� . �4�
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Notice that, as cell area is increased, we have less and less
effect from diffusion. In the same way the diffusion domi-
nates over the reaction part for small areas. This interplay
between diffusion and reaction is a direct consequence of the
reaction and diffusion transition probabilities which depend
on L in different ways.

The coarse-grained description of our RDME is valid
when CO molecules inside each cell are considered to be
candidates for a reactive collision, and if the diffusion be-
tween cells occurs much more frequently than chemical re-
actions. This description provides a simple generalization of
deterministic reaction-diffusion equations. If one is inter-
ested in stochastic effects, it is also possible to consider a
reaction-diffusion Langevin equation �a deterministic
reaction-diffusion equation plus a random term� which can
be derived directly from the stochastic discrete model �31�.
However, contrary to the Langevin approach, the RDME
used here provides a mechanistic view of the dynamics at the
molecular level �30�.

IV. WEISS MEAN-FIELD APPROXIMATION

We begin with considering the traditional Weiss mean-
field approach from the theory of equilibrium critical phe-
nomena �20,35,36�. In analogy with many-body theory one
can expect that each cell in this approximation would interact
with an averaged environment. It is well known that mean-
field theory gives a rough qualitative picture of the phase
transition in systems of lower dimensionality, but it is not
quantitatively correct. Nevertheless, we expect from the
wealth of experience in equilibrium phase transitions that
mean-field theories will be essentially exact in four or more
dimensions �37�. In this approximation, one neglects the cor-
relation between neighboring cells. Basically, the nearest-
neighbor interaction is replaced by a global interaction
through an average field. Here, �1/2s��l�1−	CO,i+l−	O,i+l�
and �1/2s��lNCO,i+l are replaced with �1/ �M −1��� j=1,j�i

M �1
−	CO,j −	O,j� and �1/ �M −1��� j=1,j�i

M NCO,j, respectively. The
cells are supposed to interact all to all throughout the global
coupling.

If one considers the case that the number of cells, M, goes
to infinity, one can postulate

lim
M→


1

M − 1 �
j=1,j�i

M

�1 − 	CO,j − 	O,j� = �1 − 	CO
m − 	O� , �5�

lim
M→


1

M − 1 �
j=1,j�i

M

NCO,j = NCO
m . �6�

In this limit the cells have identical evolution given by the
following transition probabilities:

W1�NCO/NCO + 1� = pCO�A − NCO − NO� ,

W2�NCO/NCO − 1� = dNCO,

W3�NO/NO + 2� = 2pO2
SA�NCO,NO,A� ,

W4�NCO,NO/NCO − 1,NO − 1� =
4kNONCO

�A − NO�
,

W5�NCO/NCO − 1� = h�NCO�1 − 	CO
m − 	O� ,

W6�NCO/NCO + 1� = h��1 − 	CO − 	O�NCO
m .

Because oxygen does not diffuse and the sticking prob-
ability is identical in all cells, we eliminate the index i from
NO,i. We also introduce the order parameter NCO

m =A	CO
m ,

which is defined by the self-consistent equation

��NCO
m � = NCO

m = �
NCO,NO

NCOPst�NCO,NO,NCO
m � . �7�

Note that NCO
m =A	CO

m is the average value of CO molecules
inside each cell. This first moment or mean value is an order
parameter that determines the occurrence of a phase transi-
tion. The multiple solutions of this complicated equation re-
flect the possibility of bifurcations that break the ergodicity
associated with the presence of a true phase transition �35�.
Finally, we have a mean-field coupling master equation
�MFCME� without spatial correlations,

dP�Z,NCO
m ;t�

dt
=

dPreac

dt
+

dPMF

dt
, �8�

where Z= �NCO,NO�.
The challenge now is to solve this MFCME in order to

obtain the stationary probability distribution Pst�Z ,NCO
m �, and

then to solve Eq. �7� in order to investigate the possibility of
a phase transition in our model. Like other nonequilibrium
problems related to a noise-induced phase transition,
Pst�Z ,NCO

m � is not available in general �38�. At this point, we
are forced to introduce a new approximation: The so-called
adiabatic elimination of fast variables.

