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A modified lattice Boltzmann model based on the two-dimensional, nine-velocity lattice-Bhatnagar-Gross-
Krook fluid is presented for axisymmetric flows. A spatially and temporally varying source term is incorporated
into the evolution equation for the momentum distribution function on a two-dimensional Cartesian lattice. The
precise form of the source term is derived through a Chapman-Enskog analysis, so that the additional axisym-
metric contributions in the Navier-Stokes equations are furnished when written in the cylindrical polar coor-
dinate system.
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I. INTRODUCTION

The formulation of the standard lattice Boltzmann model
for predicting the flow of incompressible fluids is based on
the Cartesian coordinate system. However, numerous impor-
tant flow problems exist for which there is axial symmetry,
e.g., flow past a cylinder or sphere in a confined channel. The
computational demand required for three-dimensional �3D�
lattice Boltzmann models �LBMs� is considerably greater
than for the 2D case. Therefore an axisymmetric LBM,
which will depend on only two coordinates, is highly desir-
able, since it makes computational sense to take advantage of
any reduction in dimension that can be accrued from geo-
metrical considerations. Alternatively, a reduction in dimen-
sionality also allows for greater spatial refinement through
the availability of additional degrees of freedom that would
have been required in the third dimension.

Halliday et al. �1� demonstrated how the evolution equa-
tion for the momentum distribution function within a 2D
Cartesian framework may be adjusted by adding suitable
source terms in order to recover the axisymmetric Navier-
Stokes equations in the macroscopic limit. The first- and
second-order terms in an expansion of the source term are
chosen so that the terms in the lattice continuity and momen-
tum equations, respectively, arising from the cylindrical po-
lar coordinate system are recovered. Premnath and Abraham
�2� adopted a similar approach for multiphase flows by in-
cluding temporally and spatially dependent source terms to
account for the axisymmetric contributions of the order pa-
rameter of the fluid phases and inertial, viscous, and surface
tension forces.

In the present paper we follow the general philosophy
embodied in the paper of Halliday et al. �1� but perform the
Chapman-Enskog analysis in an alternative manner. The
second-order equation that results from the general analysis
performed in this paper differs from the one derived by Hal-
liday et al. �1� in that it contains fewer terms. Furthermore,
the form of the source terms that are derived allows for a
more efficient implementation of the LBM for axisymmetric
flow problems due to the reduction in the number of terms
that require numerical differentiation.

II. GOVERNING EQUATIONS IN AXISYMMETRIC
GEOMETRIES

Consider the flow of an incompressible, isotropic fluid
through a three-dimensional pipe. Let er, e�, and ez be the

standard orthonormal unit vectors defining a cylindrical co-
ordinate system:

er = � x

r
,
y

r
,0�, e� = � y

r
,−

x

r
,0�, ez = �0,0,1� , �1�

where r=�x2+y2, x=r cos �, and y=r sin �. If the solution to
the Navier-Stokes equation is of the form

u = ur�r,z�er + uz�r,z�ez, �2�

that is, the velocity field does not depend on �, then the flow
is said to be axisymmetric �without swirl�. The continuity
equation in cylindrical coordinates is
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and the components of the momentum equation are
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where � is the kinematic viscosity.
By performing the following coordinate transformation:

�r,z� � �y,x� , �6�

�ur,uz� � �uy,ux� , �7�

Eqs. �3�–�5� can be written in Cartesian-like coordinates:

��u� = −
uy

y
, �8�

D�u�

Dt
+ ��P − ���2u� =

��

y
�yu� −

��u�

y2 ��y , �9�

where D /Dt is the material derivative, ��� is the Kronecker
delta function, and �=x ,y. The terms on the right-hand side
of the momentum equation �9� are the additional axisymmet-
ric contributions that the source terms need to recover.
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III. AXISYMMETRIC LATTICE BOLTZMANN EQUATION

The lattice Boltzmann model is expressed in terms of an
average population density Ni, and is based on Boltzmann’s
approximation that particles entering a collision are uncorre-
lated. This approximation enables a closed equation for the
Ni’s to be derived. Assuming that the space and time scales
of the density and momentum fluctuations are large so that Ni
varies slowly in space and time, then the Chapman-Enskog
expansion may be applied to the distribution function Ni:

Ni = Ni
�0� + �Ni

�1� + �2Ni
�2� + ¯ , �10�

where Ni
�0� is a local equilibrium distribution function and the

perturbation parameter � is analogous to the Knudsen num-
ber. The particular form of the equilibrium function for the
two-dimensional, nine-velocity �D2Q9� lattice is due to Qian
et al. �3�

Ni
�0� = �Wi�1 + 3ci · u −

3

2
u2 +

9

2
�ci · u�2� , �11�

where the weights Wi are given by

Wi =�
4

9
, i = 0,

1

9
, i = 1,2,3,4,

1

36
, i = 5,6,7,8.

	 �12�

The kinetic and hydrodynamic modes of the flow are con-
trolled by the spectral properties of the collision matrix, the
elements of which may be regarded as a set of free param-
eters that may be chosen freely, subject to the conservation
constraints, to obtain the desired macroscopic quantities �4�.
Since transport is related to just one nonzero eigenvalue of
the collision matrix, the evolution equation can be simplified
to yield the lattice-Bhatnagar-Gross-Krook �LBGK� evolu-
tion equation �3�:

Ni�x + ci,t + 1� = Ni�x,t� − 	�Ni − Ni
�0�� , �13�

where 	 is a relaxation parameter in the range 0
	
2.
The density � and momentum �u are defined by the ze-

roth and first moments of the population density, respec-
tively:

� = 

i

Ni, �14�

�u = 

i

Nici. �15�

The hydrodynamic equations of motion are obtained via a
multiscale analysis in which the spatial and temporal differ-
ential operators are expanded about �. If the fluid density is
assumed constant, a Taylor and Chapman-Enskog expansion
of Eq. �13� recovers the incompressible Navier-Stokes equa-
tions.

To apply the lattice Boltzmann equation �LBE� to a range
of flow problems, an internal or external force term may

need to be added to Eq. �13�. The exact form of this term
depends on the mechanics in question, for example particle-
fluid suspensions �5�, multiphase flows �6–8�, viscoelastic
fluids �9�, or flow in an axisymmetric geometry �1�. A gen-
eral representation of forcing terms within the LBE frame-
work that considers discrete lattice effects has been proposed
by Guo et al. �10�. With the intention of deriving Eqs. �8�
and �9�, a spatially and temporally varying microscopic term
Si�x , t� is introduced into the D2Q9 lattice Boltzmann equa-
tion �1,2�:

Ni�x + ci,t + 1� = Ni�x,t� + 	�Ni
�0��x,t� − Ni�x,t�� + Si�x,t� ,

�16�

and we take this source term to be at least O���:

Si = �Si
�1� + �2Si

�2� + ¯ , �17�

that is, there is no equilibrium term Si
�0�.

The aim now is to adopt the strategy of Halliday et al. �1�
and perform a Taylor and Chapman-Enskog expansion on
Eq. �16� so that Si can be chosen in such a way as to recover
Eqs. �3�–�5�. To first order in � we obtain

�t1
Ni

�0� + ci���Ni
�0� = − 	Ni

�1� + Si
�1�, �18�

and the mass and momentum constraints yield

�t1
� + ���u� = 


i=0

8

Si
�1�, �19�

�t1
�u� + ����� = 


i=0

8

Si
�1�ci�, �20�

respectively, where ���=
i=0
8 Ni

�0�ci�ci� is the momentum
flux tensor. To recover the continuity equation �3� we, like
Halliday et al. �1�, choose the first-order source term to be

Si
�1� = −

Wi�uy

y
, �21�

where the weights Wi, i=0, . . . ,8, are given by Eq. �12�.
Note that



i=0

8

Si
�1� = −

�uy

y
, �22�



i=0

8

Si
�1�ci� = 0. �23�

Our analysis now proceeds in the same fashion as that of
Halliday et al. �1� but our second-order expression differs
from previous derivations of axisymmetric LBM’s in the fol-
lowing way. Halliday et al. �1� and Premnath and Abraham
�2� borrow the O��2� terms in the expansion of the evolution
equation from the unadjusted LBGK equation to find at sec-
ond order in �
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�t2
Ni

�0� + ��t1
+ ci�����1 −

	

2
�Ni

�1� = − 	Ni
�2� + Si

�2�. �24�

We argue that the above equation is not correct, and thus
neither is the expression for Si

�2� in �1�, as we now demon-
strate.

