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In order to understand the nature of friction in dense granular materials, a discrete element simulation on
granular layers subjected to isobaric plain shear is performed. It is found that the friction coefficient increases
as the power of the shear rate, the exponent of which does not depend on the material constants. Using a
nondimensional parameter that is known as the inertial number, the power law can be cast in a generalized
form so that the friction coefficients at different confining pressures collapse on the same curve. We show that
the volume fraction also obeys a power law.
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Friction is one of the oldest problems in science because it
dominates various phenomena in our daily life. In particular,
the dynamics of granular flow, which is ubiquitous in earth
sciences and engineering, is governed by a law that describes
the behavior of the friction coefficient �ratio of the shear
stress to the normal stress�. Examples are avalanches, land-
slides, debris flow, silo flow, etc. In addition, the nature of
friction on faults, which plays a key role in earthquake me-
chanics �1,2�, is also related to that of granular rock because
the fault zone consists of layers of fine rock particles that are
ground up by fault motion of the past. To find a suitable law
of friction in granular materials under a specific condition is
thus an essential problem.

Although the frictional properties of granular materials
are so important, our understanding is still limited. In the
context of earthquake mechanics, the slip velocity �or shear
rate� dependence of the friction coefficient, which is related
to the rheology under constant pressure conditions, is a mat-
ter of interest �2�. In experiments on thin granular layers that
are sheared at relatively low sliding velocities ranging from
nm/s to mm/s, the behavior of the friction coefficient can be
described by a phenomenological law in which the friction
coefficient depends logarithmically on the sliding velocity.
This is known as the rate- and state-dependent friction �RSF�
law �3�. Note that the RSF law also applies to friction at
interfaces between two solids, as well as that in granular
layers. Although the RSF law applies well to lower-speed
�creeplike� friction, it is violated in high-speed friction. For
example, several experiments indicated nonlogarithmic in-
crease of the friction coefficient in granular layers at higher
sliding velocities �4–6�. The same tendency was also ob-
served in experiments on friction between two sheets of pa-
per �7,8�. However, at this point, we do not know any friction
law that is valid at such higher velocities.

Several recent attempts to understand the nature of fric-
tion in granular media under high shear rates are noteworthy
here. Jop and co-workers presented a simple friction law that
describes flow on inclined planes �9�, based on massive
simulations and experiments �10�. Although their friction law
seems feasible, it involves rather dilute flow and its applica-
bility to denser and slower flow �e.g., quasistatic flow� is not
clear. Da Cruz et al. �11� performed an extensive simulation
that focused on the dense and slow regime and found a fric-
tion law that does not contradict that of Jop et al. However,
because da Cruz et al. studied a two-dimensional system, the

effect of the dimensionality may be questioned. In particular,
in the quasistatic regime, where the nature of interparticle
contacts plays an essential role in rheology, the effect of
dimensionality should be seriously investigated.

In this Rapid Communication, we perform a three-
dimensional simulation in order to understand the nature of
friction in a slowly sheared dense granular material. Our par-
ticular interest is a dense granular matter under high confin-
ing pressure �e.g., tens of megapascals� which roughly cor-
responds to a typical configuration of faults at a seismic slip.
Note that the RSF law is violated in such a situation. We
report a law in which the friction coefficient increases as a
power of the shear rate.

In the following we describe the computational model of
granular layers. The individual constituents are assumed to
be spheres, and their diameters range uniformly from 0.7d to
1.0d. The interaction force follows the discrete element
method �12�. Consider a grain i of radius Ri located at ri with
the translational velocity vi and the angular velocity �i. This
grain interacts with another grain j whenever it overlaps; i.e.,
�rij��Ri+Rj, where rij =ri−r j. The interaction consists of
two kinds of forces, which are normal and transverse to rij,
respectively. Introducing the unit normal vector nij =rij / �rij�,
the normal force acting on i, which is denoted by Fij