V. ADIABATIC ELIMINATION OF OXYGEN

Theoretical methods for the adiabatic elimination of fast-
relaxing variables from master equations have received a
great deal of interest in past years �39–41�. This is motivated
partially by the fact that in most cases it is difficult or im-
possible to solve this equation. It is also known that for large
complicated chemical networks, model reduction often pro-
vides a way to efficient computational methods. These tech-
niques assume that fast variables are in a quasisteady state
with respect to the remaining slow variables. If the quasi-
steady state distributions conditioned on the slow variables
can be determined, then they can be used to eliminate the
fast variables. Under some conditions one can approximate
the corresponding fast variable using Langevin or determin-
istic equations �42�.

As shown recently, in catalytic CO oxidation NO is the
fast variable and NCO is the slow one. This was reported first
by Bär et al. in a deterministic model �43�. More recently, we
observed that the same assumption can be used in a homo-
geneous stochastic model at low pressure �5�. Finally, new
transition probabilities can be constructed after adiabatic
elimination of oxygen.
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For the reaction part we use

W̃1�NCO/NCO + 1� = pCO�A − NCO − ÑO� ,

W̃2�NCO/NCO − 1� = dNCO,

W̃3�NCO/NCO − 1� =
4kÑONCO

�A − ÑO�
,

and for the diffusion random walk

W̃4�NCO/NCO − 1� = h�NCO�1 − 	CO
m − 	̃O� ,

W̃5�NCO/NCO + 1� = h��1 − 	CO − 	̃O�NCO
m .

The transition probability associated with the oxygen ad-
sorption is eliminated from the stochastic description. Note

that the notation is changed from NO to ÑO in order to em-
phasize that oxygen has been adiabatically eliminated.

The time scale separation between the two random vari-
ables NO and NCO is large enough that one can decompose
the joint PDF as

P�NCO,ÑO,NCO
m ;t� = G�NCO,NCO

m ;t�F�ÑO:NCO;t� ,

where F�ÑO:NCO; t� is the quasisteady state conditional PDF

with NCO kept constant. F�ÑO:NCO; t� is a sharply peaked

monomodal function around ÑO. Thus ÑO=A	̃O is a solution
of

d	̃O

dt
= 2�1 − pCO�

�1 − 	CO − 	̃O�2�1 − 2	̃O�8

�1 − 	̃O�10
−

4	CO	̃O

�1 − 	̃O�
,

�9�

for each NCO=A	CO �5�. Note that we approximate the sto-
chastic fast variable by using the deterministic equation cor-
responding to this variable. It is just an approximation, which

holds true for a sharply single peaked function F�ÑO:NCO; t�.
A generalization obviously must include higher moments,
too �38�.

This approximation allows us to construct a new one
component nonlinear MFCME for NCO alone. Considering
that now Z= �NCO�, this new master equation describes the
behavior of the new probability distribution G�NCO,NCO

m ; t�.
In the Appendix, we derive master equations for

G�NCO,NCO
m ; t� and F�ÑO:NCO; t� from the master equation

of P�NCO, ÑO,NCO
m ; t�.

The new one-component MFCME can be written as

dG�Z,NCO
m ;t�

dt
=

dGreac

dt
+

dGMF

dt
. �10�

G�NCO,NCO
m ; t� is the PDF of one cell and its environment

after neglecting the spatial correlation. This nonlinear one-
component MFCME can be written in the function of the
new transition probabilities in the following way:

dG�NCO,NCO
m ;t�

dt
= H1�NCO − 1�G�NCO − 1,NCO

m ;t�

− H1�NCO�G�NCO,NCO
m ;t�

+ H2�NCO + 1�G�NCO + 1,NCO
m ;t�

− H2�NCO�G�NCO,NCO
m ;t� , �11�

where

H1 = W̃1 + W̃5,

H2 = W̃2 + W̃3 + W̃4.

