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The damage spreading �DS� method provided a useful tool to obtain analytical results of the thermodynam-
ics and stability of the two-dimensional �2D� Ising model—amongst many others—but it suffered both from
ambiguities in its results and from large computational costs. In this paper we propose an alternative method,
the so-called self-overlap method, based on the study of correlation functions measured at subsequent time
steps as the system evolves towards its equilibrium. Applying Markovian and mean-field approximations to a
2D Ising system we obtain both analytical and numerical results on the thermodynamics that agree with the
expected behavior. We also provide some analytical results on the stability of the system. Since only a single
replica of the system needs to be studied, this method would seem to be free from the ambiguities that afflicted
the DS method. It also seems to be numerically more efficient and analytically simpler.
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I. INTRODUCTION

The damage spreading �DS� method �1� is a remarkable
tool amongst the many ones developed in recent years in the
effort to understand the dynamics of cooperative systems.
Very roughly speaking the goal of the method is to study the
stability of a cooperative system under a small perturbation:
if perturbations die off after some time then the system must
be in a stable, ordered state; if small perturbations always get
amplified, however, then the system must be in a disordered,
chaotic state. By studying how far away the final states are
from the initial ones given the initial perturbation one can get
information about the system such as, for example, the
Lyapunov exponents.

Of course there is a key aspect that differentiates coopera-
tive systems from classical dynamical systems. Namely, that
in the former case, given the complexity of the systems un-
der study we almost never have at our disposal a detailed
analytical solution to the equations of motion in order to
study the system’s stability under perturbations. Here is
where the DS method comes in: its operational side amounts
to an algorithm designed to study how small perturbations
spread within the system by working in detail how each of
the system’s components react to the changes. The method
has been applied to many different dynamical systems such
as Ising systems �2–6,9–11�, Kauffman networks �12–14�,
spin glasses �15,16�, and cellular automata �17� amongst oth-
ers, yielding in many cases useful information about their
evolution and stability. Succinctly speaking, the algorithm
analyzes the evolution of two almost identical states of the
system. The damage �difference between the two initial
states� is specified as part of the initial conditions. That is, on
one side we have a specified state of the system, and on the
other we have a replica that only differs in a small perturba-
tion �the damage� from this original state. One then fixes the
stochastic evolution to be the same for each replica �in a
Monte Carlo simulation the method imposes the same ran-
dom numbers at each step of time on both copies, for in-

stance�. As we let the two copies evolve, the method ana-
lyzes their distance �Hamming distance� as a function of
time. Useful information about the system can then be ex-
tracted from this, not only numerically but in some cases also
analytically.

However, as was shown in �7–9� �and references therein�
DS has been shown to be ill-defined in the sense that
different—and equally legitimate—algorithmic implementa-
tions of the same physical system’s dynamics can yield dif-
ferent DS properties. This ambiguity stems from the fact that
while the transfer matrix for the evolution of a single system
is completely determined by the one-point correlation func-
tions �9�, the simultaneous evolution of two replicas, how-
ever, is governed by a joint transfer matrix determined by
two-point correlation functions. For example, Glauber and
both standard and uncorrelated heat bath �HB� algorithms
satisfy detailed balance with respect to the same Hamil-
tonian. It follows that these three different update rules gen-
erate the same equilibrium ensemble and are therefore
equally legitimate to mimic the evolution in time of an Ising
system coupled to a thermal reservoir. Accordingly, the one-
point correlation functions for the three cases coincide and
the corresponding transfer matrices for single systems are
identical. On the other hand the two-point functions for HB
and Glauber dynamics are different; hence damage evolves
differently in either case �see �9� and references therein for a
extended quantitative version of this argument�. As long as
the results depend on the algorithm being implemented, one
cannot assert that the results obtained from a given DS
analysis are conclusive and unambiguous.

This handicap is a major motivation in order to search for
an alternative method of stability analysis. Our goal in this
paper will be to propose a different approach to study the
stability of cooperative systems. By relying heavily on the
above-mentioned fact that the evolution of a single system is
determined only by the one-point correlation functions we
will try to eliminate some of the ambiguities found in the DS
method.