�n�, is
given by �f��ij�+�nij · ṙij�nij, where �ij =1− �rij� / �Ri+Rj�. The
function f��� describes the elastic repulsion between grains.
Here we test two models: f���=k� �the linear force� and
f���=k�3/2 �the Hertzian force� �13�. Note that the constant
k /d2 is on the order of the Young’s modulus of the grains. In
order to define the transverse force, we utilize the relative
tangential velocity vij

�t� defined by �ṙij −nij · ṙij�+ �Ri�i

+Rj� j� / �Ri+Rj��rij and introduce the relative tangential
displacement vector �ij

�t�=�rolldt vij
�t�. The subscript in the in-

tegral indicates that the integral is performed when the con-
tact is rolling; i.e., ��ij

t ��kt or �ij
t vij

t �0. Then the tangential
force acting on the particle i is written as
−min��ṙij / �ṙij� ,kt�ij

�t���Fij
�n��. In the case that �=0, the tan-

gential force vanishes and the rotation of particles does not
affect the translational motion. The parameter values adopted
in the present simulation are given in Table I.

The configuration of the system mimics a typical experi-
ment on granular layers subjected to simple shear. Note that
there is no gravity in the system. The system spans a volume
Lx�Ly �Lz, and is periodic in the x and the y directions. We
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prepare two systems of different aspect ratios, each of which
contains approximately 10 000 particles: 25d�25d�8d and
15d�15d�25d. As we shall discuss later, the difference of
the aspect ratio does not affect the rheology. In the z direc-
tion, there exist two rough walls that consist of the same kind
of particles as those in the bulk. The particles in the walls are
randomly placed on the boundary and their relative positions
are fixed. The walls are parallel to each other and displaced
antiparallel along the y axis at constant velocities ±V /2,
while they are prohibited from moving along the x axis.
One of the walls is allowed to move along the z axis so
that the pressure is kept constant at P. Using the mass of the
wall, Mw, which is defined as the sum of the masses of the
constituent particles, the z coordinate of the wall, Zw,

is described by the following equation of motion: MwZ̈w
=Fz− PS, where F denotes the sum of the forces between the
wall particles and the bulk particles, and S denotes the area
of the wall. Then the z component of the velocity of the wall

particles is given by Żw. Note that the friction coefficient of
the system is defined by Fy / PS.

The system reaches a steady state after a certain amount
of displacement of the walls. We judge that the system
reaches a steady state if each of the following quantities
shows no apparent trend and seems to fluctuate around a
certain value: the friction coefficient, the z coordinate of the
wall �i.e., the density�, and the granular temperature. Also
snapshots of the velocity profile are observed to ensure the
realization of uniform shear flow. We confirm that the tran-
sient behaviors of the friction coefficient and of the volume
increase are quite similar to those observed in experiments.
Here we do not investigate such transients and restrict our-
selves to steady-state friction.

Because uniform shear flow is unstable in a certain class
of granular systems, we must check the internal velocity pro-
files at steady states. There is a strict tendency for shear flow
to localize near the walls in the case that the confining pres-
sure is small and/or the sliding velocity is large. This kind of
spatial inhomogeneity is rather ubiquitous in granular flow,
and has been extensively investigated �14,15�. In our simu-
lation, uniform shear flow is realized at lower sliding veloci-
ties and higher confining pressures. Here we discuss exclu-
sively the case in which uniform shear is realized. In this
case, the shear rate is proportional to the sliding velocity of
the walls; i.e., �=V /Lz.

We investigate the behaviors of the friction coefficient of
the system, Fy / PS�M. The control parameters that affect
the friction coefficient are the shear rate � and the pressure
P. It is useful to represent the control parameters in terms of
nondimensional numbers, because the friction coefficient is a
nondimensional number and hence must be a function of
nondimensional numbers. Thus � and P are recast in the
following forms: I=��m / Pd and �= Pd2 /k. In particular,
the former is referred to as the inertial number �16�, which

dominates the frictional behavior of granular flows. Hereafter
we discuss the nature of friction, taking advantage of these
nondimensional numbers.