The probability distribution G�NCO,NCO
m ; t� approaches a

stationary shape, which includes macroscopic transitions be-
tween the stable states of the deterministic approach. The
final shape of G�NCO,NCO

m ; t� is in agreement with the solu-
tion dGst�NCO,NCO

m � /dt=0, and vanishing probability flux. In
this case, detailed balance holds and one finds

H1�NCO − 1�Gst�NCO − 1,NCO
m � = H2�NCO�Gst�NCO,NCO

m � ,

�12�

and subsequently

Gst�NCO,NCO
m � = 	

N=1

NCO H1�N − 1�
H2�N� 
1 + �

k=1

A

	
N=1

k
H1�N − 1�

H2�N� �−1

.

�13�

This equation is the normalized stationary PDF for the occu-
pation of sites with NCO molecules.

After adiabatic elimination Eq. �7� can be written as

��NCO
m � = NCO

m = �
NCO,ÑO

NCOGst�NCO,NCO
m �Fst�ÑO:NCO� ,

�14�

and considering

�
ÑO

Fst�ÑO:NCO� = 1, �15�

the new self-consistent equation or order parameter of the
system can be written as

��NCO
m � = NCO

m = �
NCO

NCOGst�NCO,NCO
m � . �16�

Note that this order parameter is the mean value of the
CO coverage obtained from the PDF. In our problem two
cases are possible. �i� The PDF is unique, and the order pa-
rameter has only one value. �ii� We have several monomodal
PDFs and the order parameter has several solutions, one for
each PDF.

VI. EVIDENCE FOR A PHASE TRANSITION

Inside each cell bistable behavior is possible, and the
number of adsorption sites A is of nanoscale dimension.
Thus fluctuation-induced transitions from the active to the
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inactive state and vice versa may occur. This property opens
up the possibility of studying the interplay of coverage fluc-
tuations induced by a small number of adsorption sites, and
the coupling between cells.

We are only interested in the fluctuations that are induced
by a small number of adsorption sites, and not in the fluc-
tuations that occur near the cusp bifurcation point �where the
mean-field approximation breaks down because the correla-
tions become important�. In this paper the pressure and the
desorption rate are chosen as pCO=0.36715 and d=0.030,
respectively. Note that this point is relatively far away from
the cusp bifurcation point, which for this model in the infi-
nite adsorption site limit is found at �pCO

C =0.40, dC=0.048�
�5�. First, we consider the case that the coupling between
cells is zero and the cells are independent systems described
by simple master equations which allow only global fluctua-
tions. Inside of each cell CO molecules can diffuse infinitely
fast, and this naturally produces bistability. As an example,
Fig. 1 shows a typical bimodal stationary PDF for the case
when h=0 with A=100, 400, and 1000. Note that, if A de-
creases, the transitions between the two stable states will
increase. This result is in accordance with experiments of
fluctuation-induced transitions in CO oxidation on a Pt field
emitter tip, and with CO oxidation on Pd nanoparticles
�2,4,5�. However, when the coupling parameter h increases,
the CO molecules can jump from cell to cell and a RDME
approach is necessary. Then it is clear that the order param-
eter defined by Eq. �16�, which is derived from the Weiss
mean-field approximation, becomes the most important vari-
able of the model in order to study the possibility of phase
transitions. A true phase transition is detected when an abrupt
change in this order parameter is observed as a function of
control parameters.

If the order parameter has only one solution, it is expected
that the system evolves to a collective highly symmetric
state. In this state of high symmetry, the cells relax to a
unique mean value with only one stationary PDF. For other
parameter values, multiple mean value solutions are possible
and the system relaxes to a collective low symmetry state,
where the cells randomly approach one or another solution

depending on the initial conditions. In this case, one con-
cludes that there are several corresponding stationary PDFs,
and the mean-field theory predicts a phase transition. The
latter case can be understood as a breaking of the symmetry.

Figure 2 shows a graphical representation of Eq. �16�. All
the self-consistently determined solutions are given by the
intersection of the diagonal line with the curve ��NCO

m �. In
Fig. 2�a� two typical cases are shown for two values of h and
with the number of adsorption sites A=400. For h=0.1 only
one solution is observed �solid line�. In this case a homoge-
neous highly symmetric state dominates. As the coupling is
increased, for h=2 three solutions appear which represent a
low symmetric state �dashed line�. Figure 2�b� shows that for
A=100 only one solution is observed for the whole range of
h. Note that we plot the self-consistent equation as a function
of the CO coverage.