In order to be specific, as a test case we will focus on the
study of a well-known type of system: Ising models. In �2�
Vojta tackled the two-dimensional �2D� Glauber-Ising model
via DS. He obtained results on the thermodynamics �magne-*lucas@dmae.upm.es
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tization, ferromagnetic transition� and stability �regular vs
chaotic behavior� of the model both analytically and numeri-
cally. Due to the nature of the method, however �at every
step of time we must keep account of the two replicas�, there
is obvious room for improving the computational efficiency.
This is also the case in the analytical realm, where account-
ing for the way in which at each step of time the differences
between the two copies may increase inevitably leads to
lengthy computations �as was shown in �2–6��. This on itself
constitutes a second motivation in order to search for alter-
native methods.

The method of analysis that we will propose here, so-
called the self-overlap �SO� method �18–20�, has already
been successfully used in the study of the stability and criti-
cal points of random Boolean networks, a system that is
multicomponent albeit deterministic. In this work we will
show that the method can also be successfully applied to a
stochastic system such as a spin network. We will obtain
analytical and numerical results on the 2D Glauber-Ising
model that exactly match those yielded by DS. However,
contrary to DS, SO proceeds by handling only one replica
and analyzing its own evolution in time, using basically one-
point correlation functions at subsequent time steps for that
task. The computational costs are thus lower in SO than in
DS. As we will see the analytical calculations also become
much simpler while yielding the same results. Furthermore,
and what is more important, the SO method is free from the
ambiguities that afflicted DS due to its use of two replicas.
This comes as a direct consequence of the already mentioned
fact that on a single replica it does not matter whether one
uses Glauber or HB dynamics since they possess the same
one-point correlation functions.

We will follow the development applied by Vojta in �2�,
comparing in each case the results obtained using DS and
our results �using SO�. The paper is organized as it follows:
in Sec. II we quickly introduce both the 2D Glauber-Ising
model and SO. We then apply the method to the 2D Glauber-
Ising model in Sec. III, obtaining a system of equations
�master equation� that describe the dynamical evolution of
the system. We discuss then how to apply a mean-field ap-
proximation to the system, and compare it with the method-
ology used by Vojta �2�. In Sec. IV we obtain an analytical
expression for the magnetization of the system in both
ferromagnetic/paramagnetic phases similar to that obtained
by Vojta �2�. Numerical results are provided at this point in
order to validate the mean-field approximation assumed in
the analytical development. Finally, in Sec. V we provide
some analytical and numerical results on the stability of the
model, showing that the system is chaotic �disordered� in the
paramagnetic phase. Conclusions are presented in Sec. VI.

II. ISING MODEL, DAMAGE SPREADING VS
SELF-OVERLAP METHOD

A. Glauber Ising model

We will work with a kinetic Ising model, a lattice of N
spins, si� �+1,−1�, that follows Glauber dynamics. That is,
at every time step a lattice site i is chosen at random. If the

spin value of site i at time t is given by si�t�, at time t+1 it
will be given by

si�t + 1� = sgn���hi�t�� −
1

2
+ si�t���i�t� −

1

2
	
 , �1�

where �i�t� is a random number such that �i�t�� �0,1�. The
transition probability ��hi� is given by the usual Glauber
expression:

��hi�t�� =
ehi�t�/T

ehi�t�/T + e−hi�t�/T
, �2�

where T denotes the temperature and hi�t� is the local field
seen by spin i at time t:

hi�t� = �
j=NN

Jijsj�t� + h0. �3�

In this expression h0 represents an external magnetic field,
and the sum in the interaction term applies only to the near-
est neighbors �three, for example, in a hexagonal lattice�.
Without loss of generality from now on we will take h0=0
and Jij =1.