In order to grasp the main point of our result, it is conve-
nient to begin with frictionless particles, i.e., �=0. We test
two models, each of which has different interaction: the
Hertzian contact model and the linear force model. As shown
in Fig. 1, the friction coefficients of these two models are
collapsed on the following master curve:

M = M0 + sI	, �1�

where M0 denotes the friction coefficient for �→0. Here
M0	0.06. Note that the effect of the inertial number is ex-
pressed by a power law, sI	, where 	=0.28±0.05. The
prefactor s is approximately 0.4 for the both models �17�.

In order to check the universality of Eq. �1�, we wish to
confirm the independence of our results from the details of
the model. First we discuss the effect of the tangential force
between particles. In Fig. 2 the friction coefficients of the
models in which �=0.2 and 0.6 are shown. It is noteworthy
that they range from 0.3 to 0.4, which are not significantly
different from those obtained in an experiment on spherical
glass beads �18�. More importantly, the friction coefficients
again obey Eq. �1� with 		0.3, regardless of the value of �
and the force model used �the linear or the Hertzian�. Indeed
the friction coefficients of both models are almost the same.
We also remark that the factor s does not depend on �; s
=0.33±0.03 for �=0, 0.2, and 0.6.

On the other hand, M0 depends on �. In the linear force
model, M0	0.06 for �=0, while M0	0.26 for �=0.2, and
M0	0.4 for �=0.6. A similar dependence was also observed
in Refs. �11,19�. Although M0 looks like the static friction
coefficient, note that it is defined in the �→0 limit and is
different from the static friction coefficient above which a
static system begins to flow. In order to distinguish the two

TABLE I. The parameters of the discrete element simulation.

Polydispersity ��d /km ktd � Pd2 /k

30% 1 0.005 0–0.6 3.8�10−5–1.1�10−2
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FIG. 1. Friction coefficients M in the models without tangential
force, i.e., �=0. The horizontal axis I denotes the nondimensional
shear rates V /L�m / Pd. The shape of the symbols and the confining
pressure are in one-to-one correspondence: the squares to
�=3.8�10−5, the circles to �=1.9�10−3, the triangles to
�=3.9�10−3, and the diamonds to �=1.1�10−2. The solid sym-
bols denote the friction coefficient of the Hertzian force model,
while the gray symbols denote that of the linear force model. The
layer thickness Lz /d	8 for the squares and circles, while
Lz /d	26 for the triangles and diamonds. The solid lines denote
Eq. �1� with 	=0.3.
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concepts, M0 is referred to as the dynamic yield strength.
The difference is important when we consider the stability of
slip, as will be discussed in the last paragraph of this Rapid
Communication.

It is important to notice that the data at different confining
pressures collapse on the same curve by virtue of the inertial
number. This suggests that the friction coefficient of a dense
granular material does not depend on �, as long as it is small
�in the present simulation 3.8�10−5
�
1.1�10−2�. In-
deed, da Cruz et al. �11� found that the friction coefficient is
independent of � ��−1 in their notation� up to �
2.5
�10−2 in a two-dimensional system. Therefore the indepen-
dence of � is very likely within the accuracy of these simu-
lations. While one can still expect that dependence may ap-
pear for larger �, a case like �
0.1 is meaningless as a
model of a granular material. In order to see this, recall that
� roughly corresponds to the average overlap length of con-
tacts divided by the particle diameter; namely, the average
strain of individual particles.

Then we discuss the effect of inelasticity that is modeled
by the viscous coefficient �. The corresponding nondimen-

sional number �̃ is defined by ��d /km. We find that decrease

of �̃ reduces the friction coefficient in the region where

I�0.01, while the frictional strength is independent of �̃ for
the smaller-I region. This behavior is consistent with those
obtained in Refs. �11,19�. Nevertheless, it can be still de-
scribed by Eq. �1� with s being a smaller value. For example,

the friction coefficient of a system in which �̃=0.05 is de-
scribed by s	0.27 with almost the same values of M0 and .

However, the functional form of s��̃� is not clear at this
point.