In order to clarify these latter observations, we perform an
analysis of bifurcation diagrams of NCO

m as function of h and
the corresponding stationary PDFs. Figure 3�a� shows one of
these bifurcation diagrams with A=400. Here, one solution
remains stable �the lower branch�, while a new stable solu-
tion and unstable solution appear above some critical value
of h. For small coupling NCO

m is unique �case I� and one
bimodal stationary PDF as in Fig. 3�b� is observed. If the
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FIG. 1. Stationary probability distribution Gst�NCO� obtained
from Eq. �13� considering only the bistable behavior inside one
single cell �h=0�, with pCO=0.36715, d=0.030, and the number of
adsorption sites A=100 �solid line�, 400 �dashed line�, and 1000
�dotted line�.
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FIG. 2. Solutions of the self-consistent equation �16�. The solu-
tions are given by the intersection of ��NCO

m � with the diagonal solid
line. �a� Here A=400, and the solid line, which corresponds to h
=0.1, shows only one stable solution of this equation �highly sym-
metric state�. On the other hand, the dotted line, which now corre-
sponds to h=2, shows three solutions �low symmetry state�. �b� In
this case A=100, and for the whole range of h one observes only
one solution �highly symmetric state�. The reaction parameters are
pCO=0.36715 and d=0.030.
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coupling increases, the system behavior departs from that of
the small coupling until a bifurcation takes place to a region
where two new solutions appear �cases II and III�. Here, a
subset of cells may have a tiny preference to the upper solu-
tion, while the rest may have a certain preference to the
lower solution, with the result that the overall behavior is not
fully symmetric. In this case, the intermediate solution is
unstable. These solutions, of course, correspond to three dif-
ferent monomodal PDFs. Figure 3�c� shows these PDFs. The
PDF represented by the dotted line corresponds to the un-
stable solution, and it is not observed in simulations. Here
one observes cells with high 	CO coexisting with cells of low
	CO. In Fig. 4�a�, we plot the same as in Fig. 3, but now with
A=100. From this figure it is clear that only the lower solu-
tion of Fig. 3�a� is observed and corresponds to one stable
stationary PDF. Nevertheless, this PDF can change from a
bimodal shape to a monomodal shape as shown in Figs. 4�b�
and 4�c�.

Obviously, when one decreases the cell size and increases
the parameter h, the whole system behaves in a different
way. This different behavior arises from the different scaling
of the diffusion and reaction part of the RDME, as men-
tioned earlier. On a small surface the diffusion dominates,
since fluctuations arising from diffusion come about because
the molecules are jumping back and forth across the bound-
ary of length L. Conversely, for larger surfaces, we find the
diffusion between cells is negligible and only reaction domi-
nates �44�.

The phase diagram in the parameter space �h ,A�, showing
only two phases as predicted by the mean-field approach, is
shown in Fig 5. One region consists of two stable solutions
and one unstable solution of Eq. �16� corresponding to three
PDFs �low symmetry state�. The second region is character-
ized by only one PDF corresponding to one stable solution of
the order parameter �highly symmetric state�.

In order to verify the analytical results, simulations have
been carried out with the Gillespie algorithm �24,45�. This
algorithm has received much attention in past years �46,47�.
For instance, some efficient generalizations to extended sys-
tems have been introduced �48,49�. Here, in contrast to the
normal algorithm, we have taken into account the adiabatic
elimination of oxygen and the Weiss mean-field approxima-
tion. The computer simulations have been carried out with M
or the number of cells equal to 2000. We choose appropriate
initial conditions, long simulation time, and parameters as in
the previous theoretical part. Figure 6�a� shows the two
PDFs inside the region of low symmetry with A=400. In Fig.
6�b� the stationary PDF, but now with A=100, is shown. This
result is also in accordance with the highly symmetry state
predicted by analytical solutions.