B. Damage spreading and self-overlap

As stated above we will use the SO method to study the
dynamics of the system. This procedure was introduced by
Luque and Ferrera �18� and its underlying philosophy is
similar to that of the DS method used by Vojta to study the
thermodynamics of phase transitions in spin systems. The
main difference between the two procedures lies in that,
while damage spreading uses two copies of a system with
slightly different initial conditions �the damage� and com-
putes the evolution of these differences, the self-overlap
method uses the difference between successive temporal
states of a single system as the system evolves towards equi-
librium. For instance, in DS the damage D�t� at time t is
defined as

D�t� =
1

2N
�
i=1

N

�si
�1��t� − si

�2��t�� �4�

and measures the �averaged� Hamming distance between the
states of the two replicas at that time �i.e., the proportion of
sites for which the spin state differs between the system �1�
and the damaged replica �2��. In SO, however, the self-
overlap a�t� at time t is defined as one minus the averaged
Hamming distance between the states of a spin site at time
t−1 and at time t:

a�t� = 1 −
1

2N
�
i=1

N

�si�t� − si�t − 1�� . �5�

In order to describe the time evolution of the system it is
useful to define the “up state self-overlap” a++�t� at time t as
the average number of spin sites that had si= +1 both at time
t−1 and at time t. We also define a−−�t�, a+−�t�, and a−+�t� in
a completely similar fashion. By normalization we must then
have
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a++�t� + a−−�t� + a+−�t� + a−+�t� = 1. �6�

Since the sites that remain in the same state at times t−1 and
t drop from the sum in the definition �5� we also must have

a�t� = 1 − a+−�t� − a−+�t� = a++�t� + a−−�t� . �7�

Once the equilibrium has been reached the relation a+−
=a−+ must be satisfied, where we have dropped the time
dependence to indicate equilibrium values. Then trivially

a+− = a−+ =
1 − a

2
. �8�

At this point it is interesting to note that the self-overlap
functions can be understood in terms of autocorrelation func-
tions, more precisely, two-time autocorrelation functions.
For instance, in Eq. �5�, one can rewrite �si�t�−si�t−1�� as
�1−si�t�si�t−1�� /2, which is a shifted autoresponse function
measured at subsequent time steps. In a similar way, the rest
of the self-overlap functions can be written as linear combi-
nations of the basis of autoresponse functions.

Autocorrelation functions have been widely used as effi-
cient tools in order to measure spatial or temporal correla-
tions in physical and biological systems �repeated patterns,
relaxation, frustration, etc.�. Their applications range from
investigations in transport properties of fluids �21� or the
analysis of climatological models �22� to studies of decoher-
ence in quantum systems �23�, to cite but a few. Autocorre-
lation functions are the center of interest in theoretical stud-
ies of the relaxation of nonequilibrium systems. In this sense,
much work has been recently done in order to characterize
dynamical scaling and other invariant behavior in the aging
regimes of Ising-like systems �24–28�. In our case it would
be fair to say that the self-overlap functions are really mea-
surements of autocorrelations under a different garment. To
dwell on a deeper review of the existing literature on auto-
response functions would go beyond the scope of this paper
however. We would like to emphasize nonetheless that what
is different here is �i� the fact that this particular combination
of self-correlation functions measured at subsequent time
steps manages to capture the essence of the �same-site� tem-
poral correlations in systems that undergo order-disorder
phase transitions, and �ii� this is then combined with a phi-
losophy inspired by DS, namely, an evolution equation to-
wards the equilibrium state for the correlations, and a mean
field approximation directly extracted from DS in order to be
able to solve this equation. Once the evolution equation and
the mean field approximation are in place the self-overlaps
will allow us to study the stability of the different states
accessible to the system, and hence the phase transition it-
self.

III. MASTER EQUATION, TRANSITION
PROBABILITIES, AND MEAN FIELD

A. Master equation

Generally speaking, the self-overlap method would pro-
ceed by solving some master evolution equation for the a’s
in order to obtain their equilibrium values, much in the vein

of the damage spread method. We begin by defining the
probability of finding a spin site in the � ��� state at time t,
P+�t� �P−�t��

P±�t� =
n±�t�

N
, �9�

where n±�t� is the number of sites with spin up �down� at
time t. Obviously P+�t�+ P−�t�=1. By the definition of
a++�t� , a−+�t� it follows that

P+�t� = a−+�t� + a++�t� =
1 + a++�t� − a−−�t�

2
�10�

and analogously for the down states

P−�t� = a+−�t� + a−−�t� =
1 + a−−�t� − a++�t�

2
. �11�

As noted above in the limit t→� the a’s ought to reach their
equilibrium values and one can drop the t dependence.