At order �2 we obtain

�t2
Ni

�0� + �t1
Ni

�1� + ci���Ni
�1� +

1

2
�t1

�t1
Ni

�0� + ci��t1
��Ni

�0�

+
1

2
ci�ci�����Ni

�0� = − 	Ni
�2� + Si

�2�. �25�

If, using Eqs. �18� and �21�, we write Eq. �25� in a similar
form to Halliday et al. �1� and Premnath and Abraham �2�,
i.e.,

�t2
Ni

�0� + ��t1
+ ci�����1 −

	

2
�Ni

�1� − ��t1
+ ci����

Wi�uy

2y

= − 	Ni
�2� + Si

�2�, �26�

we see the presence of additional terms involving Si
�1�, which

are missing in Eq. �10� in �1�. More precisely, the coupling of
the two source terms occurs through the nonequilibrium part
of the distribution function Ni

�1�. Substituting Eq. �18� into
Eq. �26� �or, alternatively, Eq. �25�� yields the following axi-
symmetric terms that are not present in the unadjusted
LBGK equation:

−
1

	
��t1

+ ci����
Wi�uy

y
− Si

�2� =
1

	
��t1

+ ci����Si
�1� − Si

�2�.

�27�

Comparing this with the expression �17� in Halliday et al.
�1�, we see that our second-order axisymmetric contribution
does not include the −Si

�1� /2 term. We suggest that �27� is the
correct form for the expanded LBGK expression with an
additional geometrical force term, and note that Eq. �26� is
consistent with the generalized expansion of LBGK equa-
tions with additional forces, as described by Guo et al. �10�.

Applying the mass conservation constraint to Eq. �25�
gives

�t2
� +

1

2
�t1

�t1
� + �t1

���u� +
1

2
������� = 


i=0

8

Si
�2�, �28�

and upon using Eqs. �19� and �20� we find that

�t2
� −

1

2
�t1

�uy

y
= 


1=0

8

Si
�2�. �29�

Adding the above equation to Eq. �19� shows that

�t� + ���u� = −
�uy

y
+

1

2
�t1

�uy

y
+ 


i=0

8

Si
�2�, �30�

so to recover the correct continuity equation we require



i=0

8

Si
�2� = −

1

2y
�t1

�uy =
1

2y
����y . �31�

When the momentum conservation constraint is applied to
Eq. �25� we find the following equality:

�t2
�u� + ��Q�� +

1

2
�t1

�t1
�u� + �t1

����� +
1

2
����P���

= 

i=0

8

Si
�2�ci�, �32�

where Q��=
i=0
8 Ni

�1�ci�ci� and P���=
i=0
8 Ni

�0�ci�ci�ci�. This
equation can be simplified using Eq. �20� to give

�t2
�u� + ��Q�� +

1

2
�t1

����� +
1

2
����P��� = 


i=0

8

Si
�2�ci�,

�33�

where, from Eq. �18�,

Q�� = −
1

	
��t1

��� + ��P��� +
�uy

3y
���� . �34�

For a D2Q9 lattice the tensors � and P are found to have
the following form:

��� =
�

3
��� + �u�u�, �35�

P��� =
�u�

3
�u���� + u���� + u����� . �36�

A little algebra now shows that Eq. �33� may be written as

�t2
�u� − �������u� + �����u� + ��

�uy

y
− 2��

�uy

y
�

−
1

3	
��

�uy

y
= 


i=0

8

S1
�2�ci�, �37�

where

� =
1

3
� 1

	
−

1

2
�

is the kinematic viscosity. If we assume the fluid is incom-
pressible then Eq. �19� tells us that

�����u� + ��

�uy

y
= 0, �38�

which allows us to write Eq. �37� as

�t2
�u� − ������u� = 


i=0

8

Si
�2�ci� − 2���

�uy

y
+

1

3	
��

�uy

y
.