From the discussions so far, we can conclude that the
details of the present model do not affect the validity of Eq.
�1�, which is the main result of this study. Importantly, the
exponent 	 seems to be universal; it is approximately 0.3
regardless of the details of the model and the control param-
eters. The velocity-strengthening nature of this friction law
does not contradict experiments �4–8�. In addition, it illus-

trates the universality of the power law in rheological prop-
erties of random media �20�, including foams �21� and hu-
man neutrophils �22�. In the following we discuss four
important points that are peripherally related to the main
result.

First, we discuss the dependence of the volume fraction
on the inertial number. Surprisingly, decrease of the volume
fraction caused by shear flow is also described by a power
law.

�0 − � = s2I, �2�

where �0 is the volume fraction in the �→0 limit. Note that
the constants s2 and  do not depend on the details of the
model. Figure 3 shows that all of the data obtained in our
model collapse on Eq. �2� with s2	0.11 and =0.56±0.02.
This dilatation law also illustrates the ubiquity of the power
law in granular materials.

The next point we wish to discuss is the relation between
the present result and power-law rheology in systems at con-
stant volume. In particular, Xu and O’Hern �23� found a
power-law relation between the shear stress and the shear
rate in a two-dimensional granular material consisting of
frictionless particles. They estimated the exponent to be 0.65.
However, in the constant volume condition, the pressure also
depends on the shear rate, so that the behavior of the friction
coefficient is generally different from that of the shear stress.
Therefore, power-law friction in systems under constant vol-
ume conditions are not directly related to the present result.
See Ref. �24� for more detailed discussions on this subject.

The third point we wish to discuss is the effect of dimen-
sionality. In contrast to the present study, da Cruz et al. �11�
obtained a linear friction law in a two-dimensional system.
The difference may be attributed to the dimensionalities of
the systems, which affect the nature of contacts between par-
ticles. In particular, the angular distribution of the tangential
force is strongly anisotropic in two-dimensional systems,
while such anisotropy is not observed in our three-
dimensional system. Accordingly, in the case of frictionless
particles, their system exhibited a friction law that is quite
similar to ours.

As the fourth point of interest, we discuss the relevance of
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FIG. 2. Friction coefficients in models with tangential force
��=0.2,0.6�. The shape of the symbols and the confining pressure
are in one-to-one correspondence as in Fig. 1. The blank symbols
denote the friction coefficient of the linear force model with
�=0.2, while the symbols with vertically striped pattern denote that
of �=0.6. The circles of horizontally striped pattern denote the
Hertzian force model with �=0.2. The lines denote Eq. �1� with
	=0.3.
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FIG. 3. Dilatation law. Decrease of the volume fraction
��=�0−� is plotted as a function of the inertial number. Note that
�0 is the volume fraction in the �→0 limit, which is estimated by
extrapolation. The symbol legends are the same as those in Figs. 1
and 2. The line denotes Eq. �2�.
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our result to earthquake mechanics by comparing it to a fric-
tion law recently proposed by Jop et al. �9�, which seems to
be validated in experiments on inclined plane flow. We stress
that such a flow is characterized by relatively large inertial
number �typically I�10−1�, while our simulation involves
much smaller I values �I�10−4� as shown in Figs. 1 and 2.
In short, Eq. �1� involves a region of much smaller I than Jop
et al. have investigated.

Such small inertial numbers correspond to a typical con-
figuration of seismic motion of faults. For example, in the
case that d=1 mm, V=1 m/s, Lz=4 cm, and P=100 MPa,
the corresponding inertial number is 10−4. However, one may

wonder whether the friction law Eq. �1� can lead to stick-slip
motion of faults because the friction law found here is ve-
locity strengthening. Recall that we discuss exclusively
stationary-state dynamic friction. Taking static friction into
account, unstable slip is inevitable because static friction is
always stronger than dynamic friction, which is mainly due
to dilatation. Therefore power-law friction in stationary
states does not contradict the unstable slip on faults.

The author gratefully acknowledges helpful discussions
with Hisao Hayakawa, Namiko Mitarai, Michio Otsuki,
Shin-ichi Sasa, and Masao Nakatani.
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