Of particular interest to us will be the transition probabili-
ties from one state to another, i.e., the elements of the tran-
sition matrix of our Markov process. Let W++�t� �W−−�t�� be
the average probability of changing from the � ��� state at
time t to the � ��� state at time t+1, where the precise
meaning of this average will be made clear shortly. In a
mean-field approximation we will then have

a++�t� = W++�t − 1�P+�t − 1� ,

a−−�t� = W−−�t − 1�P−�t − 1� �12�

and analogously with W+−, W−+. Note that these W’s will
then be the elements of an average Markov matrix for the
evolution of the system. Combining Eqs. �10�–�12� together
it is easy to arrive at a couple of mean-field evolution equa-
tions for a++�t� and a−−�t�, namely

d

dt
a++�t� = − a++�t�W+−�t� + a−+�t�W++�t� ,

d

dt
a−−�t� = − a−−�t�W−+�t� + a+−�t�W−−�t� . �13�

These two equations are of course nothing but the reaction-
diffusion equations for the a’s that common sense would
have dictated us to begin with. We now proceed to evaluate a
mean-field approximation for the W’s so that we may solve
Eq. �13�.

B. Mean-field approximation

To begin with, note that in a system that follows Glauber
dynamics the transition probability at site i for a given local
field hi is given by Eq. �2� above. This means that

W++�hi� = ��hi�, W+−�hi� = 1 − ��hi� ,

W−+�hi� = ��hi�, W−−�hi� = 1 − ��hi� . �14�

That is, as is well-known for a given local field hi the prob-
ability that the spin at site i will be in the � state at time t
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+1 is always ��hi�, whereas the probability that its state
be—will be 1−��hi�, regardless of the initial state of the site.
Thus finding average values for the W’s is equivalent to find-
ing an average ��hi�, �̄.

The mean-field approximation that we will use closely
follows the spirit of the effective-field approximation used by
Vojta �2�. This consists basically of averaging over all the
possible configurations that can surround a given site, where
in the average each configuration is weighted by its probabil-
ity of taking place. Thus with three nearest neighbors per
site, the transition probabilities can take the values �remem-
ber that we are taking Jij =1�

�0�+ + + � = ��3� =
e3/T

2 cosh�3/T�
,

�1�+ + − � = ��1� =
e1/T

2 cosh�1/T�
,

�2�+ − − � = ��− 1� =
e−1/T

2 cosh�− 1/T�
,

�3�− − − � = ��− 3� =
e−3/T

2 cosh�− 3/T�
. �15�

Note that the calculations are much simpler than those
needed in DS �2�. The probability associated to each configu-
ration will be

P��0� = P+
3 , P��1� = 3P+

2�1 − P+� ,

P��2� = 3P+�1 − P+�2, P��3� = �1 − P+�3, �16�

where to simplify the notation we have dropped the time
dependence, although in this case one must be aware that we
are not dealing with equilibrium values �this will be the case
for the next several equations�. Using Eqs. �10� and �11�, we
can now write after some trivial manipulations

�̄ = �
k=0

3

P��k��k =
1

2
+

3

8
�a++ − a−−��tanh� 3

T
	 + tanh� 1

T
	


+
1

8
�a++ − a−−�3�tanh� 3

T
	 − 3 tanh� 1

T
	
 . �17�

Using the relations between the a’s and applying the mean
field to the right-hand side of the differential equations �13�
we can rewrite them as

d

dt
a++ = − a++�1 − �̄� + �1 − a++ − a−−

2
	�̄ , �18�

d

dt
a−− = − a−−�̄ + �1 − a++ − a−−

2
	�1 − �̄� , �19�

which by Eq. �17� is now a system of equations depending
only on a++ and a−−. Note that it is easy to generalize the
mean-field approximation to the case of n nearest neighbors
�that is, for a given topology�:

�̄ = �
k=0

n �n

k
	P+

n−kP−
k 1

1 + exp�2n − 4k

T
	 . �20�

This would be much harder to do using DS, if at all possible.