VII. SUMMARY AND CONCLUSIONS

We have analyzed theoretically the interplay between in-
ternal fluctuations and diffusion in a model of the bistable
CO oxidation reaction which applies to the case of a catalytic
surface at high enough pressure. At higher pressure the ad-
sorption rates grow proportionally to the pressure, the diffu-
sion length decreases, and smaller and smaller patches of the
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FIG. 3. Solution of Eq. �16� as a function of the coupling pa-
rameter h and the corresponding stationary probability distribution
functions. �a� Here, we show the bifurcation diagram of NCO

m . First,
for small enough h, the model is in a state of high symmetry where
only one solution is observed �case I�, but above some critical value
of h the model presents a low symmetry state characterized by three
solutions. The two extreme solutions are stable �cases II and IV�,
and the intermediate one represented by the dotted line is unstable
�case III�. �b� Bimodal stationary probability distribution for case I.
�c� Three monomodal stationary probability distributions for cases
II, III, and IV. The CO pressure and desorption rate are constant
with pCO=0.36715 and d=0.030. Each cell also has the same num-
ber of sites A=400.
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surface can be regarded as well mixed. Consequently, sto-
chastic fluctuations become important. In this publication
stochastic effects are taken into account by dividing the sur-
face into a square lattice of nanoscale cells, each containing
A adsorption sites. A reaction-diffusion master equation for
the probability of finding CO and oxygen coverage at a time
t, that allows local fluctuations, is introduced. We are able to

solve this complicated reaction-diffusion master equation af-
ter invoking the Weiss mean-field approach together with the
adiabatic elimination of oxygen. This allows an estimation of
the probability distribution of adsorbed CO molecules as a
function of the coupling parameter h and the number of ad-
sorption sites A. Subsequently, the phase diagram in the pa-
rameter space �h ,A� is constructed. Assuming that the
bistable behavior is possible inside each cell, we show that
the phase diagram, as predicted by the Weiss mean-field ap-
proximation, is split into two regions. An analysis of the
probability distribution shows evidence for the existence of a
phase transition associated with the bifurcation of the first
moment of the CO coverage. The first moment plays the role
of the order parameter which characterizes this phase transi-
tion. These analytical results have been found to be in rea-
sonable agreement with Gillespie-like Monte Carlo simula-
tions, taking into account the adiabatic elimination of oxygen
and the Weiss mean-field approximation.

It remains to verify of course the range of validity of the
Weiss mean-field predictions. We underline that this approxi-
mation assumes a different molecular exchange process. Lo-
cal diffusional exchange is replaced by nonlocal interaction
with a large number of identical neighbors. Hence the ap-
proach used here can be seen as a first mathematical treat-
ment to find analytic results. As several studies show
�7–9,35,38�, the approach often predicts qualitatively correct
answers, but fails quantitatively. Therefore, also in this case
the boundaries of the validity of this approach have to be
determined in high dimensional numerical simulations.

It is important to emphasize that, at high pressure, tem-
perature effects are relevant and should also be taken into
account for an improved model �50�. In this high pressure
regime, due to the high coverage, energetic interactions be-
tween the adspecies will play an important role which needs
to be adequately described in a realistic model �51�. Our
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FIG. 4. The same as Fig. 3, but now with A=100. �a� Bifurca-
tion diagram of NCO

m as a function of h. It is clear that only the lower
solution of Fig. 3�a� is physical and corresponds to one stationary
probability distribution function. Figures �b� and �c� show that this
probability distribution function can change from a bimodal shape
to a monomodal shape.
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FIG. 5. Phase diagram in the �h ,A� plane as predicted by the
mean-field approximation, with pCO=0.36715 and d=0.030. The
regions with different numbers of solutions clearly indicate a phase
transition. In the region where one stable solution of Eq. �16� is
observed, a highly symmetric homogeneous state dominates the
system. On the other hand, in the region where two stable solutions
of this equation are possible, a low symmetry state with a structure
characterized by coexisting cells with high and low CO coverage
will dominate.
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model can in principle be used to study fluctuations on inho-
mogeneous metal surfaces, where structural defects of such
steps or impurities are present. The structural defects can be
considered as small regions on the surface with different ki-
netic parameters coupled by CO diffusion. An interesting
extention could also be to use stochastic models, like the
master equation used in this paper, in order to study an array
of nanoparticles coupled globally through the gas phase �52�.