�39�

Summing the first- and second-order momentum equations
yields
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�t�u� + ����� − ������u� = 

i=0

8

Si
�2�ci� − 2���

�uy

y

+
1

3	
��

�uy

y
, �40�

and since �����=��� /3+�u���u� we find the momentum
equation in vector form:

�
Du

Dt
+ �P − ���2u = 


i=0

8

Si
�2�ci� − 2���

�uy

y
+

1

3	
��

�uy

y
,

�41�

where the left-hand side contains the terms in the standard
Navier-Stokes equations and the terms on the right-hand side
must deliver the extra axisymmetric contributions. Looking
at the components of the above momentum equation and the
second-order mass equation, we see that Si

�2� must conform to
the following three conditions:



i=0

8

Si
�2� =

1

2y
���y�, �42�



i=0

8

Si
�2�cix =

��

y
��yux + �xuy� −

�

6y
�xuy , �43�



i=0

8

Si
�2�ciy = �2� −

1

6
���

y
��yuy −

uy

y
� . �44�

To simplify the above relations and follow the lattice
Boltzmann methodology as closely as possible, we try to
relate Si

�2� to moments of the distribution function. Recalling
that

Q�� = −
1

	
��t1

��� + ��P��� +
�uy

3y
����

= −
�

3	
���u� + ��u� +

uy

y
���� �45�

enables us to find most of the required gradients in terms of
the moments of Ni

�1�:

��

y
��xuy + �yux� = −

6�

�6� + 1�y

i=0

8

Ni
�1�cixciy ,

�2� −
1

6
���

y
��yuy −

uy

y
�

=
�1 − 12��

y
� 1

2�1 + 6��
i=0

8

Ni
�1�ciy

2 +
�uy

4y
� . �46�

A suitable choice of Si
�2� can now be found by inspection.

Given below are our first- and second-order source terms that
meet the required conditions �42�–�44� and therefore recover
the axisymmetric Navier-Stokes equations in the macro-
scopic limit:

Si
�1� = −

Wi�uy

y
, �47�

Si
�2� =

3Wi

y
��ciy

2

2y
�ux�xuy −

3uy	

2
Qxx +

�uy
2

2y
− 3uy	Qyy −

�uy
2

y
�

− cix� 6�

�6� + 1�y
Qxy +

1

6y
�xuy� + ciy�1 − 12��


� 1

2�1 + 6��
Qyy +

�uy

4y2�� .

The differences between our model and that of Halliday et
al. �1� should now be highlighted. Our second-order source
term is given mainly in terms of the tensor Q, which is the
third moment of the nonequilibrium distribution function
Ni

�ne�. Therefore, we argue that this derivation is more sym-
pathetic to the lattice Boltzmann philosophy. Another advan-
tage of this approach is the reduction in the amount of nu-
merical differentiation that needs to be performed compared
to the lattice Boltzmann models of Halliday et al. �1� and
Premnath and Abraham �2�. In the modified LBM described
here, only one term, viz., �xuy, in the expression for Si

�2�

needs to be approximated using finite differences compared
with five terms in �1�. Although Haliday et al. �1� comment
that components of the velocity gradient tensor can, in prin-
ciple, be evaluated from appropriate higher-order moments
of the nonequilibrium function, in practice we are of the
opinion that it is not possible to express �xuy in this manner.
Numerical evidence for the improved efficiency of the axi-
symmetric LBE presented here will be given in a subsequent
presentation. The application of the method to a number of
benchmark problems will also be given there.

Finally, the analysis performed here is of the same form
and performed to the same order as that presented in �1� but
delivered in a different manner. We argue that this method is
more transparent than that of Halliday et al. �1� and exposes
an additional term in their second-order expansion of the
evolution equation. The analysis performed in this paper is
consistent with the general form of LBE equations with ad-
ditional forcing given by Guo et al. �10�.
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