IV. THERMODYNAMICS: MAGNETIZATION

At this point we are going to link the self-overlaps to the
average magnetization per spin, m. With P+�t�, P−�t� as de-
fined above

P±�t� =
n±�t�

N
, �21�

we must then obviously have for the average magnetization
m

m�t� = P+�t� − P−�t� , �22�

or, since P+�t�+ P−�t�=1,

P+�t� =
1 + m�t�

2
, P−�t� =

1 − m�t�
2

. �23�

By the definition of a++�t�, a−+�t� it follows then

a−+�t� + a++�t� = P+�t� =
1 + m�t�

2
, �24�

and analogously with a−−�t� , a+−�t� and P−�t�. Since

m�t� = a++�t� − a−−�t� , �25�

the system of equations �17�–�19� can be rewritten as

d

dt
m =

m

2

− 1 +

3

4
�tanh� 1

T
	 + tanh� 3

T
	
�

+
m3

8

tanh� 3

T
	 − 3 tanh� 1

T
	� . �26�

Within the limits of our approximation this equation de-
scribes the evolution towards equilibrium of the magnetiza-
tion m for the case of n=3 nearest neighbors. Setting
dm /dt=0 one can obtain an expression for the temperature
dependence of its equilibrium value m�T�, and from it one
can extract the transition temperature for the ferroparamag-
netic transition—this was the approach originally followed
by Vojta �2�.

Equation �26� yields a critical temperature Tc�2.104
above which the magnetization is zero. When T�Tc, we
have

m = ±�− 1 +
3

4
�tanh� 3

T
	 + tanh� 1

T
	


3

4
tanh� 1

T
	 −

1

4
tanh� 3

T
	 . �27�

Both results completely coincide with those in �2�. Note,
however, that the calculations involved here have been con-
siderably simpler—again basically due to the fact that in SO
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we only consider one replica of the system, which results in
a considerable reduction in the number of configurations that
need to be taken into account.

In our Monte Carlo simulations, the procedure to measure
the �equilibrium� self-overlap goes as follows: let us suppose
that we generate a random initial condition for the N spin
lattice. Then we let it evolve towards equilibrium by apply-
ing the Glauber dynamics with four neighbors �square lat-
tice�. Once equilibrium has been reached we compute the
states of the system for a sufficiently large number of time
steps. We have used in all cases 10 000�N time steps for a
square lattice of N=100�100 spins �that is, defining a sys-
tem time step t as N steps of the simulation, we use t
=10 000 system time steps�. If we then count the number of
times that a spin site is in the “up” state, �, both at time t
and t−1 and average over all sites and time steps, this will
give us the equilibrium value of the up state self-overlap a++.
Repeating this procedure with the down state, �, will then
obviously give us the “down state self-overlap,” a−−, and so
on. Each value of the simulation is averaged over 100 real-
izations.

In Fig. 1 we plot the average equilibrium magnetization
vs temperature in order to visualize how our mean-field ap-
proximation performs—we note here that we are basically
interested in the thermodynamic limit of infinite lattice size
and that we are removing the inherent degeneracy of the
system by plotting only positive magnetization. First, note
that our Monte Carlo simulations in a square lattice �squares�
are in fair agreement with the Onsager �infinite size�
solution—dashed line—except in the proximity of the phase

transition, where finite size effects are relevant and difficult
to suppress. Comparing then the Monte Carlo simulations
and the mean-field solution with n=4 neighbors we can see
that qualitatively speaking they provide the same results,
with the mean field typically overestimating the critical tem-
perature. We stress here, however, that the purpose of this
paper was not so much to present a mean-field technique
able to reproduce the exact results, but rather to introduce a
technique able to exactly reproduce previously known mean-
field results while at a much lower cost. For illustrative pur-
poses and to allow comparison with the results obtained by
Vojta we also show in Fig. 1 the mean-field result for n=3
neighbors �hexagonal lattice�, which underestimates the n
=4 critical temperature Tc.

In Fig. 2 we plot the equilibrium values a++
* , a−−

* vs tem-
perature, following the same methodology of Fig. 1: we
compare our Monte Carlo simulations �circles� with the nu-
merical resolution of the mean-field equations �note that
again, the mean field with n=3 underestimates the quantita-
tive behavior and the one with n=4 overestimates it�. As we
can see in the figure, the self-overlap a=a+++a−− acts as an
order parameter.