The results shown in this paper demonstrate that noise can
play an important role in catalytic systems. This opens up
new perspectives for the study of noise-induced effects be-
cause conditions with a small enough mixing area will be
realized in many catalytic reactions at high pressure.
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APPENDIX: ADIABATIC ELIMINATION

In this appendix we derive the one-component master
equation for G�NCO,NCO

m , t�, using adiabatic elimination of
oxygen �5�.

One can partition the system into two: The fast NCO and

the slow ÑO variables. Then we consider Z= �NCO, ÑO�, with
the stoichiometric coefficients v1= �1,0�, v2= �−1,0�, v3

= �0,2�, v4= �−1,−1�, v5= �−1,0�, and v6= �1,0�. From the

time scale separation we have taken that P�NCO, ÑO; t�
=G�NCO,NCO

m ; t�F�ÑO:NCO; t�, where F�ÑO:NCO; t� is the
conditional probability for NCO kept constant. Note also that

we changed the notation from NO to ÑO. We also require

�
NCO

G�NCO,NCO
m � = 1, �A1�

�
ÑO

F�ÑO:NCO� = 1. �A2�

Inserting P�NCO, ÑO; t�=G�NCO,NCO
m ; t�F�ÑO:NCO; t� into

Eq. �8� and summing up over ÑO, we obtain

dG�NCO,NCO
m ;t�

dt
= H1�NCO − 1�G�NCO − 1,NCO

m ;t�

− H1�NCO�G�NCO,NCO
m ;t�

+ H2�NCO + 1�G�NCO + 1,NCO
m ;t�

− H2�NCO�G�NCO,NCO
m ;t� .

We consider the new transition probabilities of Sec. V

H1 = W̃1 + W̃5,

H2 = W̃2 + W̃3 + W̃4,

with

W̃�NCO� = �
ÑO

W�ÑO,NCO�F�ÑO:NCO� , �A3�

given the conditional expectation of W�ÑO,NCO�.
On the other hand, the chemical master equation of the

conditional probability distribution F�ÑO:NCO; t� with NCO

kept constant is given by

dF�ÑO:NCO;t�
dt

= W3�ÑO − 2�F�ÑO − 2:NCO;t�

− W3�ÑO�F�ÑO:NCO;t�

+ W4�ÑO + 1�F�ÑO + 1:NCO;t�

− W4�ÑO�F�ÑO:NCO;t� . �A4�

This master equation depends only on W3 and W4, which
are derived in Sec. IV. Due to the time scale separation,

F�ÑO:NCO; t� will quickly relax to a stationary distribution.
Hence moments in the conditional transition rates become
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FIG. 6. Stationary probability distribution functions of one cell,
obtained from the Gillespie algorithm with random initial condi-
tions and long simulation times. �a� Here, typical stationary prob-
ability distribution functions inside the region of low symmetry for
A=400 are shown. �b� For A=100, the diffusion dominates over the
reaction, and a monomodal probability distribution around the mean
value is obtained. This distribution is independent of the initial con-
ditions. The Gillespie algorithm was extended in order to consider
the adiabatic elimination of oxygen and the Weiss mean-field ap-
proximation. The computer simulations have been carried out with
2000 cells.
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stationary as well as independent of the initial condition

value ÑO. Because Fst�ÑO:NCO� is sharply peaked and mono-
modal, the conditional first and higher moments are given by
the stationary attractive coverage of the fast deterministic
dynamic with 	CO kept constant �5�. In our case, the oxygen
is the fast variable, and the deterministic equation of it is
given by

d	̃O

dt
= 2�1 − pCO�

�1 − 	CO − 	̃O�2�1 − 2	̃O�8

�1 − 	̃O�10
−

4	CO	̃O

�1 − 	̃O�
.

�A5�

This last equation can be obtained from a standard pair or
Kirkwood approximation �16�.
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