We also note that more work remains to be done in order
to make an in-depth comparison between DS and SO. For
instance, one may evaluate the critical exponents of the self-
overlap order parameter a and compare the results with the

T
0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

1

Monte Carlo

mean field (n=4)

mean field (n=3)

Onsager

m

FIG. 1. Magnetization of the system versus temperature in the
case of: squares–Monte Carlo simulation of a 100�100 spin square
lattice �the solid line here is just a guide for the eye�, with 10 000
system steps and averaged over 100 realizations; dashed-dot line–
mean-field approximation for n=3 neighbors; solid line–mean-field
approximation for n=4 neighbors; and dashed line–Onsager solu-
tion. Note that the mean-field approximation recovers the expected
behavior, that is, null magnetization above Tc, non-null magnetiza-
tion below Tc, which tends to a constant maximum value at T=0.
The difference lies on the quantitative value of Tc in each case,
overestimated by the mean field in the case of n=4 neighbors.

T
0.5 1 1.5 2 2.5 3 3.5

-0.2

0

0.2

0.4

0.6

0.8

1

n = 4

n = 3

Monte Carlo
a
a +

*
+

*
- -

FIG. 2. Stationary values of a++ and a−− in the case of: mean-
field approximation with n=3 first neighbors �dashed line�, mean-
field approximation with n=4 first neighbors �solid line�, and
Monte Carlo simulation of a 100�100 spin square lattice �here the
solid line is just a guide for the eye�, with 10 000 system steps and
averaged over 100 realizations �circles�. Note that at Tc a pitchfork
bifurcation takes place in the three cases. The bifurcation value is
underestimated by the mean-field approximation in the case of n
=3 neighbors and overestimated in the case of n=4 neighbors. Be-
low the critical temperature a++→1 while a−−→0 for a system that
chooses the m= +1 vacuum, whereas the opposite is true if the
system goes to m=−1. Above Tc the system tends to �a++ ,a−−�
= �1/4 ,1 /4�. Note that although the critical temperature is only pre-
dicted qualitatively, the stationary values for �a++ ,a−−� yielded by
our simple model exactly match the Onsager predictions.
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DS approach �9�, which would be interesting. This, however,
goes somewhat beyond the scope of this paper.

V. STABILITY

In Eq. �26�, the stability of the fixed point m*=0 �para-
magnetic phase� is related to the sign of the eigenvalue:

��T� = 1/2�− 1 + 3/4�tanh�1/T� + tanh�3/T��� . �28�

Note that Eq. �26� falls into the normal form of a pitchfork
bifurcation at T=Tc where the fixed point is not hyperbolic
and the Hartman-Grobman theorem �29� does not apply. For
T	Tc, m*=0 is stable, and below it, it becomes unstable.
The fact that we have a pitchfork bifurcation at Tc implies
that in the ferromagnetic phase �i.e., below Tc� two other
stable fixed points must appear. They are indeed ±m*, where
m* is now given by Eq. �27�.

Taking into account the relation between m and a, with a
little algebra we arrive at

a* = m*�1 − �̄*� + �̄*. �29�

Hence the fixed point m*=0 leads to �̄*=1/2 �according to
Eq. �17�� and a*=1/2, which are thus stable at T	Tc. Note
that a=1/2 is the minimal self-overlap that the system can
show.

We can define at this point a Hamming-like distance be-
tween successive temporal states �a self-distance� as

d�t� = 1 − a�t� . �30�

The fixed point a*=1/2 implies that we must have a fixed
point for d at d*=1/2 which, since it is taking place at the
minimal self-overlap, is equivalent to the maximal self-
distance of the system �total disorder�. Following Wolf’s
method as in the case of random Boolean networks �19�, this
self-distance would enable us to determine a Lyapunov ex-
ponent of the system. However, one can simply apply the
Hartman-Grobman theorem directly �29�. Near the fixed
points the self-distance of our system can be expressed in
terms of d�t��exp��t�, where � is given by Eq. �28�. This
eigenvalue can also be understood as a Lyapunov exponent.
Note that nevertheless it would not be a standard Lyapunov
exponent: when d�t� tends to its fixed point, the system is
actually tending to the maximal disorder, thus ��0 means
chaos.

Summing up, in the paramagnetic phase, m*=0 is stable,
thus d*=1/2 is stable too: the system tends exponentially to
the maximal disorder and the phase is chaotic.

Figure 3 is a plot of Eq. �28�. Note that when T	Tc
�paramagnetic phase� an increase of the temperature leads to
an increase of chaos, with the self-distance of the system
tending faster to the attractor d*=1/2.

In the ferromagnetic phase, however, the stable stationary
value of d is

d*�T� = 1 − m*�T��1 − �̄*� − �̄*, �31�

with m* given by Eq. �27� and �̄* the fixed point value of the
mean field. The self-distance tends to zero for low T, and

thus the system is in a frozen state �order�. When we increase
the temperature the self-distance also increases up to the
maximum value d=1/2, which is reached at Tc �no correla-
tion�. These results agree with those found in the paramag-
netic phase. We can conclude therefore that our approach
correctly reproduces an ordered behavior in the ferromag-
netic phase and disordered �chaotic� behavior in the para-
magnetic phase. In the Appendix we perform a more detailed
analysis of the stability of the system that confirms this con-
clusion.

VI. CONCLUSION

In this paper we have introduced the self-overlap method
by using it to study both analytically and numerically the 2D
Ising model. Since the properties of this model are obviously
well-known our main concern was to show that SO is an
unambiguous method �with respect to changes in the algo-
rithm implementation� that correctly reproduces the standard
results while being very advantageous from both the numeri-
cal and the analytical point of view. The SO method could
thus constitute a rather simple and efficient method of stabil-
ity analysis in this kind of multicomponent system �Ising-
like models, spin glasses, CA, Kauffman networks, etc.�.
Many other physically relevant quantities in these systems
�measures of complexity, information theory measures such
as the mutual information, and so on� can be studied and
measured by applying SO, something that we think deserves
further investigation. Wherever damage spreading was sup-
posed to have been useful and the equilibrium state of the
system is ergodic, we think that self-overlap ought to work
too and do so in a nonambiguous manner. Moreover, it
should also be more efficient numerically speaking, and sim-
pler from the analytical viewpoint.

T
0 1 2 3 4 5

-0.2

-0.1

0

0.1

0.2

λ

FIG. 3. Values of the temperature dependent eigenvalue �18� of
J: when it is negative, �a++ ,a−−�= �1/4 ,1 /4� is stable, thus the self-
distance d=1/2 is the attractor of the system �chaotic phase�. When
the eigenvalue is positive, the value �1/4 ,1 /4� is a saddle point and
thus an unstable fixed point. At Tc�2.104 the eigenvalue is null,
thus the fixed point is not hyperbolic—a bifurcation takes place.
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APPENDIX: DETAILED ANALYSIS OF STABILITY

We undertake here a deeper study on the stability of the
system. For this task we go back to the evolution equations
�18� and �19�, which constitute a nonlinear differential sys-
tem. The fixed points of this system are obtained from equat-
ing Eqs. �19� and �20� to zero �reducing the differential sys-
tem to a linear system�. This yields a total of three fixed
points, namely,

�a++�T�*,a−−�T�*� = � �̄

2
�1 + m*�,m*� �̄

2
− 1	 +

�̄

2

 ,

�a++�T�*,a−−�T�*� = �m*� �̄

2
− 1	 +

�̄

2
,
�̄

2
�1 + m*�
 ,

�A1�

when T�Tc �where m* is given by Eq. �27��, and
�a++�T�* ,a−−�T�*�= �1/4 ,1 /4� ∀ T �this solution is obvi-
ously related to the fixed point m*=0�.

We can write �̄ as

�̄ =
1

2
+

1

2
A�T��a++ − a−−� +

1

8
B�T��a++ − a−−�3, �A2�

where

A�T� =
3

4
�tanh�3/T� + tanh�1/T�� �A3�

and

B�T� = �tanh�3/T� − 3 tanh�1/T�� . �A4�

Let us start with the stability analysis of the fixed point
�a++

* ,a−−
* �= �1/4 ,1 /4�. This solution is independent of T and

for T	Tc is the only fixed point �note that in this case �̄
takes the value 1/2 independently of the number n of neigh-
bors as it can be proved after some trivial algebra�. Comput-
ing the Jacobian J at this fixed point, we come to

�J��1/4,1/4� =
1

4
�A�T� − 3 − A�T� − 1

A�T� − 1 − A�T� − 3
	 ,

with eigenvalues �1=−1 and �2=1/2�A�T�−1�. We will dis-
tinguish then three situations: when A�T��1, �1/4 ,1 /4� is a
hyperbolic �indeed stable� fixed point �which is obviously
related to the fact that m*=0 is stable when T	Tc�. When
A�T�	1 the fixed point is again hyperbolic, but now it is
unstable �a saddle point�. In these two situations we can ap-
ply the developed formalism, due to the Hartman-Grobman
theorem �29�. Hence A�T��1⇔T	2/ ln�22/3+1��2.104
�and vice versa for A�T�	1�.

We thus get that when T	Tc �that is, in the paramagnetic
phase�, the stationary solution �1/4 ,1 /4� is stable. In the
ferromagnetic phase, however, �T�Tc� this fixed point be-
comes unstable.

At this point we can introduce the self-distance defined in
Eq. �31�. The stability of the �1/4 ,1 /4� solution directly im-
plies that d will have a stable value of 1 /2 in the paramag-
netic phase, while this value will become unstable in the
ferromagnetic phase. Since in the paramagnetic phase
�1/4 ,1 /4� is the only fixed point the self-distance necessar-
ily goes to the attractor �stable fixed point� d*=1/2, indeed
exponentially due to the Hartman-Grobman theorem, and the
phase is thus chaotic. However, in the ferromagnetic phase
�1/4 ,1 /4� is unstable: orbits with initial conditions arbi-
trarily close from this fixed point will separate from it expo-
nentially, correlations will take place and the phase will be-
come ordered.

When A�T�=1, applying Peixoto’s theorem �29�, we can
conclude that �1/4 ,1 /4� is a bifurcation point �lack of struc-
tural stability�, that is, Tc constitutes a bifurcation value.
What kind of bifurcation is taking place? It is easy to see that
the linearized system has a symmetry of the type a++−a−−.
Using this symmetry, the system of equations �18� and �19�
can be transformed into Eq. �26�. This equation falls into the
normal form of a codimension one bifurcation, a pitchfork
bifurcation �indeed, subcritical�. This means that two
branches of equilibria appear for T�Tc associated with val-
ues of m�0, either positive �positive branch� or negative.
Undoing the change of variables we get that below Tc we
must have, for a given T, two extra stationary points—other
than �1/4 ,1 /4�—of the shape ��a ,b� , �b ,a��. These fixed
points correspond obviously to Eq. �A1�. Moreover, since as
the Poincaré index is a topological invariant these two new
fixed points are both stable in the ferromagnetic phase �in the
paramagnetic phase the global index is +1 because the fixed
point �1/4 ,1 /4� is a sink, whereas in the ferromagnetic
phase �1/4 ,1 /4� is a saddle point with index −1, so the other
two fixed points must have index +1�. Depending on the
initial conditions, the system will evolve to a fixed point of
the shape �a ,b� or to �b ,a�. In other words, the Ising model
will give us either positive or negative magnetization in the
ferromagnetic phase, depending on the initial condition. If
the system starts at T	Tc, where the magnetization is zero,
and we lower its temperature below the critical one, fluctua-
tions will take the system either to the upper or to the lower
branch instinctively.

In Fig. 2 we plot together the stationary values �a++
* ,a−−

* �
of the differential system �18� and �19� for both n=3 and n
=4 nearest neighbors and the results from our Monte Carlo
simulation �again, a square lattice of 100�100 spins, where
we ran 10 000 system steps after reaching equilibrium, and
averaging over 100 realizations�. We can see that the results
are qualitatively similar, that is, the stationary value
�1/4 ,1 /4� is stable above the Curie temperature and unstable
below it. As expected, at Tc a pitchfork bifurcation takes
place and when T�Tc the system has two stable fixed points,
i.e., �a ,b� and �b ,a� for each T.
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